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Abstract - In this paper, a novel method for tuning the
parameters of a class of intelligent PD controllers is discussed.
The aim of the design is to extract a tuning law such that the
specifications of the control problem are met and the adjustable
parameters evolve bounded. The achievement of these
specifications is a challenge in the presence of strong external
disturbances, ambiguities in the plant model and nonlinearities,
which absolutely require robustness for performance and
stability for safety and applicability. The approach introduced
in this paper achieves these targets by utilizing the sliding mode
control technique based on an augmented switching manifold.
The proposed law is applicable to the class of controllers, the
output of each member of which is linear in the adjustable
parameter set. This stipulates that the application spectrum of
the algorithm extends from PID controller to fuzzy controllers
and some structures of neural controllers. In the application
example, control of a coupled double pendulum system is
considered. The dynamic model of the plant is assumed to be
unknown and the difficulties introduced by observation noise
are studied.

I. INTRODUCTION

The problem of tuning the parameters of a controller for
meeting a set of predefined performance specifications is a
challenge because of the nonlinearities existing in the plant
model, disturbances and time varying nature of the processes.
Especially if the accuracy in the response is sought, the
controller must have a degree of robustified intelligence so
that the nonlinear behavior is handled together with
disturbance rejection ability. One must now question how the
designer can define robustified intelligence and achieve it
with the known design tools. The concept of intelligence in
this context should refer to the acquisition of the current state
of the system under investigation and generating an
appropriate decision with an increased autonomy. In this
respect, the design of a training strategy necessitates the
separation of useful knowledge and disturbance related
components contained in the training signals, which directly
influence the evolution of the parameters and consequently
the output of the intelligent system. Robustified intelligence
accounts for the behavior in the parameter space, the motions

in which are characterized by the adopted training strategy;
and the robustness in this space can be defined as the
occurrence of a parametric evolution in finite volume.

The studies reporting the use of Sliding Mode Control
(SMC) for parameter tuning in Computational Intelligence
(CI) by Sanner and Slotine [1], and Sira-Ramirez and Colina-
Morles [2] have been the stimulants, which proved that the
robustness feature of SMC could be exploited in the training
of the architectures of CI. These studies pioneered a vast
majority of researchers working on SMC and CI. Sanner and
Slotine considered the training of GRBFNN which has
certain degrees of analytical tractability in explaining the
stability issues, and Sira-Ramirez et al have shown the use of
ADALINEs with a SMC based learning strategy. As an
illustrative example, the inverse dynamics identification of a
Kapitsa pendulum has been demonstrated together with a
thorough analysis towards the handling of disturbances. Hsu
and Real [3-4] demonstrate the use of SMC with Gaussian
NNs, Yu et al [5] introduces the dynamic uncertainty
adaptation of what is proposed in [2], and demonstrate the
performance of the scheme on the Kapitsa pendulum. Parma
et al [6] use the SMC technique in parameter tuning process
of multilayer perceptron. Latest studies towards the
integration of SMC and CI have shown that the tuning can be
implemented in dynamic weight filter neurons [7] and in
parameters of a controller [8]. A different viewpoint towards
this integration is due to Efe et al [9-10], which has the goal
of reducing the adverse effects of noise driven parameter
tuning activity in gradient techniques. The key idea in these
works is the mix two training signals in a weighted average
sense. A good deal of review is provided in the recent survey
of Kaynak et al [11]. The survey illustrates how SMC can be
used for training in CI as well as how CI can be utilized for
the tuning of parameters in conventional SMC.

In [8,12], it is presented that the original form of the
method discussed by Ramirez et al [2] can be used for
control applications, in which the target output of the
intelligent system, i.e. the controller, is unknown. The major
difference of what is presented in this paper from what has
been discussed in the literature is the construction of a
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dynamic adaptation law based on a switching manifold,
which is augmented with the sensitivity derivatives of an
appropriately defined cost function. The paper analyzes the
relation between the sliding surface for the plant to be
controlled and the zero learning error level for the output of a
flexible controller.

The organization of the paper is as follows: The second
section gives the definitions and the formulation of the
problem and derives the first critical value of the uncertainty
bound parameter denoted by K. The following section
introduces the equivalence constraints on the sliding control
performance for the plant and sliding mode learning
performance for the controller. The section gives the second
critical value of K and combines the two constraints. The
fourth section describes the dynamic model of the plant used
in the simulations and presents the simulation studies.
Conclusions constitute the last part of the paper.

II. PARAMETER TUNING BASED ON A TWO-TERM
LYAPUNOV FUNCTION

In this section, an analysis of the sliding mode creation
problem, which is based on a two-term Lyapunov function, is
given. The proposed form of the update dynamics constructs
the time derivative of the parameter vector, the use of which
results in the observation of a sliding mode taking place after
a reaching mode on the phase plane.

