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Abstract

This paper describes a multi-layered hierarchical motion
planning strategy for a class of self-reconfigurable modular
robotic systems, I-Cubes. The approach is based on the
synthesis of motion on the basis of metacubes, which have a
particular structure possessing 8 Cubes and 16 Links. The
developed strategy organizes the metacube motions and the
corresponding cube-level motions. At the lowest level, link
motions are generated. The resulting system is demonstrated
to be capable of performing a pre-specified task of moving
from one position/shape to another. The paper describes the
latest results of our planning strategy through some
experimentally justified examples.

1. Introduction

The concept of building robots which are capable of
changing their structure according to the needs of the
prescribed task and the conditions of the environment has
been inspired from the idea of forming topologically
different objects with a single and massively interconnected
system. The problems related to the design and
implementation of such systems are analyzed in the field of
self-reconfigurable robotics. Various applications analyzing
the capabilities of self-reconfigurable robotic systems are
reported in the literature. Early studies on this topic report
manual configuration [1], a modularly synthesized
kinematics structure called Tetrabot [2], and cellular mobile
robots with reconfiguration capability [3]. Later studies have
reported examples in 2D such as metamorphing hexagonal
modules [4], self-repairing machines [5], the Cristalline
robot [6], which moves in a horizontal plane, and Inchworm
[7], which moves in a vertical plane. The examples operating
in 3D are Polypod/Polybot [8], CONRO [9], robotic
molecule [10], self-reconfigurable structure [11], modular
robot [12], Proteo [13] and I-Cubes [14]. A common
property of what is presented in [8-14] is the capability of
exploiting neighboring modules to fulfill the task.

In the literature, several approaches have been proposed to
discover the associations between the task described in the
operational space and the corresponding actions to be carried
out simultaneously in the cell level. Planning of motion has
exploited the strength of simulated annealing [15],
distributed approaches [13,16-17], closed-chain
reconfiguration [18] and multi-layered solvers [10,12,19].

Although it is possible to treat the I-Cube entity as a
closed-chain or non-homogeneous lattice-based
reconfigurable robot, we limit our discussion to a uniform
structure described in Section 3. This structure provides a
significantly simpler planning strategy.

The following section briefly introduces the I-Cube
system, the third section illustrates the group of modules
composing I-Cube systems, the fourth section presents the
multi-layered planner, and the concluding remarks are given
in the final section.

2. I-Cube System

The I-Cube system is composed of 3-DOF Links enabling
the self-reconfiguration, and Cubes determining the
resolution of the object realization by constituting the
elements of a lattice. A simple object with 3 Cubes and 2
Links (3C2L) is shown in Figure 1. The motors A and C
provide 360º and the motor B provides 270º of rotational
motion. The motors are independently controlled thereby
enabling a high degree of mobility in terms of planning
issues.

Figure 1. Physical view of a 3C2L I-Cube system

In the physical implementation stage of the I-Cube links,
each link is actuated by a Cirrus CS 21-BB Hi Performance
Sub-Micro BB Servo. The controller for each servo is a PID
controller realized on a dedicated PIC (16C63A) controller.
Feedback signals are obtained through the use of 24-hole
optical encoders and the control system is operated at 160
msec of sampling rate. The powering of the system is
achieved through the batteries placed inside the cubes and
the presented design is proven to be able to carry its own
mass, i.e. 195gr per link and 205gr per cube. The latching
mechanism designed for the attachment and detachment is
shown in Figure 2. When an attachment is performed, the

6 cm

A CB

6 cm

3 cm

7870-7803-7272-7/02/$17.00 © 2002 IEEE 

Proceedings of the 2002 IEEE 
International Conference on Robotics & Automation

Washington, DC  �  May 2002 



communication between the cube GUI and I-Cube system is
maintained through a USART serial bus adapter.

 

Figure 2. Physical view of connection mechanism (a) on the
cube faces and (b) at the link ends for cable twist prevention

The proof of concept of self-reconfiguration is shown in
Figure 3, in which several intermediate steps of the tower
construction task are shown.

Figure 3. 24C48L group (i.e., 3 metacubes) forming a step
based on metacube moves

3. Homogeneous Groups of I-Cube Modules

Our earlier attempts to find a solution for relatively
smaller groups of modules also used the substrate definition,
and assumed that the cubes would start and stop at the cells
fitting a cubic lattice, although it is possible to treat a group
of cubes and link as a closed-chain modular system.
However, our earlier attempts did not pose any constraints on
the structure of the system other than the one mentioned
above. In [14], we defined a uniform structure of modules,
which will simplify the path planning process at the higher
level where the cube motions are considered, and at the
lower level where sequences of link motions are defined for
desired steps of cube moves.

