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Abstract

In this work, two modifications on Levenberg-Marquardt
algorithm for feedforward neural networks are studied. One
modification is made on performance index, while the other
one is on calculating gradient information. The modified
algorithm gives a better convergence rate compared to the
standard Levenberg-Marquard (LM) method and is less
computationally intensive and requires less memory. The
performance of the algorithm has been checked on several
example problems.

1   Introduction

Although the Error Backpropagation algorithm (EBP)
[1][2][3] has been a significant milestone in neural network
research area of interest, it has been known as an algorithm
with a very poor convergence rate. Many attempts have
been made to speed up the EBP algorithm. Commonly
known heuristic approaches [4][5][6][7][8] such as
momentum [9], variable learning rate [10], or stochastic
learning [11] lead only to a slight improvement. Better
results have been obtained with the artificial enlarging of
errors for neurons operating in the saturation region
[12][13][14][15]. A significant improvement on realization
performance can be observed by using various second order
approaches namely Newton’s method, conjugate gradient’s,
or the Levenberg-Marquardt (LM) optimization technique
[16][17][18][19] [20]. Among the mentioned methods, the
LM algorithm is widely accepted as the most efficient one
in the sense of realization accuracy [19]. It gives a good
compromise between the speed of the Newton algorithm
and the stability of the steepest descent method, and
consequently it constitutes a good transition between these
methods.

The demand for memory to operate with large Jacobians
and a necessity of inverting large matrices are the major
disadvantages of the LM algorithm. The rank of the matrix

to be inverted at each iteration is equal to the number of
adjustable parameters in the system. As the dimensionality
of the network increases, it should be clear that the training
would entail costly hardware due to the exponential growth
in the computational complexity.

This paper is organized as follows: the second section
describes the Levenberg-Marquardt algorithm. In the third
section, the proposed form of the modification on
performance index is introduced. Next section focuses on
the modification of the gradient computation. Exemplar
cases are discussed in the forth section. Finally, conclusions
constitute the last part of the paper.

2   Levenberg-Marquardt Algorithm (LM)

For LM algorithm, the performance index to be optimized
is defined as
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where [ ]T
N21 w...ww=w  consists of all weights of

the network, dkp is the desired value of the kth output and the
pth pattern, okp is the actual value of the kth output and the pth

pattern, N is the number of the weights, P is the number of
patterns, and K is the number of the network outputs.
Equation (1) can be written as

EEw T)( =F (2)

where

[ ]T
KP1PK212K111 e...e...e...ee...e=E
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where E is the cumulative error vector (for all patterns).
From equation (2) the Jacobian matrix is defined as
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and the weights are calculated using the following equation
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where I is identity unit matrix, µ is a learning parameter
and J is Jacobian of m output errors with respect to n
weights of the neural network. For µ = 0 it becomes the
Gauss-Newton method. For very large µ the LM algorithm
becomes the steepest decent or the EBP algorithm. The µ
parameter is automatically adjusted at each iteration in
order to secure convergence. The LM algorithm requires
computation of the Jacobian J matrix at each iteration step
and the inversion of JTJ square matrix, the dimension of
which is N×N. This is the reason why for large size neural
networks the LM algorithm is not practical. In this paper, a
novel method is proposed that provides a similar
performance, while lacks the inconveniences of LM, and,
furthermore, is more stable.

3   Modification of the performance index

Assume that the performance index of (1) is changed to the
one given below. Note that still the continuity requirements
are preserved and that the new measure can well be
considered as a measure of similarity between the desired
and the produced patterns.
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This form of the performance index, which represents a
global error, leads to a significant reduction of the size of a
matrix to be inverted at each iteration step. Equation (5) can
be also written as:

EEw T ˆˆ)( =F (6)

where [ ]TKeee ˆ...ˆˆˆ
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=
−=

P

p
kpkpk ode

1

2ˆ

with k=1,…,K. Now the modified Jacobian matrix tĴ can be

defined as
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and equation (4) can be written using the modified Jacobian

matrix tĴ

( ) ttttttt EJIJJww ˆˆˆˆ T1T
1

−
+ +−= µ (8)

