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Abstract 
 
This paper presents a novel training algorithm for 
adaptive neuro-fuzzy inference systems. The 
algorithm combines the error backpropagation 
algorithm with variable structure systems approach. 
Expressing the parameter update rule as a dynamic 
system in continuous time and applying sliding mode 
control (SMC) method to the dynamic model of the 
gradient based training procedure results in the 
parameter stabilizing part of training algorithm. The 
combination therefore leads to the minimization of 
parametric displacements together with a 
considerable improvement on tracking performance. 
In the application example, control of a two degrees 
of freedom direct drive SCARA robotic manipulator 
is considered. As the controller, an adaptive neuro-
fuzzy inference mechanism is used, and in the 
parameter tuning, the proposed algorithm is utilized. 
 
 
1. Introduction 
 

Soft computing is a practical alternative for 
solving complex problems through the use of human 
expertise and a priori knowledge about the problem 
in hand. Fuzzy Inference Systems are the most 
popular constituent of the soft computing area 
because of their ability to represent human expertise 
in the form of IF antecedent THEN consequent 
statements. In this domain, the system behavior is 
modeled through the use of linguistic descriptions.  

The typical architectures of fuzzy inference 
systems are those introduced by Wang [1,2], Takagi 
and Sugeno [3], and Jang [4]. In [2], a fuzzy system 
having Gaussian membership functions, product 
inference rule and weighted average defuzzifier is 
constructed and has become the standard method in 
most applications. Takagi and Sugeno change the 
defuzzification procedure where dynamic systems 
are introduced as defuzzification subsystems. The 

potential advantage of the method is that, under 
certain constraints, the stability of the system can be 
studied. Jang et al [4] propose an adaptive neuro 
fuzzy inference system, in which a polynomial is 
used as the defuzzifier. This structure is commonly 
referred to as ANFIS in the related literature. The 
choice concerning the order of the polynomial and 
the variables to be used in the defuzzifier are left to 
the designer. 

In control engineering practice, stability and 
robustness are of crucial importance. Because of 
this, a control engineering expert is always in pursuit 
of a design, which provide accuracy as well as 
insensitivity to environmental disturbances and 
structural uncertainties. A suitable way of tackling 
with uncertainties and disturbances is to introduce 
Variable Structure Systems (VSS) theory based 
components into the system structure. 

Numerous contributions to VSS theory have 
been made during the last decade, some of them are 
as follows: Hung et al [6] have reviewed the control 
strategy for linear and nonlinear systems. In [6], the 
switching schemes, putting the differential equations 
into canonical forms and generating simple SMC 
strategies are considered in detail. Gao et al [7], 
apply the SMC scheme to robotic manipulators and 
discuss the quality of the scheme. One of the crucial 
points in SMC is the selection of the parameters of 
the sliding surface. Some studies devoted to the 
adaptive design of sliding surfaces have shown that 
the performance of control system can be refined by 
interfacing it with an adaptation mechanism, which 
regularly redesigns the sliding surface [8]. This 
eventually results in a robust control system. The 
performance of SMC scheme is proven to be 
satisfactory in the face of external disturbances and 
uncertainties in the system model representation. 
The latest studies consider this robustness property 
by equipping the system with computationally 
intelligent methods. In [9] and [10], fuzzy inference 
systems are proposed for SMC scheme. A standard 
fuzzy system is studied and the relevant robustness 
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analyses are carried out. Particularly, the work 
presented in [9] emphasizes that the robustness and 
stability properties of soft computing based control 
strategies can be studied through the use SMC 
theory. It is shown in the paper in this way that the 
approach is robust i. e. it can compensate the 
deficiencies caused by poor modeling of plant 
dynamics and external disturbances. 

This paper is organized as follows: The second 
section summarizes the conventional method 
followed in gradient based optimization technique. 
The third section presents the derivation of SMC 
based parameter stabilizing law. In the fourth 
section, ANFIS architecture is considered and the 
relevant formulation for the approach is given. Next 
section is devoted to the plant to be controlled in this 
study. This is followed by the simulation studies, 
and conclusions constitute the last part of the paper. 
 
