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Abstract - This paper presents a new error critic for
neurocontrol of highly nonlinear systems. The unavailability of
the target outputs of a neural network controller constitutes a
difficulty in tuning the adjustable weights and biases and
deserves a careful consideration to improve the tracking
performance. The method described aims to drive the system
into a predefined sliding regime through the use of a novel
error measure. The controller is an ordinary feedforward
neural network, the tuning strategy is the error
backpropagation and the contribution of the paper is the proof
of precise tracking by using the proposed error critic in such a
standard neurocontrol configuration. The results obtained
justify the performance claims of the paper without requiring
the analytical details of system under control.

I. INTRODUCTION

One of the challenges in the realm of control
engineering is the design of control strategies or autopilots
for missiles. What make the missile control problem a
challenge are the existence of nonlinearities in the system
dynamics, multivariable structural representation, strong
inter-dependencies between the variables involved and the
uncertainties stemming from the modeling errors and
environmental factors. A closer look to the studies appeared
in the recent literature suggests several interesting strategies
for the missile control problem. In the first group, the use of
Variable Structure Control (VSC) has been emphasized [1-
3]. The second group focuses on the use of computational
intelligence, i.e. neural networks, fuzzy inference systems
and genetic algorithms, or some hybrid integration of them
[2,4-7]. The typical problems associated with the presented
approaches has been the model dependency for VSC-type
controllers, the need for identification for neural and or
fuzzy type controllers and the parametric stability
(convergence) problem in all intelligence based control
schemes. Alternative methods have generally utilized the
local linearization of the derived nonlinear model, and the
design based on linear dynamics, feedback linearization of
the nonlinear model. Apparently the mentioned strategies
increase the model dependency and enforce the validation of
the linearized dynamics through a series of costly tests.

One idea to overcome the mentioned difficulties is to
embed the VSC as an integral part of the learning process.
Studies discussing this integration have demonstrated that
the Sliding Mode Control (SMC) technique can successfully
be used for parameter adaptation in intelligent systems.
Some remarkable examples utilize adaptive linear elements
[8-9], feedforward neural networks [10-11] and fuzzy
inference systems [12-13]. Although it is possible to design
a tuning law based on VSC, the plant under control can also

be forced to a predefined sliding manifold by sliding mode
tuning for sliding mode control. In [14], an example of this
has been discussed for the control of an anthropoid robotic
manipulator.

In this paper, we demonstrate a precise VSC of a
missile. The controller is a standard three-layered
feedforward neural network, and the tuning mechanism is
the well-known error backpropagation technique. It must be
emphasized that the controller and its training scheme are
the mostly utilized couple that appeared in the literature
particularly during the 1990s. However, the later studies
have reported that the mentioned scheme suffers from the
oversensitivity against noise and abruptly changing plant
parameters. The prognosis was the presence of sharp valleys
on the cost hypersurface, on which the gradients are
computed. A detailed discussion of eliminating the adverse
effects of gradient techniques with VSC technique has been
presented in [12-13]. However, the encountered difficulty
was the computational burden. Having this motivation
behind what we present next, if the task is the sliding mode
control of a missile, the error measure that is to be
backpropagated can be changed such that the system enters
the desired sliding regime.

This paper is organized as follows: The second section
introduces the missile control problem, the third section
presents the suggested control error. In the fourth section we
present the simulation results and the concluding remarks
constitute the last part of the paper.

II. FORMULATION OF THE CONTROL PROBLEM

The control problem is to intercept the target by the
missile having the kinematics described as in (1)-(3). The
missile and the target are assumed to be point masses and the
representation below is derived for spherical coordinates.
The details concerning the model are given in [1,14].

MrTr aarrr −=−− φθφ 222 cos��

�� (1)

θθφθφφφφθ MT aarrr −=−+ sin2cos2cos ���

�

�� (2)

φφφφθφφ MT aarrr −=++ sincos2 2
��

�

�� (3)

In above, r is the distance between the missile and the
target, θ and φ are the azimuth and pitch angles respectively.
Furthermore, a stands for the acceleration with M subscript
for the missile and with T subscript for the target; the
relevant state variable is the second subscript in the
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acceleration inputs. With these terms, the control objective is
to reach the maneuvering target by appropriately altering the
acceleration components aM.

III. PROPOSED ERROR CRITIC

Define Trx ][ φθ=  and T
MMMr aaau ][ φθ−= .

The system in (1)-(3) can be rewritten as follows:

( ) ( )uxbxxfx  , += ��� (4)

If xd is defined to be the vector of desired trajectories,
one can describe the tracking error vector as e=x-xd and
construct the control signal that derives the system of (4)
towards the prescribed sliding regime. The design is based
on a two-sided switching mechanism, the argument of which
is defined as sp=de/dt+Λe with Λ being a positive definite
diagonal matrix of appropriate dimensions. The aim is to
ensure the negative definiteness of the Lyapunov function
Vp=sp

Tsp/2. The control sequence can now be formulated as
below.