Consider the 3-input single output controller structure
described as

A
T uφτ = (1)

where,

[ ]T321 φφφφ = (2)

[ ] [ ]TT
A eeuuu 1121 �== (3)

In above, the symbol e denotes the tracking error, which is
the discrepancy between the response of the system under
control (x) and the reference signal (xd), i.e. e =x−xd. The
structure of the control system is an ordinary feedback loop
as illustrated in Fig. 1. The definitions of the sliding line sp

and that of zero learning-error level sc, which are seen in this
figure, are described as

( ) eeees p λ+= ��, (4)

where, λ is the slope of the sliding surface and

( ) ddcs ττττ −=, (5)

where, τd is the desired output of the controller and is
unknown. Based on these definitions, one can define the
following quantity as the cost measure,

2

2

1
csJ = (6)

which instantly qualifies the similarity between the produced
control signal and its desired value. Using this measure, an
augmented switching manifold can be designed as in (7), and
a Lyapunov function can be constructed as in (8).
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where, µ and ρ are positive constants. Based on the selection
in (9), the open form of the Lyapunov function in (10) can be
written as follows.
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in which, the selection of the weight parameters µ and ρ must
be done by comparing the magnitudes of the time-varying
two terms of (10). For a vector denoted by ν, the definition of

the norm used in (10) can be given as 2/1)( vvv T= .

In order not to violate the constraints of the physical reality,
the following bound conditions are imposed.

φφ B≤ (11)

AuA Bu ≤ (12)

AuA Bu
�

� ≤ (13)

ττ B≤ (14)

d
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d
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The numerical values of these bounds are not certain in most
of the applications but the realistic design approaches must
take them into consideration as they determine the domain of
applicability of a strategy.

Theorem 1. For a controller structure, in which the
output is a linear function of the adjustable parameters, the
adaptation of the controller parameters as described in (17)
ensures the negative definiteness of the time derivative of the
Lyapunov function candidate in (10).
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where, K is a sufficiently large constant satisfying (18).

( )
AA uucr BBBKK

�1 ρµ φ +=> (18)

where, Kcr1 is the first critical lower bound of the uncertainty
bound parameter K. (Proof of the theorem is omitted due to
the space limit, the details can be found in [12].)

III. ANALYSIS OF THE EQUIVALENCE BETWEEN
SLIDING MODE CONTROL AND SLIDING MODE

LEARNING

Consider the sliding line sp and the zero-learning-error
level sc described by (4) and (5) respectively. The relation
between these two quantities is assumed as in (19).

( )pc ss Ψ= (19)

Qualitatively, if the value of sp tends to zero, this means
that sc goes to zero. Theoretically, the system achieves
perfect tracking because the controller produces the desired
control inputs or vice versa. Conversely, as the value of sp

increases in magnitude, indicating that the error vector is
getting away from the origin, the same sort of a divergent
behavior in sc is observed or vice versa. The details in
postulating the form of the relation Ψ are presented in [8].

Theorem 2. All monotonically increasing continuous
functions passing through the origin can serve as the Ψ
relation for the establishment of an equivalence between the
sliding mode control of the plant and the sliding mode
learning inside the controller.
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It is now clear that there are two critical lower bound
values for the uncertainty bound parameter K, and the
formulation of these values are seen in (18) for Kcr1, and in
the last line of (20) for Kcr2. In (21), the two constraints on
the design parameter K are combined.

( )21,max crcr KKK > (21)

Apparently the selection of the bound parameter as given in
(21) enforces the value of sc to zero level, or equivalently, sp

to zero.

IV. SIMULATION STUDIES

In this study, a coupled double pendulum system is used
to elaborate the performance of the method discussed. The
physical structure of the plant is illustrated in Fig. 2. Since
the dynamics of such a mechatronic system is modeled by
nonlinear and coupled differential equations, precise tracking
becomes a difficult objective due to the strong
interdependency between the variables involved.
Furthermore, the ambiguities introduced by the noise on the
measured quantities make the design of a robust controller so
complicated that the achievement of which is a challenge in
conventional design framework. Therefore, for such a
system, the control methodology adopted must be capable of
handling the difficulties stated.

The differential equations characterizing the behavior of
the system are given in (22)-(25), in which the angular
positions and the angular velocities define the state vector.
The control inputs, which are denoted by τ1 and τ2, are
provided to the relevant pendulum by the base servomotors.
The parameters of the plant are given in Table 1.
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where, g=9.81 m/s2 is the gravitational acceleration constant.
As given in Table 1, since b<l, the two pendulums repel each
other in the upright position. The model introduced in this
section has been studied by Spooner and Passino [13], who
discuss the decentralized adaptive control using radial basis
neural networks.