It should be noted that although tĴ  is now a K by N matrix,

and there still a necessity of inverting an N by N matrix,
where N is the number of adjustable parameters. This
problem can be now further simplified using the Matrix
Inversion Lemma, which states that if a matrix A satisfies

TCCDBA 11 −− += (9)

Then

( ) BCBCCDBCBA TT 11 −− +−= . (10)

Let
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Substituting equations (11), (12), (13), and (14) into
equation (10), one can obtain
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Note that in the right side of equation (15), the matrix to be
inverted is of size K by K.  In most neural network
applications, N, which is the number of weights, is much
greater than K, which is the number of outputs. This means
that by use of equation (5) instead of equation (1) the
computational complexity of the weight adaptation problem
is significantly reduced.
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By inserting equation (15) into equation (8) one may have
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For single output networks, equation (10) becomes
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Note that in equation (17) matrix inversion is not required
at all. The equation is useful, because any feedforward
network with one hidden layer and K outputs can be
decoupled to a K single output network.

4   Modification of gradient computation

The major disadvantage of back-propagation algorithm,
commonly employed for training of multilayer networks, is
slow asymptotic convergence rate. For the sigmoidal
bipolar activation function given by (18)

1
) exp(1

2)( −
−+

=
net

netf λ (18)

The gradient (slope) is computed as a derivative of (18)
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λ
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The activation function and its gradient are illustrated in
Figure 1.

Figure 1: Standard sigmoidal function for bipolar neurons
and its derivative

In the error backpropagation algorithm, the weight updates
are proportional to the error propagating from the output
through the derivatives of activation function and through
the weights. This is a consequence of using the steepest
descent method for calculating the weight adjustments.
Convergence properties of the learning process can be
improved by changing how the error propagates back
through the network. It is proposed in this paper that for
purpose of error propagation, the slope (gradient) of the
activation function is calculated as the slope of the line
connecting the output value with the desired value, rather
than the derivative of the activation function at the output
value. This is illustrated in Figure 2.

Figure 2: Illustration of the modified derivative
computation using slope of the line connecting the points of

actual output and desired output

Note that if the output is close to the desired value, the
calculated slope corresponds to the derivative of the
activation function, and the algorithm is identical to the
standard backpropagation formula. Therefore, the
“derivative” is calculated in a different manner only for
large errors when the classical approach significantly limits
error propagation.

5   Examples

The proposed algorithm has been experimented on several
problems with different network topologies and different
roughness of the error surfaces. Several benchmark
problems namely XOR, parity-3, and parity-4 have been
taken into consideration. Table I summarizes the
performance of the modified algorithm compared to
standard LM algorithm. Using the slope instead of the
derivative yields better performance in the number of
average iterations for meeting the prescribed convergence
criterion. The results have been given in Figures 3-6.

desired output

actual output

modified derivative

standard derivative

activation function

derivative of activation
function
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6   Conclusions

A fast and efficient training algorithm for feedforward
neural networks with one hidden layer has been presented
and tested on several examples. Since in the LM algorithm,
the size of the matrix corresponds to the number of weights
in the neural network, while the size of the matrix, in the
modified algorithm, corresponds to the number of outputs,
the modified algorithm requires less memory than that for
the standard LM algorithm. Moreover, an improvement in
the number of average iterations for convergence has been
obtained by introducing a different tool for gradient
computation.
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Table I. Comparison of methods

Derivative Slope

# of hidden neurons 2 2
XOR

Average # of iterations 50 36

# of hidden neurons 2 2

Average # of iterations 64 46

# of hidden neurons 3 3
Parity-3

Average # of iterations 45 35

# of hidden neurons 6 6
Parity-4

Average # of iterations 175 134

Figure 3: XOR problem with 2 hidden neurons

Figure 4: Parity 3 problem with 2 hidden neurons

Figure 5: Parity 3 problem with 3 hidden neurons

Figure 6: Parity 4 problem with 6 hidden neurons
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