This uniform structure enables us to replace the heuristic
search methods of [15,19-20] with direct link motion
evaluations for cube paths over the entity. This new approach
also provides a solution for combining individual link/cube
motions into simultaneous actions.

Even for homogeneous modular systems with simplified
module design (i.e. Proteo [13], and MEL robot [21]), the
motion/path planning is known to be a very complex
problem due to the fact that a module forced to a specific
location can block remaining modules from reaching their
destinations.

The uniform structure we introduced in [14] has been
changed slightly to take advantage of better link positioning
with respect to cubes. The metacubes are still 8C16L groups
as shown in Figures 4 and 5.

All the links in a metacube are in the completely open
position. Each cube is associated with two links: one on the
top (y+) and one on the side. As seen in Figure 4, a metacube
has two connections on each vertical face, and four
connections on the horizontal faces. These groups, when put
together, result in a uniform structure with links between
vertical layers of cubes (one link on top of each cube), and a
link between every second pair of cubes aligned with the x-
and z-axes (Figures 4, 5 and 6).

This definition of metacube provides at most four links per
cube (top, bottom, and two on the side), and guarantees that
any cube that needs to be moved to relocate the metacube
will have at most four links, of which two can be easily
transferred to another cube in the same metacube or an
adjoining one. Due to the definition of link positions in the
metacube, this will leave the cube with two links attached to
non-opposing faces of the cube. This enables the planner to
move the cube without breaking the geometric constraints of
the modules.

By defining metacubes, we increase the size of the units
that make up the I-Cube entity, i.e., we increase the ‘group
resolution.’ These metamodules will be the ‘tiles’ of a 3D
structure that will be relocated from one position to another
to reconfigure the I-Cube entity. However, for tasks
requiring better modular resolution, it is still possible to use
other approaches given in [19,22] to find solutions for single
cube displacement after moving a sufficient number of
metacubes into desired positions.

 
 y          x  

 

 

 z 

 

  A      B      E     F 

 

 

 
   C     D      G    H 

Bottom layer   Top layer      

 

 (a) (b)

Figure 4. Illustration of (a) cube and link positions (top links
not shown) in a metacube, and (b) connections to
neighboring metamodules (gray connections belong to
neighboring modules).
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Figure 5. Different views of a metacube (8C16L) where the
links at each layer are aligned along the same axis.

Figure 6. A network of I-Cubes with overlapping metacubes

Note that the configuration given here for the
metamodules is one of many possible structures. We have
decided to keep all the links attached to the top faces of the
cubes as more link placements on the horizontal layer
provides a more robust structure; however, for space
applications, this constraint can be relaxed.

4. Multi-Layered Planner

The reconfiguration task is analyzed in a layered fashion
as shown below to come up with a hierarchically organized
solution. The following subsections discuss these levels in
detail.

Figure 7. Hierarchical levels of motion planning

4.1. Metacube Level: High-Level Solvers

When a group of I-Cube modules, each of which has the
uniform structure shown in Figures 4 and 5 having n cubes
and 2n links, is to reconfigure itself to fulfill a prescribed
task, the highest level of planning synthesizes the
displacements for each metacube. First results on this issue
have been presented in [14], which describe two solvers
named SolverIC and SolverICF, which are explicitly defined
in [22]. The underlying idea is to perform a mapping
between metamodules of the initial configuration and those

of the final one. In realizing the mapping, the cost of each
operation is defined to be the Manhattan distance between
initial and final positions. The prime objective is to keep the
cost as low as possible while handling the application-
specific difficulties such as metamodule motion precedence,
overlappings, and modules acting as obstacles for the others.

The primary difference between Solver IC and Solver ICF
is that the latter gives priority to the metamodules that are
closer to their destination locations. Furthermore, the
decision flow accounts for the consecutive moves and can
perform alterations if the action to be performed requires the
removal of the first.

The latest version of the developed solver is called
SolverM, whose initial version is already presented in [14].
The current version is based on the instant updates of the
entity’s perimeter, which has experimentally been shown to
be successful in reducing the time required to find the
solution and the number of link motions required for
fulfilling the task.

At this level, the planner also generates a data structure
representing the entity’s current perimeter.  The structure
used is a hash table, which stores the position of each cube as
well as the position of each cell directly bordering a cube.
Generation of this structure involves storing the initial
position of each cube, and adding all bordering positions as
border cells.  Since each cube borders at most six cells, the
computational complexity of generating the perimeter is
linear in the number of cubes.