2. An Overview of Gradient Descent 
 
In this section, a widely used technique of parameter 
adjustment is briefly reviewed. The method has first 
been formulated by Rumelhart et al [11] in 1980s. 
The approach has successfully been applied to a 
wide variety of optimization problems. The 
algorithm can briefly be stated as follows. The error 
in (1) is used to minimize the cost function in (2) by 
utilizing the rule described by (3). The minimization 
proceeds iteratively as given in (4), for which the 
sensitivity derivative with respect to the generic 
parameter φ is needed. It is apparent that the method 
is applicable to the architectures in which the 
outputs are differentiable with respect to the subject 
of optimization. 
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3. Derivation of the Stabilizing Criteria 
 

A continuous-time dynamic model of the 
parameter update procedure of (4) can be 
constructed as described by (5). 
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If the model in (5) can easily be validated at the 
integer multiples of the sampling period Ts by 
replacing the derivative term with Euler’s first order 
approximation. In (5), the evaluated parameter 
change, which is by error backpropagation and 
denoted by Nφ, is multiplied by a scaling factor 
denoted by ηφ, for the selection of which, a detailed 
analysis is presented in the subsequent discussion. In 
the design of variable structure controllers, one 
method that can be followed is the reaching law 
approach [6]. For the use of this theory in the 
stabilization of the training dynamics, let us define 
the switching function as in (6) and its dynamics as 
in (7). 
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In above, Qφ and Kφ are the gains and ε is the width 
of the boundary layer. Equating (7) and (5) and 
solving for ∆φ yields the following solution. 
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In the derivations presented below, a key point is the 
fact that the system described by (5) is also driven 
by ηφ, which is known as learning rate in the related 
literature. Now we demonstrate that some special 
selection of this quantity leads to the minimization 
of the magnitude of parametric displacements. Let 
us define the following quantity for keeping analytic 
comprehensibility; 
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Now we have a model described by (5), and a 

solution formulated by (8). If one chooses a positive 
definite Lyapunov function as given by (10), the 
time derivative of this function must be negative 
definite for stability of parameter change (∆φ) 
dynamics. Clearly the stability in parameter change 
space implies the convergence in system parameters. 
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If (5) and (8) are substituted into (11), the following 
selection of ηφ introduces the stability in the 
Lyapunov sense. 
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By substituting the learning rate formulated in (12) 
into the stabilizing solution given in (8), the 
stabilizing component ∆φVSS of the parameter change 
formula is obtained as; 
 

( ) ( ) φφφφβφ ANAVSS +∆=∆ sgn, min  (13) 

 
where, ∆φ on the right hand side is the final update 
value yet to be obtained. The law introduced in (13) 
minimizes the cost of stability for parameter φ, 
which is the Lyapunov function defined by (10). The 
question now reduces to the following; can the cost 
defined by (2) be minimized by this rule? The 
answer is obviously not, because the stabilizing 
criteria is derived from the displacement of a generic 
parameter denoted by ∆φ, whereas the minimization 
of (2) is achieved when φ tends to φ* regardless of 
what the displacement is. Therefore the rule 
formulated in (13) needs a final modification. In 
order to minimize (2), the parameter change 
anticipated by gradient based optimization 
technique, which is reviewed in the second section, 
should somehow be integrated into the final form of 
parameter update mechanism. As introduced in the 
second section, error backpropagation algorithm 
(EBP) evaluates a parameter change as given by 
(14). 
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where, ζ is the constant learning rate in the 
conventional sense. Combining the laws formulated 
in (13) and (14) in a weighted average, the eventual 
form of parameter update law is obtained as given in 
(15). 
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The parameter update formula given in (15) carries 
mixed information containing both the parametric 
convergence, which is introduced by VSS part, and 
the cost minimization, which is due to the error 
backpropagation technique. The balancing in this 

mixture is left to the designer by an appropriate 
selection of α1 and α2. 
 
4. Application to ANFIS 
 

Adaptive Neuro-Fuzzy Inference Systems are 
realized by an appropriate combination of neural and 
fuzzy systems. This paper considers the ANFIS 
structure with first order Sugeno model containing 
nine rules. The structure for two inputs and one 
output is illustrated in Fig. 1 and a sample rule is 
described below for a m-input one output ANFIS. 
 
