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ABSTRACT

In this study, a bioreactor system is controlled by a
three-parameter flexible controller, the parameter
adjustment for which is based on a switching strategy
using the theoretical framework of Variable
Structure Systems (VSS). The simulations performed
demonstrate that the controller is able to meet the
performance specifications under the existence of
observation noise and time varying process
parameters. Furthermore, the architectural
simplicity of the controller makes the discussed
scheme promising for real time applications.

1. INTRODUCTION

Control of uncertain systems deserves a careful
study because of the operational safety and
performance considerations. Existence of noise on
the measured quantities and time varying parameters
of the plant under control constitute prime difficulties
in the design of a suitable controller. Therefore the
alleviation of the uncertainties and impreciseness
encourages the use of intelligent controllers having
the capabilities of fault tolerance and improving the
future performance by adjusting the design
parameters through a learning process, by which the
autonomous behavior is acquired. The integration of
VSS theory and the methods of computational
intelligence in this sense offers well formulated
solutions to ill-posed problems. A prime example of
this is the control of biochemical processes.

In recent years, tremendous advances have been
made in technology and this has affected the practice
of process control engineering. With the advances in
high speed computing, it is now possible and
economically feasible to use complex, model-based
control paradigms in practical applications, using
advanced strategies derived from adaptive, non-
linear, and robust control theories. The process
control problems have also benefited from these
developments and various adaptive strategies have

been reported in the literature, with the objective of
maintaining the process output close to the desired
value in the presence of various uncertainties,
including external disturbances, time-varying
parameters, and unmodeled dynamics [1]. A recent
survey and comparison of various process control
configurations can be found in [2].

A more recent tendency in process control is the
blending of algorithmic techniques with other
elements, such as logic, reasoning and heuristics.
Such systems have come to be known as intelligent
control systems [3-4]. A host of new control
approaches are being used in this respect, based on
fuzzy logic, neural networks, evolutionary computing
and other techniques adapted from artificial
intelligence. In demonstrating the feasibility and
efficacy of such approaches in the control of
nonlinear processes, process control has been studied
in detail by many authors [5-8].

On the other hand, in control engineering
practice, stability and robustness are of crucial
importance. Because of this, the implementation-
oriented control engineering expert has always been
in pursuit of a design, which provide accuracy as
well as insensitivity to environmental disturbances
and structural uncertainties. At this point, it must be
emphasized that these ambiguities can never be
modeled accurately. When the designer tries to
minimize the ambiguities by the use of a detailed
model, then the design becomes so tedious that its
cost increases dramatically. A suitable way of
tackling with uncertainties without the use of
complicated models is to introduce VSS theory based
components into the system structure.

Variable Structure Control (VSC) has
successfully been applied to a wide variety of
systems having uncertainties in the representative
system models. The philosophy of the control
strategy is simple, being based on two goals. First,
the system is forced towards a desired dynamics,
second, the system is maintained on that differential
geometry. In the literature, the former dynamics is



named the reaching mode, while the latter is called
the sliding mode. The control strategy borrows its
name from the latter dynamic behavior, and is called
Sliding Mode Control (SMC).

Numerous contributions to VSS theory have been
made during the last two decades, some of them are
as follows: Hung [9] has reviewed the control
strategy for linear and nonlinear systems. In [9], the
switching schemes putting the differential equations
into canonical forms and generating simple SMC
based controls are considered in detail. Gao [10],
applies the SMC scheme to robotic manipulators and
discuss the quality of the scheme. In [11-14], it is
demonstrated that the theory of VSS can be used for
the purpose of learning strategy design.

The method discussed in this paper is first
proposed by Ramirez for learning in Adaptive Linear
Elements (ADALINE) [13]. The paper gives the
example of an inverse dynamics identification of a
Kapitsa pendulum with a single ADALINE. Yu
discusses the same algorithm for ADALINE with the
improvement on uncertainty bound adaptation [14].
The strategy adopted in [14] is based on the adaptive
adjustment of uncertainty bounds. The methodology
discussed in both of these studies assumes that the
desired output of the ADALINE structure is
available, and the plant is excited in an open loop.
Therefore the algorithm discusses in [13-14] is not
applicable in feedback control systems without any
modification.

This paper reports a modification on the method
discussed in [13-14] for control applications. The
controller is an ADALINE, and the plant is in an
ordinary feedback loop.

The paper is organized as follows: The second
section describes the dynamic model of the plant
under control. The next section presents the
parameter tuning algorithm. In the fourth section, the
simulation results are discussed and the conclusions
are presented at the end of the paper.