4.2. Cube Level: Generating Paths for a Single Cube

The path planning problem at the cube level involves the
development of strategies for resolving and reconstructing
metacubes at the level of individual cubes. For this purpose,
we considered the entire set of possible cases and their
attachment and detachment strategies. There are 17 such
cases based on the positions of a metacube that is capable of
moving to another location (i.e., is on the ‘edge’ of the
group).

In Figure 8(a), an exemplar case is illustrated. The
metacube of interest is the one drawn as a wire frame, and
the solid ones are its neighbors. The numeric notation for this
case is depicted in Figure 8(b). It should be clear that if
x+=x-=1, the metacube cannot move, or equivalently, a
metacube cannot be constructed in such an empty location.
The same constraint is also valid for y and z directions.

Furthermore, there is a second set of cases in which y+=1.
These are excluded, but for possible space applications, a
corresponding attachment and detachment strategy needs to
be developed. Having the structure illustrated in Figure 4 in
mind, the detachment and attachment graphs for case 38
(100110) are depicted in Figure 8(c) and (d). When the
graphs characterizing the attachment-detachment sequences
for all cases that are likely to occur are formed, a static
codebook describing the best sequences is prepared, and in
the middle level of planning, the cube motions are
synthesized according to what is prescribed by the codebook.
Given the current position and destination for a moving cube,
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the optimal path for that cube is found using a heuristic
search algorithm similar to A*, where the heuristic used is
the Manhattan distance to the cube’s destination.

(a)        (b)

       (c)           (d)
Figure 8. (a) Case 38 (100110) and (b) its representation.
The detachment (c) and the attachment (d) strategies for case
38. AND operator determines the attachment/detachment
condition depending upon the movement of multiple cubes.

This algorithm uses the perimeter structure generated by
the metacube level planner. The moving cube is removed
from its original position and added at its destination
position. Removing a cube from this representation involves
examining each of the six bordering cells. Any cells which
no longer border a cube are removed, and the position of the
cube itself is marked as a border cell. Similarly, adding a
cube involves examining all neighboring cells and changing
those which did not previously border a cube to border cells.

The procedure of adding or removing a cube is
computationally inexpensive, as it requires at most 36 hash
table look-ups, regardless of the total number of cubes
present, and therefore will run in O(1) time.

4.3. Link Level: Generation of link motions

Once the optimal path for the cube has been found, it is
passed to an algorithm which constructs a path along the
faces of the cubes. For each step taken by the cube, this
algorithm examines the surrounding cubes and determines
the optimal path for moving the cube one step along their
faces. For example, if the cube is on the top face of another
cube, and must move along the x-axis in a positive direction,
the planner will check for a cube immediately below the

destination cell. If a cube exists there, it will add that cube’s
top face to the path. Otherwise, it will check for cubes
bordering the cell along the z-axis, and so forth. Once again,
since only the immediate area is considered, constant
computational time is assured.

The face path is then passed down to the lowest level of
the planner, which determines and executes the sequence of
link motions that will move the cube in question along the
path. This level is divided into three distinct phases: (1)
detachment, (2) movement, and (3) attachment. The
movement phase may include one or more transitions
between the orthogonal planes.

During the detachment phase, the cube is moved from its
starting position to the first face on the path belonging to a
metacube other than the one to which the moving cube
belongs. If this face is on the side of a metacube, the moving
cube’s two associated links are moved as well; if the face is
on the horizontal plane, a sequence of link motions is
recorded which will move each associated link, one at a time,
to the position of the link under the destination of the moving
cube, but this sequence is not executed until later.

The actual link motions to be executed during the
detachment phase are hard-coded into the planner, based on
the detachment plan being followed, the initial position of
the cube to be moved, and the position to which the cube is
being detached. For each combination of these variables,
there is a predefined sequence of link motions which, due to
the regularity of the metacube structure, is guaranteed to
move the cube and its associated links into their desired
positions.

For each of the 17 detachment plans, there are 8 possible
initial cube positions, and at most 12 possible destination
faces, so the number of hard-coded cases is less than 1632.
Since most detachment cases have less than 12 possible
destination faces, the number is in reality significantly
smaller. In addition, one would expect about half of these
cases to be mirror images of the other half. Currently, 10 of
these cases have been implemented in our simulation.

The movement phase determines the link motions
necessary to move the cube from its position at the end of the
detachment phase to the last face on the face path belonging
to a metacube other than the one to which the moving cube is
moving. As with the detachment, a predefined sequence of
link motions is looked up for each step in the face path based
on the cube’s current and desired positions relative to the
metacube to which it is moving.