IF u1 is Ui,1 AND u2 is Ui,2 AND … AND um is Ui,m 
THEN fi=qi,1u1+…+ qi,mum+qi,m+1 
 

In the IF part of this representation, lowercase 
variables denote the inputs, uppercase variables 
stand for the fuzzy sets corresponding to the domain 
of each linguistic label. The ANFIS output is clearly 
a linear function of the adjustable defuzzifier 
parameters denoted by qi,j. The system that is 
considered in this study uses Gaussian membership 
functions as described by (16) and the overall 
realization is given in (17). 
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In (17), the vector of firing strengths denoted 

by w is normalized and the resulting vector is 
represented by wn. The relevant backpropagated 
error values for the adjustable ANFIS parameters are 
given in (18) through (20). 
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The error backpropagation based part of the training 
procedure is evaluated by using the quantities 



 202

described in (18) through (20). The form of this part 
is given by (14). The final form of the mixed 
training information can now be constructed as 
formulated in (15). 
 
5. Plant Model 
 

In this study, a two degrees of freedom direct 
drive robotic manipulator is used as the test bed. 
Since the dynamics of such a mechatronic system is 
modeled by nonlinear and coupled differential 
equations, precise output tracking becomes a 
difficult objective due to the strong interdependency 
between the variables involved. Furthermore, the 
ambiguities concerning the friction related dynamics 
in the plant model make the design much more 
complicated. Therefore the methodology adopted 
must use the methods of computational intelligence 
in some sense. 

The general form of robot dynamics is 
described by (21) where Μ, V , τ and fc stand for the 
state varying inertia matrix, vector of coriolis terms, 
applied torque inputs and friction terms respectively. 
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If the angular positions and angular velocities are 
defined as the state variables of the system, four 
coupled and first order differential equations can 
define the model in state space. In (22) and (23), the 
terms seen in (21) are given explicitly. 
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In above, p1 = 2.0857, p2 = 0.1168 and p3 = 0.1630. 
The details of the plant model are presented in [12]. 
 
6. Simulation Studies 
 

In the simulation studies presented, the 
manipulator is controlled by two ANFIS controllers. 
The main objective is to keep the update dynamics 
in a stable region. This is achieved through a 
suitable combination of gradient based optimization 
technique and the strategy based on the variable 
structure systems approach. The control system is 
illustrated in Fig. 2. The reference velocity in (24) is 
used in all simulations with zero initial errors. 
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The results presented concern the tuning of all 

adjustable parameters of the ANFIS structure during 
the learning process. The state tracking errors are 
depicted in Fig. 3. It is evident from Fig. 3 that once 
a fluctuation occurs on the error or rate of error, it is 
dampened out by the use of VSC philosophy in the 
learning strategy. In the simulations discussed, the 
settings used are tabulated in Table 1. 

In the training of the controllers, the squared 
sum of parametric changes can be defined to be the 
total cost of stability, which is described by (25). 
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In Fig. 4, the cost of tracking described by (2) is 
illustrated whereas the bottom row depicts the time 
behavior of the parametric cost described by (25). 
 

Table 1. The Settings Used in the Simulations 
 

 Ts 2.5 msec. Q 0.1 
 β 0.1 K 0.1 
 ζ 0.02 ε 1.0 
 α1i 3.0 ∀i #Rules 9 
 α2i 2.0 ∀i #ANFIS Inputs 2 
 

As can be inferred from Fig. 4, both the 
parametric stabilization and the tracking error 
minimization performance of the proposed 
methodology is highly promising. Another 
remarkable property of the algorithm presented is 
that it operates on-line. Therefore, the difficulties 
that are likely to occur in on-line learning and 
control are alleviated by the robustness provided by 
the integration with VSS technique. 
 
7. Conclusions 
 

In this paper, a novel technique for improving 
learning performance of adaptive neuro-fuzzy 
inference systems is presented. An approximate 
dynamic model of the error backpropagation 
procedure is constructed and variable structure 
systems approach is incorporated into the model of 
the parameter update law. In this procedure, gradient 
descent method is responsible for the minimization 
of squared error while the variable structure systems 
based law is responsible for the stability in the 
parameter space. 
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In the application example presented, the 
results confirm the prominent features of the 
approach, namely the parametric stability and 
tracking performance improvement. The algorithm 
is applicable to any neuro-fuzzy system model 
provided that the model output is differentiable with 
respect to the parameter of interest.  
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Figure 2. Control System Architecture 
 

0 5 10 15
-6

-4

-2

0

2

4
x 10

-5

0 5 10 15
-4

-2

0

2

4
x 10

-4

0 5 10 15
-4

-2

0

2

4
x 10

-3

0 5 10 15
-5

0

5

10
x 10

-3

 
Figure 3. State Tracking Error Graph 
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Figure 4. Time Behavior of the Parametric Cost 

for Base and Elbow Controllers Respectively 
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