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ABSTRACT 
In this paper, a general backpropagation learning framework for 
the training of feedforward neural networks is proposed. The 
convergence to global minimum under the framework is 
investigated using the Lyapunov stability theory. It is shown the 
existing feedforward neural networks training algorithms are 
special cases of the proposed framework. 

1. INTRODUCTION 

Feedforward neural networks (FNN) have been widely 
used for various tasks, such as pattern recognition, function 
approximation, dynamical modeling,  data mining, time 
series forecasting, to name just a few. [1,2]. The training of 
feedforward neural networks is mainly undertaken using 
the back-propagation (BP) based learning algorithms. A 
number of different kinds of BP learning algorithms have 
been proposed, such as an online neural network learning 
algorithm for dealing with time varying inputs [3], fast 
learning algorithms based on gradient descent of neuron 
space [4], and the Levenberg-Marquardt algorithm [5,6]. 
Different merits of their effectiveness have been observed.  
 

In this paper, we develop a general BP learning framework 
for FNN training with time varying inputs. The Lyapunov 
theory is used to prove the convergence of the algorithm to 
the global minimum. 

2. THE GENERAL FRAMEWORK 

Before we proceed, denote the inputs, weights, desired 
outputs and actual outputs of the feedforward neural 
networks as 
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where )(tx  is the input vector, )(tφ  the weight vector, 

)(tyd  the desired output vector and )(ty  the output vector 

of the neural network respectively. The error at any instant 
is represented as 
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where the symbol ‘T’ represents the transpose. Note that 
here the input )(tx  is of a general type, and it can be 

discrete, continuous and time varying. The weight vector 
)(tφ  represents weights for perceptrons as well as multi-

layer FNN. 
 
We now investigate the convergence issue in the learning 
process of FNN. Most of BP learning algorithms can be 

considered as finding zeros of φ∂
∂J  which correspond to 

(possibly local) minima. The search performance of this 
class of learning algorithms somehow relies on initial 
values of weights, and oftentimes, it traps into local 
minima.  
 
To develop the general learning framework, we now make 
use of the Lyapunov theory [7, 9]. First, choose the 
positive definite Lyapunov function with respect to J  and 
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where the parameters σµ,  determine the relative 

importance of each term and  
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�  is the gradient represented in a 

row vector form [7]. For convenience, we also denote 
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� . The purpose of selecting the 

Lyapunov function (6) is that, by finding an appropriate 

learning algorithm represented by φ� , the positive definite 

function V  is minimized to reach its global minimum  
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which corresponds the global minimum. The question is 
how. From the Lyapunov theory [5,9], if we can develop a 
learning algorithm for updating the weights φ   so that 

0<V�      (8) 

that is V�  is negative definite with respect to J  and 

φ∂
∂J , then the equilibrium of 0=V , which corresponds 

to the global minimum (9), will be reached asymptotically. 
The time derivative of the Lyapunov function V is derived 
as 
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It is evident that if the general learning framework 

(algorithm) for φ�  is designed as 
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with 0,0 >> ης , then 
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which is negative definite with respect to J  and φ∂
∂J . 

According to the LaSalle-Yoshizawa theorem [9, p. 24], 

the negative definiteness of V�  indicates that the learning 
algorithm (10) will lead the weights in )(tφ  to converge 

asymptotically to the values of weights such that 0=
∂
∂
φ
J

 

and 0=J , which corresponds to the global minimum. 

Hence the global minimum is achieved under the learning 
rule (10).  
 

Note that conditions 0=
∂
∂
φ
J

 and 0=J  do not 

necessarily warrant a unique solution of )(tφ , rather 

correspond to a set of solutions )(tφ  which can make (9) 

valid. Note also that 0=
∂
∂
φ
J

 would impose a singularity 

in (10). One way to avoid is to set 0=φ�  when 0=
∂
∂
φ
J

. 

The parameters 0,0 >> ης  will determine the 

convergence speed of V� . 
 
The following theorem as the main result of this paper 
summarizes the above discussion.  
 

Theorem: For a FNN structure whose input-output 
relationship is ))(),(,()( txttfty φ= , with the general 

learning framework (10), the J  converges to zero 
asymptotically and the global minimum of J  is achieved. 

 
The Theorem can interpret many existing BP learning 
algorithms. Training FNN with discrete input data set is a 
quite common learning task. In this case, we have  
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The learning algorithm for discrete data set is generally 
expressed as 

φφφ �tkk ∆−=+ )()1(  

where the term φ�  acts as a “gradient” and we will 

demonstrate how to derive several commonly used 
learning algorithms. 
 
The conventional gradient descent learning algorithm can 
be easily obtained by setting 0=σ , 0=η  and using (10). 
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The Gauss-Newton algorithm can be obtained by setting 

0=µ , 0=η  and using (10). Since 0=
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and 0=x� , then we have 
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The Levenberg-Marquardt algorithm can be easily 

obtained by setting 0=η  and using (10). Since 0=
∂
∂

t

J
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If we assume 0=η  and 0=µ  but )(tx  is a time varying 

function, then we will end up with the online learning 
algorithm [3] which gives rise to an exponentially 
convergent learning. 
 
Note that in the above derivations, 0=η  is assumed. This 

implies that the Lyapunov function becomes 
2

2
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φ
σ
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V  hence minimization of this Lyapunov 

function only result in possible local minima as 0=∂
∂

φ
J  

does not necessarily determine the global minimum.  
 
Furthermore, if we design the learning algorithm as  
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then we will end up with  
2/1VV ς−<� , 0>ς  

which will enable a finite time convergent learning.  

 

3. CONCLUSION 

A general framework for FNN training algorithms has been 
proposed. Its convergence to the global minimum has been 
proved using the Lyapunov theory. It has been shown that 

several commonly used BP learning algorithms are a 
special case of the general BP learning algorithm. 
However, the strength of the algorithm lays in its ability to 
handle any time varying inputs. 
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