In the simulation studies presented, the plant introduced
is controlled by the proposed control scheme. The aim is to
produce some control signals such that the application of
which results in the observation of a sliding motion in the
phase plane. As the controller, the architecture described by
(1) is utilized with uA being as described in (3). The structure
of the control system is illustrated in Fig. 2, in which the
plant is in an ordinary feedback loop. Based on the tracking
error vector, first the value of sp is evaluated and this quantity
is passed through the Ψ function to get the value of sc, which
is used in the dynamic adjustment mechanism. In evaluating
the value of the quantity sp, the slope parameter of the
switching line (λ) has been set to unity for both controllers.
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In practical implementations of control structures for
trajectory control of mechatronic devices, a number of
difficulties are encountered, which make it difficult to
achieve an accurate trajectory tracking. The simulation
studies carried out address these difficulties. The first
difficulty to be alleviated is the existence of the observation
noise. To study the effects of this situation, which is very
likely to be encountered in practice, the information used by
the controller is corrupted by a Gaussian distributed random
noise having zero mean and variance equal to 0.33e-6. The
peak magnitude of the noise signal is within ±1e-3 with
probability very close to unity. The second difficulty is the
nonzero positional initial conditions. In order to demonstrate
the reaching mode performance of the algorithm, the initial
positional errors have been set to π/4 radians and –π/6
radians for the first and the second pendulum. The reference
trajectory used in the simulations is depicted in Fig. 3.

It should be pointed out that once the error or the rate of
error comes very close to zero, the adjustment mechanism is
driven solely by the noise signal corrupting the observed
state variables. Since the bound of perturbing signal is
known, the update law described in (17) can be modified
such that the adverse effects of noise driven parameter tuning
activity are reduced. This can be achieved by utilizing a
sufficiently hard threshold function given by (26). The value
of threshold is denoted by nb and has been set to 2e-3 in the
simulations. The modified form of the update equation in
(17) is given in (27).
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As the Ψ relation, the following selection is made parallel to
the remarks presented in the fourth section.

( ) pp ss =Ψ (28)

Furthermore, in order to reduce the chattering effect in
the sliding mode, the function in (29) has been used instead
of the sgn function in the dynamic strategy described in (27),
and initially, the adjustable parameters are all set to the
values given in (30).
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Under these conditions, the state tracking error graph in
Fig. 4 is obtained. The trend in position and velocity errors
clearly stipulate that the algorithm is capable of achieving

precise tracking objective with a sufficiently fast response
characterized by λ. The applied control signals are depicted
in Fig. 5, in which the smoothness of the signals is another
important property. The motion in the phase plane is
illustrated in Fig. 6, in which after a fast reaching mode, a
sliding mode is enforced and is maintained by producing a
suitable control signal. Lastly, the behaviors of the
parameters of the two controllers are illustrated in Fig. 7,
from which the bounded evolution is clear.

During the simulations, the bounds for the uncertainties
denoted by K for both pendulums have been set to 800. The
weight parameters µ and ρ have been selected as unity for
both controllers. These values of the design parameters have
been chosen by trial-and-error approach, which is typically
the case, as we do not have the values of the quantities on the
right hand side of the inequality in (18). The simulation
stepsize has been selected as 2.5 msec and the time required
to perform the simulation has been measured as 36.562
seconds on a Pentium III-600 PC running Matlab 5.2
software. This indicates that the complexity of the algorithm
in real time control applications is dependent on the speed of
the chosen DSP interface, the widespread examples of which
operates machine coded algorithms and performs thousands
of floating point operations in a few milliseconds as they do
not have to run an operating system.

V. CONCLUSIONS

In this paper, a novel method for establishing a sliding
motion in the dynamics of a nonlinear plant is discussed. The
method is based on the adoption of a nonlinear dynamic
adjustment strategy in a controller structure, whose output is
a linear in the adjustable parameters. The task is to drive the
tracking error vector to the sliding manifold and keep it on
the manifold forever. What makes the proposed algorithm so
attractive in this sense is the fact that the sliding mode
control of the plant is achieved while an equivalent regime is
imposed on the controller parameters. Contrary to what is
known in the field of variable structure controller design, the
governing equations of the plant under control are assumed
to be unknown and the lack of this knowledge is left as a
difficulty to be alleviated by a learning controller.

As discussed throughout the paper, the problems that
arise due to the uncertainties are alleviated by incorporating
the robustness provided by the VSS technique into the
proposed approach. A further attractiveness of the algorithm
is the fact that the controller for each pendulum possesses
only three adjustable parameters for the application example
considered. The computational requirement is not therefore
excessive. Fig. 8 depicts the required number of floating
point operations (flops) for the controller performing one
forward pass for control calculation and one backward pass
for parameter tuning. Clearly the system studied in this work
requires 2×246 flops which is affordable even for average
speed embedded microprocessors.

Finally, the simulation results presented demonstrate that
the algorithm discussed is able to compensate deficiencies
caused by the imperfect observations of the state variables,
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large initial errors and complex plant dynamics. From these
points of view, the method proposed is highly promising in
control engineering practice.
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Table 1. Plant Parameters

Mass of pend. 1 M1 2 kg
Mass of pend. 2 M2 2.5 kg
Moment of inertia for pend. 1 J1 0.5 kg
Moment of inertia for pend. 2 J2 0.625 kg
Spring constant ks 100 N/m
Natural length of the spring l 0.5 m
Distance between pend. hinges b 0.4 m
Pendulum height r 0.5 m

Fig. 1. Structure of the control system

Fig. 2. Physical structure of the double pendulum system
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