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ABSTRACT

In this paper, a novel method for extracting the values of
the coefficients of time-varying ARMA processes is
proposed. The approach discussed assumes solely that the
orders of the numerator and the denominator polynomials
are known. The algorithm is demonstrated to be stable in
the sense of Lyapunov, furthermore, it is shown in the
paper that the evolution in the parameter space takes
place in a finite volume. The proposed method is cost
effective and is based on the variable structure systems
theory, which is well known with its robustness to
uncertainties. In the simulation example, the coefficients
of a second order ARMA process is extracted by the use of
the algorithm presented.

1. INTRODUCTION

Identification of systems having uncertainties and
impreciseness constitutes a central part in the practice of
systems engineering. This fact is intimately related to the
desire for constructing systems having a degree of
autonomy enabling the system to operate in changing
environmental conditions. One way of handling the
difficulties stemming from the uncertainties is to utilize a
suitable identification method to collect as much
information as possible in an organized fashion. In the
literature, most widely used approaches for system
identification are based on Least Mean Squares (LMS),
Recursive Least Squares (RLS), Gradient Descent (GD),
Levenberg-Marquardt method (LM) or their variants [1-
5]. The prime difficulties in implementing these
algorithms are the necessity to costly hardware for data
storage, high sensitivity to changes in the input signal,
getting stuck to local minima or the need for matrix
inversions at some intermediate stages. Depending on the
nature of the problem in hand, the designer is expected to
choose the most appropriate adjustment technique leading
to high performance with low cost. Apparently, the design
of such a parameter tuning scheme is a challenge even for
the simple tasks. Among many alternatives existing in the
literature for parameter tuning, once the structure of the
ARMA process is chosen, the designer is faced to two
performance measures, namely, the speed of adaptation

and the accuracy of the realization after adaptation, which
are intimately related to the adopted tuning strategy [3].

Another important feature of an adaptation mechanism
is the robustness, which can be defined as the capability of
compensating the uncertainties and the capability of
keeping the cost measure at the lowest level under the
presence of parameter variations in the process to be
identified. If one defines the discrepancy between the
output of a time-varying ARMA structure and that of an
identifier ARMA structure as the error measure, the task
of maintaining the zero output error with changing
parameters clearly implies the need to a robustness in the
tuning mechanism.

One way of designing a robust identification scheme
is to utilize Variable Structure Systems (VSS) theory in
constructing the adaptation mechanism [6-7]. VSS theory
is well known with its robustness to uncertainties and the
use of this theory introduces certain invariance properties
in a predefined subspace of the state space defined by the
error and its several time derivatives. Various applications
utilizing VSS theory have appeared in the literature,
which particularly focus on the robust control of nonlinear
systems [6-9]. In order to understand the use of a
technique of control engineering expertise for
identification purposes, it is beneficial to dwell on what
the framework prescribes in the field of control briefly.

For a system of order l, the decision dynamics in the
state space is characterized by an (l-1)-dimensional
hypersurface passing through the origin. Using the sign of
a quantity describing the location of the hypersurface, two
modes of motion can be created namely the mode lasting
until a hitting to the hypersurface occurs, and the mode on
the hypersurface, which is called sliding surface. In the
literature, the former is called reaching mode while the
latter is named sliding mode and the control theory uses
the term Sliding Mode Control (SMC) due to the latter
dynamic behavior. An important property of the SMC
design is that the trajectories in the phase space are all
directed towards the sliding surface, furthermore, once the
error vector starts lying on this hypersurface, it directly
slides towards the origin because of the description of the
hypersurface. The reason for this is not only the fact that
the hypersurface itself is a location in the phase space but
also it describes a particular dynamics.
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In using VSS theory for identifying ARMA processes,
one should consider the diagram in Figure 1. The two
structures are excited by the same signal (x) and the
discrepancy between the produced outputs (sc) is used as
the error measure. This quantity is then processed in the
tuning strategy and the corresponding parameter values
(p) are sent to the identifier and the next output is
produced with the new parameter vector. Since the use of
such identification techniques cover a wide spectrum
including nonlinear control, signal processing and
biomedical applications, the method discussed in this
paper is of substantial importance due to its computational
advantages and robustness [5,10-12].

