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Abstract 
This paper demonstrates the estimation of signals by 
using a neural network structure composed of cosine 
neurons. The building blocks of the architecture are 
cosine components with adjustable amplitude, 
frequency and phase. The training procedure is based 
on the mixture of gradient descent with a method 
utilizing sliding mode control philosophy. The proposed 
use of mixed information in training dynamics leads to 
the minimization of the cost of estimation as well as the 
cost of stability. Two application examples are 
presented in the paper. The first example considers the 
reconstruction of a time signal having finite frequency 
components in the spectrum. The second example 
shows the reconstruction of the frequency plot of a FIR 
filter. 
 
 
1. Introduction 
 

Signal estimation is an interdisciplinary area, the 
techniques of which are required in most engineering 
practice. The main issue in estimation theory is to 
construct an appropriate estimator, which gives 
descriptive information about the signal or system to be 
identified. Some approaches dealing with signal 
estimation adopt methods in the least squares sense [1]. 

Artificial neural networks have been studied 
extensively in the context of least squares [2]. Various 
applications mentioned in the literature utilize the least 
squares based training procedures. A common property 
of the neural systems is their mathematical tractability 
in the sense of evaluating the sensitivity derivatives 
easily. In this study, a simple way for the estimating the 
spectra of unknown signals is proposed with the 
introduction of a new neuron model, which we call 
cosine neurons. The proposed estimation scheme is 
carried out in time domain and operates on-line. The 
use of cosine neurons provides an important 
information about the shape of the frequency spectrum 
of the input signal. In general, if there is no closed-form 
time-domain equation of the input signal, it is 
considerably difficult to obtain its frequency domain 
representation. Therefore a need arises for the use of an 
intelligent technique. The proposed approach has this 

characteristic and the fact that it can operate on-line 
makes it especially attractive. 

At this point, the mechanism introducing the 
intelligence determines the overall performance of the 
estimator. Typically, the methods using the sensitivity 
derivatives of the cost function suffer from the shape of 
the cost surface, which is a multidimensional surface. In 
tuning the parameters, the information is extracted from 
the partial derivative of the cost function with respect to 
an adjustable parameter, along which the derivative 
may assume large values. Therefore, imposing a 
stabilizing force on training dynamics can eliminate the 
local unstability of gradient based techniques. This 
could be achieved by the use of Sliding Mode Control 
(SMC) philosophy in the training phase. 

Earliest notion of SMC strategy was constructed on 
a second order system in the late 1960s by Emelyanov 
[3]. The work stipulated that a special line could be 
defined on the phase plane, such that any initial state 
vector can be driven towards the plane and then be 
maintained on it, while forcing the error dynamics 
towards the origin. The concept introduced by 
Emelyanov has first been applied to simple systems of 
order two. Since then, the theory has greatly been 
improved and a well defined design framework has 
been established. The sliding line has taken the form of 
a multidimensional surface, called the sliding surface 
and the function defining it is called the switching 
function. The main advantage introduced by the use of 
SMC approach is its robustness to unmodeled dynamics 
of the system under control. In this paper the system 
corresponds to the training dynamics. 

Latest studies consider SMC approach with 
adjustable design parameters [4-5]. In [4], Kaynak et al 
demonstrate that the redesign of sliding surface can 
improve the performance of the overall control 
mechanism. The use of such techniques can therefore 
offer a practical alternative for stable training of 
intelligent systems. In [6-8], Efe and Kaynak 
demonstrate the distinguished performance introduced 
by using Variable Structure Systems (VSS) analogy in 
the training of neuro-fuzzy systems. 

The organization of this paper is as follows. The 
second section describes the problem and the 
conventional solution. The third section demonstrates 
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the modified training procedure. In the fourth section 
simulation examples are presented. Conclusions 
constitute the last part of the paper. 
 
2. Estimation by Cosine Neural Networks 
 

The approach presented in this section is based on 
the matching of two signals in time-domain. A natural 
consequence of this is the similarity in the frequency 
views. For this reason, an estimator composed of finite 
number of cosine components is constructed as 
described by (1). 
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where, xs is the response of the estimator. Ci, wi and pi 
denote the amplitude, frequency and the phase of the ith 
unit respectively. Let xd and e denote the desired signal 
and estimation error respectively. In order to minimize 
the instantaneous cost defined by (2), gradient descent 
based update formula given by (3) is employed. 
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In (3), φ is a generic parameter of the neuroestimator 
and ηGD is the learning rate from the interval (0,1). The 
subscript GD denotes the gradient descent. Having this 
in mind, the update formulas for ith unit can be 
described in (4) through (6). 
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3. Variable Structure Systems Based 

Extraction of Stabilizing Information 
 

The methods of computational intelligence 
frequently utilize the gradient based training procedures 
for parameter tuning. As mentioned earlier, the most 
crucial point in training of a neuro-fuzzy system is the 
fact that the training procedure tries to minimize the 
cost, which is a function of the realization error. 
However, during the training phase, there is no force 
ensuring the parametric stability or convergence. The 
approach analyzed here demonstrates how a VSS based 

stabiliznig information could be incorporated into the 
learning strategy adopted. 