( ) ( ) ( )( )dp xsexxfxbu ���� −Ξ+Λ+−= − sgn,1 (5)

where, Ξ is a positive definite diagonal matrix. The
application of the well-known sliding control law above for
the system of (4) enforces the following dynamics, which
ensures the reaching to the hyperplane sp=0.

( )pp ss sgnΞ−=� (6)

Proposition: If sC is defined to be the vector of
discrepancies between the target and evaluated values of the
control vector, and if the controller parameters are adjusted
such that the cost function in (7) is minimized, the tracking
error vector is driven towards the switching manifold.

C
T
C ssJ

2

1= (7)

where, sC is defined to be the error on the control signal and
is computed as given in (8).

( )ppC sss sgnΞ+= � (8)

Practically, for second order systems, we have the
geometric interpretation shown in Fig. 1. In this figure, the
subscript i is for the individual entries of the vector x.
Clearly, for the trajectories like C1 and C3, the error vector
[ei , dei / dt] tends to the sliding manifold and due to the
dynamics characterized by the locus spi=0, the error and its
derivative will be forced towards the origin along with the
sliding manifold. For these trajectories, the error caused by
the controller are considerably smaller in magnitude than the

error for trajectories like C2 and C4, which have the tendency
to get away from the sliding manifold. Therefore, the two
terms of the right hand side of (8) will have the same signs
and when added to each other, the result will be greater in
magnitude than what is observed with convergent
trajectories. Our first conclusion from this interpretation is
that the error critic in (8) is compatible with the design goals
and is a suitable measure for tuning the controller
parameters. The second conclusion is on the parametric
growth. If the convergent trajectories of Fig. 1 are compared
with divergent ones, one would directly infer that the error in
(8) inactivates the tuning mechanism in the vicinity of the
sliding manifold, however the conventional tuning schemes
gradually update the controller parameters until the origin is
reached.

Fig. 1. Graphical interpretation of the suggested error critic

At this point, we dwell on what is questionable with this
error measure. The obvious difficulty is the computation of
the time derivative of sp. Our prior tests have proved that an
approximate numeric differentiation works even with the
noisy observations. Introducing a stable linear filter with
numerator of order one in Laplace domain can suitably
provide the information needed. The reason why we do not
need the exact value of the derivative stems from the fact
that the desired behavior is not unique. If a trajectory starting
from an arbitrary initial point in the space shown in Fig. 1
tends to the sliding manifold then it is one of the desired
trajectories, however, the selection of Ξ uniquely determines
the way of approaching the sliding manifold. The
information loss due to the derivative computation can be
interpreted as a slight modification of the reaching dynamics
of (6). The second question is on the selection of the
diagonal positive definite matrix Ξ. If the entries increase in
magnitude, the reaching phase of the control strategy
produce large controls in magnitude and several hittings
occur, however, the values close to zero result in slow
reaching to the sliding manifold with relatively less number
of hittings. The designer has to decide on what he/she
pursues together with the physical reality regarding the plant
under control. For example, for a cargo ship steering
example, enforcing the convergence to a desired behavior in
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a few seconds would require unrealistically large-magnitude
control activity, while for a direct drive manipulator the
response could reasonably be fast to fulfill the imposed task.
Lastly, the infinite switching frequency of ideal sliding mode
should be addressed. Clearly from (6), one should notice that
the enforced behavior ultimately converges to a practically
impossible phenomenon. Since the right hand side of (6) is
discontinuous in the vicinity of the origin, the near origin
activity is an oscillation ideally at infinite frequency, called
chattering in the terminology of sliding control. One
approach to eliminate the adverse effects of chattering is to
introduce a boundary layer by replacing the discontinuous
sign function with a smooth approximate such as the one
given below.

( )
δα

αα
+

≅sgn (9)

where δ >0 is the parameter determining the accuracy of the
approximation. In what follows, we focus on the control of
missile by a simple neural network utilizing the error critic
in (8) for parameter adjustment.

IV. SIMULATION RESULTS

A. A Feedforward Neural Network Controller

Due to the powerful mapping capabilities, artificial
neural networks are preferred in many applications requiring
precision in nonlinear mapping (control, identification), fault
tolerance (VLSI, microelectronics), generalization (image
processing and pattern recognition). Various architectures
with a considerable amount of diversity in tuning schemes
result in the fact of algorithmic and architectural integrity,
which is the underlying feeling of the designers utilizing
neural systems.

In Fig. 2, a three-layered feedforward neural network is
illustrated with m neurons in the input layer and n neurons in
the output layer.

Fig. 2. A three-layered feedforward neural network structure with m inputs
and n outputs.

Since the plant under control has six state variables, the
number of inputs is six, and the number of outputs is three,
i.e. m=6, n=3. In the simulations, we utilize Ψ(α)=tanh(α) as
the neuronal activation functions for hidden layer neurons,
and Ψ(α)= α for the output layer neurons. Having this in
mind, the I/O relationship of the depicted structure can be
described as follows:

( ) RL
T
L

T
R BBeWWu −−Ψ= (10)

where WR and WL are the weight matrices of rightmost and
leftmost weight connections respectively, and similarly BL

and BR are the bias vectors of hidden layer neurons and
output layer neurons respectively.