In the second section, the structure of the ARMA
process to be identified and the structure of the identifier
are described and the proposed tuning strategy is analyzed
in detail. The third section presents the simulations
performed and the conclusions are presented at the end of
the paper.

2. STRUCTURE OF THE ARMA PROCESS AND
THE PARAMETER TUNING STRATEGY

Consider the delay system described by (1).
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where M and N define the delay depth in input (x) and
output (y), and T is the constant delay time parameter. The
system above can be represented in s-domain as given in
(2) and, and by direct substitution of z = esT the z-domain
equivalent is obtained as given in (3).
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In above, the sampling period is assumed to be equal
to T. The system given in (1) with y(t)=0 for t ≤ 0 and the
transfer function representation in (2) produce the same
outputs in response to the same excitation signals. When
the response is compared with that obtained from (3) at
integer multiples of delay time T, it should be obvious that
the ARMA process in (3) is going to respond what is
observed from the continuous time equivalent of (1).

The representations given in (1) through (3) has some
parameters denoted by ak and bk and these parameters are
assumed to be unknown. The transfer function
representation given in (3) can be expressed as a
difference equation as given in (4) with n being the
discrete time index.
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More compactly, the parameter vector and the regression
vector can be described as in (3) and (4) respectively.
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The input/output relationship in (1) can be rewritten as
follows:

( ) ( ) ( )tRtpty T= (7)

In order not to be in conflict with the physical reality, the
designer must impose the following inequalities, the truth
of which state that the parameters of the process (p), the
time derivative of the regression vector (R) and the time
derivative of the desired output of the continuous process
(yd) remain bounded.

p
T Bppp ≤= (8)
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Theorem 2.1. The adaptation of process parameters as
described in (11) enforces the process coefficients to
values resulting in zero learning error level in one
dimensional phase space, whose argument is defined as
sc=y-yd.
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where, K is a sufficiently large positive constant satisfying
(12).
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The adaptation mechanism in (11) drives an arbitrary
initial value of sc to zero in finite time denoted by th

satisfying the inequality in (13).
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Theorem 2.2. If the identification scheme enters the
sliding mode sc=0 and remains in it thereafter, then the
parameters of the identifier, p, evolve bounded.



3. SIMULATION EXAMPLE

In the simulations, we assume that the identification
scheme observes the system output, the desired output and
the regression vector at discrete time instants, i.e. the
adaptation rule of (11) takes the following form.
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p sgn−=�  when kT≤t<(k+1)T (14)

In the examples, an ARMA process structure
described below is considered for identification.
Apparently, the output of this system is what the identifier
must realize by appropriately tuning its parameters.
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It is assumed that the coefficients of the above
structure are changing in time. In Table 1, the target
values of the coefficients to be extracted are given. It
should be clear from the table that there are four different
ARMA structures, each one of which becomes active
during a certain interval of 40 seconds. More explicitly,
for the first 40 seconds, i.e. r=1, the ARMA structure is
characterized by the difference equation in (32), then a 5
seconds of transition phase takes place and during the
following 40 seconds, i.e. r=2, the process is changed
smoothly to that in (33). In (34) and (35), the structures
activated in the next two intervals are described.
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The change of structures between the successive
intervals is performed by suitably combining the all four
ARMA structures. For instance, the transition between the
time instants 40 and 45 seconds is illustrated in Figure 2.
A weight is gradually activating the structure in (33) by
multiplying its output with w and the effect of the
structure in (32) is decreasing since its multiplier is 1-w.
This enables us to observe a soft switching between
different ARMA processes. In the transition regions, the
mixed process possesses fourth order numerator and
denominator. The corresponding coefficients can be
evaluated as given in (36) through (44). The second
subscripts are used to specify the interval number.
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In the example considered a Gaussian distributed
random signal having zero mean and variance equal to
unity is used to excite the process to be identified and the
identifier. The aim is to match the two output signals in
time domain. For this purpose, the error (sc) is evaluated
and used in the adjustment mechanism of (30). The
sampling rate (T) has been set to 1 msec, and the
uncertainty bound parameter K has been set to 100.
Initially, the parameters of the identifier are all set to zero.