The parameter tuning formula given by (3) can be 
approximated by a first order system given by (7). In 
(7), Ts denotes the sampling period. If the parametric 
displacement ∆φ is defined as the sliding line for 
parameter φ, adopting the reaching law in (8) and 
equating (7) and (8) yields the solution in (9). 
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For the stability of the proposed solution, (10) is chosen 
as a Lyapunov function. Parametric stability is ensured 
if the inequality in (11) holds true. 
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If (7) and (9) are substituted into (11), the following 
selection of learning rate satisfies the negative 
definiteness of the time derivative of the Lyapunov 
function in (10). This selection of η is given by (12). 
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where, 
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Define the following quantity; 
 

( ) φφ φφφ ∆+∆= KQA tanh  (14) 

with β being a constant from the interval (0,1). 
 

If this choice of ηφ is used in the approximate model 
of training dynamics (7), the stabilizing component of 
parameter update formula, which is given by (15), is 
obtained. 
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At this point, one might argue that whether this rule 
leads to the minimization of realization error or not. 
Clearly, the rule described above will enforce the 
adjustable parameters to settle down but will not 
minimize the cost in (2). An appropriate combination of 
this rule and gradient technique can result in the 
minimization of both the realization error and the 
displacement magnitude of the relevant parameter. This 
mixture can be performed by utilizing a weighted 
average as described in (16). 
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In (16), α1 and α2 are positive weights and determine 
the influence of each approach in the final value of the 
parameter change vector. 
 
4. Simulation Results 
 

Two simulation examples are presented. In the first 
example, a signal having finite frequency components 
in the spectra is reconstructed. The second example 
reveals the performance of the proposed scheme in 
extracting the frequency plot of a FIR filter. 
 
4.1. Reconstruction of a Signal 
 
In this part the signal described by (17) is reconstructed 
by the proposed structure and the training procedure. 
The desired and estimated signals are illustrated in Fig. 
1. 
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In Fig. 2, the discrepancy between desired and 
estimated signals is depicted. For each period of the 
desired signal, a 628-point Fast Fourier Transform 
(FFT) is evaluated and corresponding to each period, 
results are given in Fig. 3 where the upper limit of the 
horizontal axis is adjusted such that the nonzero 
frequency components are easily seen. In this figure, 
the top row is the FFT of the desired signal (17). 
Subsequent plots in Fig. 3 illustrate the 628-point FFT 
of the estimated signal, which corresponds to 2π 
seconds in time-domain. Starting from the second 
period, the estimated spectral view and the desired one 
become nearly indistinguishable. 

In (18), the cost of stability is formulated. In Fig. 4, 
the time behavior of this quantity is illustrated whereas 
Figs. 5 and 6 demonstrate the realization error and the 
cost of stability without using parameter stabilizing 
information derived in the third section. 
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During the simulations of signal reconstruction 

example, following parameters are used as the 
simulation settings. 
 
Table 1. Simulation Settings for Signal Reconstruction 

 
 #Neurons 5 
 β 0.99 
 ηGD 0.01 
 Q 0.10 
 K 0.10 
 α1 3.00 
 α2 1.00 
 Ts 10 msec 
 
4.2. Extraction of Frequency Plot of a FIR 
Filter 
 

In this section, the average power spectral density 
(PSD) plot of a FIR filter is extracted by the use of the 
algorithm presented. The filter has the following 
transfer function. 
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In Fig. 7, the averaged power spectral density graph is 
illustrated for an intermediate step. As the input signal, 
a white noise sequence generated by Matlab is used. 
For this case following parameters are used as the 
simulation settings. 
 

Table 1. Simulation Settings for Frequency Plot 
Extraction 

 
 #Neurons 3 
 β 0.01 
 ηGD 0.90 
 Q 0.10 
 K 0.10 
 α1 1.00 
 α2 1.00 
 Ts 10 msec 
 
5. Conclusions 
 

The method reported in this paper demonstrates that 
the conventional training procedures for 
computationally intelligent systems, such as neural 
networks, fuzzy systems or methods adapted from 
artificial intelligence can be incorporated with 
methodologies leading to parametric stability. 
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Variable Structure Systems technique or Sliding 
Mode Control philosophy is one of the methods which 
is well-known with its robustness to unmodeled internal 
dynamics of the system under investigation. A suitable 
combination of traditional training methods with VSS 
technique can offer much preferable solutions in the 
sense of safety. This is apparent from the comparison of 
estimation error trends illustrated in Figs. 2 and 5, and 
the cost of stability plots depicted in Figs. 4 and 6. 

In this study, the performance of the proposed 
approach has been demonstrated on the estimation of 
signals and extraction of frequency plot of a FIR filter. 
The strategy is based on the matching of signals in 
time-domain. Naturally, if two signals have similar 
views in time-domain, their frequency plots are similar. 
The estimator studied in this study comprises cosine-
like basis functions with adjustable parameters. The 
developed method tunes the parameters on-line. 

Various identification and control oriented 
applications of the proposed approach clearly stipulate 
that the method is capable of eliminating the locally 
divergent behavior of gradient based training 
approaches. This study demonstrates that the method 
can also be used in signal processing applications. 
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Figure 1. Desired and Estimated Signals 
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Figure 2. Estimation Error 
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Figure 3. 628-Point FFT of the Desired Signal (top 

row) and Time Evolution of 628-Point FFT of 
Estimated Signal Corresponding to Each 2π Seconds 
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Figure 4. Cost of Stability with VSS and Gradient 

Descent Based Training Information Mixture 
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Figure 5. Estimation Error without VSS Based 

Component in Training Information 
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Figure 6. Cost of Stability without VSS Based 

Component in Training Information 
 

 
Figure 7. Desired Average Power Spectral Density 

and Estimated Average Power Spectral Density 