B. Use of Error Backpropagation with the Proposed Critic

Recall the cost measure in (7), which is rewritten below
for clarity.

( )∑∑
==

−==
n

j
jj

n

j
Cj uusJ

1

2*

1

2

2

1

2

1
(11)

where u* is the unknown target control signal in some
desired sense. According to the EBP based tuning strategy,
in order to minimize the cost of (1), if σ is defined to be a
generic adjustable parameter of the neurocontroller, the
adjustment of σ is carried out by the rule given as

σ
η

σ
ησ

∂
∂

−=
∂
∂−= ∑

=

jn

j
Cj

u
s

J

1
� (12)

where, η is the learning rate chosen from the interval (0,1).
The rule in (12) is the ordinary backpropagation, and the
only modification is the use of new error term denoted by sC.

C. Interception Problem and Observations

In the simulations, missile is kept under an external
feedback loop as illustrated in Fig. 3.

Fig. 3. Structure of the control system

According to the differential equations of the missile,
acceleration vector of the target object joins to the feedback
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loop after the controller outputs additively. Apparently, for
the interception problem xd≡0 for ∀t≥0, however, a time-
varying xd would mean that the controller tries to preserve a
relative dynamics between the target and the missile
according to what is described by xd. Therefore, in our
simulations we set xd≡0. As the initial conditions, we adopt
the data presented in [1], i.e. r(0)=5 km, θ(0)=−0.2 rad,

φ(0)=0.1 rad, )0(r� =−0.51 km/hr, )0(θ� =−0.01 rad/hr and

)0(φ� =0.05 rad/hr. The target object has the following

acceleration vector entries: aTθ=sin(0.1t), aTφ=cos(0.1t) and
aTr=0. For the design parameters, we set Ξ=I3×3, δ=0.05, and
η=0.01. Initally the weights and the biases of the neural
network have randomly been set from the interval [0 , 0.1].
The controller has the configuration 6-6-3. During the
simulations, we computed the derivative term in the error
measure of (8) by numerical differentiation of sp.

An important remark here should emphasize that the
dynamic equations of the missile have not been used in any
phase of the design procedure. We solely assumed that the
dynamics is such that the task is achievable. Furthermore, no
initial training has been performed on the controller, which
operates on-line.

Under these conditions, we observed the state evolution
depicted in Fig. 4. After a fast reaching phase, the missile
intercepts the target.
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Fig. 4. Behavior of the missile states

In Fig. 5, the acceleration profile of the target and the
acceleration input produced by the neurocontroller are
illustrated. The effect of hittinggs to the sliding hypersurface
is apparent in all three components in the left subplots. The

acceleration produced by the controller drives the
interception system to zero error state along with the sliding
manifold.
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Fig. 5. Acceleration profiles for the missile and the target

In the left subplots of Fig. 6, the behavior in the phase
space for each state component are illustrated. The results
figure out that the missile quickly enters the sliding mode in
the radial direction and several more hittings are observed in
the azimuth and pitch angles. The right subplots of the figure
depict the time evolution of the adjustable controller
parameters, which is denoted by P and defined as given in
(13).

R
T
RR

T
RL

T
LHL

T
L

T
H BBWWBBWWP +++ΩΩ= (13)

where, [ ]TH 111 �=Ω  and is of H×1 dimensional

with H being the number of hidden neurons. The quantity
above is a good measure of visualizing the evolution in the
adjustable parameter space. It should here be stressed that
one of the major drawbacks of gradient based approaches is
the lack of control over the adjustable parameters. Since the
information determining the evolution of the parameter
vector is strictly dependent upon the topology of the cost
hypersurface, the gradient techniques sometimes compute
unnecessarily large parametric displacements. The
visualization of the above quantity in this sense will enable
us to assess the stability, and therefore application safety, of
the proposed scheme. In the top right subplot of Fig. 6, P-
measure is plotted on linear time axis. It is clear from the
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figure that the parameters receive the excitation during the
early phase of the flight, which corresponds to the reaching
phase and the suggested error critic of (8) yields nonzero
values. When the error vector gets trapped to the sliding
manifold, the error prescribed by (8) is very close to zero,
and the parameters are not excited at all. The bottom right
subplot of Fig. 6 illustrates the P-measure in the logarithmic
time axis, and the observed behavior justifies the above
remarks and the stability in the parameter space.
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Fig. 6. Behavior of the error components in the corresponding phase planes
and the behavior of the parametric cost measure P.

V. CONCLUSIONS

This paper postulates a novel error measure for
backpropagation neural networks. The suggested measure is
based on the VSC technique and aims to drive the system
into a prespecified sliding mode.

The attractiveness of the approach lies neither solely in
the architectural versatility nor only in the algorithmic
strength. The insight here should stress the coordination of
algorithmic capabilities and architectural degrees of freedom
in a collaborative manner. Nor we claim that a missile can
be controlled with randomly initialized controller
parameters, the conclusion of this simulation study is to
explore the performance of a novel scheme on a challenging
control problem.

The results observed justify the precise interception
claim of the paper with bounded norm evolution in the
adjustable parameter space. The approach with the presented

observations constitutes a good candidate for tracking
control problems.
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