It should here be noted that the uncertainty bound
parameter denoted by K is a multiplier of the dynamic
adaptation law of (30). Apparently, the small values of K
will decrease the speed of learning and large values will
increase. However, since K is a parameter describing the
mobility of the parameters, its extreme values can cause
instabilities. Unlike its lower bound described in (12), the
upper bound is determined by the physical constraints.

The extracted values of the parameters of the
numerator polynomial are depicted in Figure 3 and those
of the denominator polynomial are illustrated in Figure 4.
If one compares the values estimated by the identifier with
those given in Table 1, it is seen that the correct values are
found very quickly and very accurately. Especially the
during transition intervals [40 secs., 45 secs.], [85 secs.,
90 secs.] and [130 secs., 135 secs.], the process to be
identified becomes a fourth order one, which is
characterized by (36)-(44), and the strategy proposed
quickly converges when the order of the structure
becomes equal to that of the identifier. In Figure 4, the
pole-zero plots of the four different structures are
illustrated. It can directly be inferred from this figure that
the system under investigation is changing its
characteristics radically, and this constitutes a challenge
for most identification schemes.

Lastly in this section, the computational burden of the
algorithm is analyzed. Unlike LMS algorithm, the method
presented does not need to store some history of the
system under investigation and operates on-line.
Furthermore, no matrix inversion is needed throughout the
operation. For the structure studied in this paper, i.e. N=2
and M=2, a single forward pass from (1) with tuning of
parameters with (30) requires 46 floating point operations
(flops), which is a quite promising value for real-time
realizations when considered with the accurate
identification performance. In Figure 6, the required
number of flops has been illustrated for varying values of
M and N. Clearly, the computational cost is not excessive
but the most important aspect of the proposed approach is
the behavior of the increase in complexity as the



dimensionality of the parameter vector increases. In
Figure 7, the cost graph is given as a surface, which
figures out that the complexity is O(M+N), i.e. the
required number of flops will increase linearly as the
dimension of the parameter vector increases.

4. CONCLUSIONS

The lack of sufficient knowledge about a system of
interest requires an in depth investigation procedure for
developing mechanisms that need the parameters
characterizing the behavior of the system. For this
purpose, various approaches are used to identify the
system parameters. However, some of these schemes
suffer from the computational complexity, while the
applicability of some are subject to the availability of a
priori knowledge. If the goal of handling the uncertainties
with high performance and low cost is considered, the use
of VSS theory becomes more comprehensible.

The results obtained through some simulations have
clearly stipulated that the extraction of the unknown
parameters can be achieved neither by storing excessive
amount of data nor by occupying the CPU oppressively.

The radical changes in the ARMA structure have
appropriately been detected by the discussed algorithm
and the corresponding parameter set have precisely been
determined. The finite volume parameter evolution and
the stability claims of the proposed technique are proved
and the theoretical results have been confirmed by the
example presented.
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Fig. 1. Identification of a Time-Varying ARMA Process
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Fig. 2. The transition between intervals r=1 and r=2
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Fig. 3. Time Evolution of the Numerator Polynomial
Coefficients
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Fig. 5. Locations of the Poles and the Zeros of the
Structures Activated during the Successive Intervals

Fig. 6. Computational Requirement of the Algorithm for
Varying Values of M and N

Table 1. Parameters of the ARMA Process to be Identified

Interval Time (sec) b0 b1 b2

r=1 0 ≤ t ≤ 40 1 0.9 0
r=2 45 ≤ t ≤ 85 1 -0.25 -0.375
r=3 90 ≤ t ≤ 130 1 -1.3 0.42
r=4 135 ≤ t ≤ 160 -1 0.25 1.5

Interval Time (sec) a1 a2

r=1 0 ≤ t ≤ 40 -0.9 0.2
r=2 45 ≤ t ≤ 85 -1 0.5
r=3 90 ≤ t ≤ 130 0 0.36
r=4 135 ≤ t ≤ 160 0 0
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