The link motions executed during this phase are designed
in such a way that, after each step on the path, the links
associated with the metacube to which the moving cube is
currently attached are in a predefined configuration based on
the position of the moving cube. This is possible due to the
uniform structure of the metacubes. In addition, unless the
moving cube is traversing the horizontal face of a metacube,
the links for all other metacubes are in their resting
(idle/default) positions.

For movement along the side of a metacube, the moving
cube’s associated links are moved along the “alleys”, which
do not contain any links. For movement along the horizontal
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face of a metacube, the cube is moved with the metacube’s
links on the horizontal plane (i.e. “forest”), and the
associated links are left behind. When a cube moves from the
horizontal plane to a vertical plane, the last two links used to
move the cube become the cube’s associated links. The rest
of the links on the horizontal plane follow the cube’s path
two steps along the top, and the cube’s original associated
links are moved into the two open positions, using the
sequence recorded during detachment. When a cube moves
from a vertical plane to the horizontal plane, the associated
links are left behind and a sequence of link motions is
recorded which will move them to the horizontal plane. This
procedure is similar in its operation to a buffer structure;
since exactly one link is moving for each movement of the
cube, the procedure takes constant amortized time.

The attachment phase is similar to the detachment phase,
in that a predefined sequence of motions is executed based
on the attachment plan, the destination of the moving cube,
and the moving cube’s current position. The number of hard-
coded cases is the same as for detachment; at this time, 16
have been implemented.

There are three primary advantages to this approach to
generating link motions. First, the procedure is almost
entirely modular. Since the link motions guarantee that the
links are in a predefined position based on the relative
position of the moving cube, the position of all links can be
determined given only the cube’s position, and in constant
time. As a result, the generation of link motions for each step
is almost completely independent of all other steps. This
simplifies the procedure by eliminating the need for search
algorithms and reducing the problem to a simple look-up
based on several variables.

Second, the procedure can easily be parallelized. Since the
link motions guarantee that, for movement along vertical
planes, the links on all other metacubes will be in their rest
positions, the motion of multiple cubes can be parallelized by
ensuring that only one cube at a time is moving along any
given metacube, allowing cubes to “lock” the metacube on
which they are moving. Cubes moving along the horizontal
plane would lock multiple metacubes.

Third, the procedure is computationally inexpensive. For
each step in the cube’s path, the low-level planner executes
in O(1) time, since it is in effect a look-up table based on a
small, constant number of variables. The entire procedure is
therefore linear in the number of steps in the cube path. The
largest possible number of cells in the entity’s perimeter is
10n+8, where n is the number of cubes in the entity, and
since cube paths will not enter a perimeter cell more than
once, this bound also applies to the length of the cube path.
Thus, the planner runs in O(n) time for each cube.

The data given in Table I and its visualization in Figure 9
reflect the performance of the planner. The planner was run
on a Pentium-III 600 MHz processor.

The rows show four different problems involving
metacubes that are aligned in one axis where the metacube at
one end moves to the other. These cases represent the largest
possible perimeter for the given number of metacubes, i.e.,
the expected average distance traveled by the cubes has the
maximum possible value.

TABLE I . A Complexity Assessment

Problem # of link
motions

Solution
time

3 metacubes 1187 1:14
4 metacubes 1427 1:56
5 metacubes 1667 2:41
6 metacubes 1907 3:37

Figure 9. Visualization of the data presented in Table I.

As expected, the number of link motions is linear in the
number of cubes in the entity, given the final position
assignment for the moving metacube. These link motions are
performed sequentially in the current simulation, but would
allow for a moderate degree of parallelization. The time
taken by the planner is also nearly linear, with a small
amount of additional complexity being introduced by the
display algorithms.

5. Discussion and Conclusions

A hierarchical motion planning strategy for a distributed
bipartite robotic system, I-Cubes, is presented. The approach
has been realized in three levels starting with the definition
of metamodules at the highest level. The solution generated
at the middle level focuses on the cube motions and the
lowest level synthesizes the corresponding link actions for a
given task by using the predefined link motion sequences for
specific cube positions along with the calculated path.

It has experimentally been shown that the proposed
technique has some prominent features in organizing itself
yielding an approximately linear dependence between time
expenditure and the number of cubes contained in the I-
Cubes entity, as well as allowing for safe and easy
parallelization of motions.

The tests performed on the physical system are still in
progress towards proof of concept in the physical domain.
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