2. DYNAMIC MODEL OF THE PLANT

The techniques employed in modeling the
dynamic behavior of continuous flow bioreactors
frequently employ the concepts of Monod and
Haldane kinetics. Monod kinetics is a simplified
form of Haldane kinetics in terms of the unknown
parameters appearing nonlinearly. Therefore the
design based on the Monod kinetics may violate the
performance requirements, while that based on
Haldane kinetics may entail the handling of strong
nonlinear interdependencies between the variables.

The mathematical model of the process studied in
this paper is based on the Haldane kinetics. The
process is a tank containing a mixture of water,
homogeneously mixed cells (microorganisms) and
nutrients (substrates), which are the state variables
denoted by X and S respectively. The state of the
system can be changed by adding influent, whose

substrate concentration is constant and is equal to SF,
into the mixture. The volume in the tank is
maintained at a constant level by removing tank
contents at a rate equal to the incoming rate, which is
denoted by D. This rate is called the dilution rate and
is the variable by which the bioreactor is controlled.
Therefore the system has only one control input,
which is the externally supplied influent. The control
problem is to maintain the cell and substrate
concentrations at the desired levels.

The dynamics of the process is described as in
(1)-(2). The details of the model can be found in [15].
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where, SF and Y denote the influent substrate
concentration and the yield coefficient respectively
[16]. µ(S,X) is called the specific growth rate or
process growth model. Based on the Haldane
kinetics, this quantity is defined as in (3).
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The variable D denotes dilution rate and is the
single control input to the process. It is defined as
D=F/V where F is the feeding rate and V is the
volume of the mixture in the tank [16].

The process parameters µ0, KI and Ks are time-
varying variables and are unmeasurable, however
their ranges are known.

During the operation, the designer must consider
that the excess amount of substrate in the mixture
causes undesired by-product formation. In order to
avoid this, the substrate concentration should not stay
above its desired value for a long time.

3. PARAMETER TUNING STRATEGY

In this section, it is assumed that the physical
constraints on the controller outputs put a bound on
adjustable parameter magnitudes ( KBK < ), time

derivative of the input vector ( uBu
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The controller is described in (4), in which the
adjustable parameter vector is as described in (5), and
the input vector driving the controller is given in (6).
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In above, e=S-Sd is the error on the substrate
concentration. Defining the error at the output of the
controller as in (7), one can consider the Lyapunov
function in (8) as a suitable function for describing
the learning performance. The time derivative of the
function is as given by (9).
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Proposition: For a controller structure described in
(4), the adoption of the parameter tuning strategy as
in (11) leads to the stability in the sense of Lyapunov.
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Proof: If (11) is substituted into (10), the error
dynamics in (12) is obtained. Using the bounds of the
uncertainties mentioned at the beginning of the
section leads to (13).
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In order to have a negative time derivative for the
Lyapunov function in (8), the parameter ζ must
satisfy the following relation.
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The analysis presented aims to maintain the
negative definiteness of the Lyapunov function in
(8), which is an instantaneous cost measure. It is
apparent that the use of the presented analysis in
control applications entails the desired values of the
controller outputs. Therefore, for the applications in
which the desired signals are available, the method
can easily be used without any modification.

In this part, parallel to the philosophy of variable
structure controller design procedure, a switching
function is defined and described by (15). The
symbol e seen in (15) is the discrepancy between the

reference state value and observed state value. It
should here be noted that since the dynamics under
investigation is a first order one, the dimension of the
sliding hypersurface is equal to zero, which is
apparent from (15).

s=e (15)

If one replaces ec of (11) with s of (15), it is
possible to prove that the Lyapunov function in (16)
is minimized in time and its time derivative is
enforced to have negative values due to the
adjustment strategy in (11).
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For this case, the selection of ζ values must be
reasonably large for maintaining the sliding motion.
The details of the analysis are not included due to the
space limit. For an in-depth discussion, the reader is
referred to [17].

4. SIMULATION STUDIES

In this part, the performance of the proposed
scheme in the control of a bioreactor process
modeled with Haldane growth model is investigated.
In demonstrating the performance of the overall
control system, several difficulties are studied. These
are namely the varying plant parameters, observation
noise and large initial errors. The values of the
process parameters defined in the second section are
as follows:

Y = 0.5 [g cells /g substrate]
SF = 200 [g/l], X0 = 10 [g/l]
S0 = 10[g/l], Xd = 99.95
Sd = 0.1 [g/l].

The unknown parameters seen in (3) are set to values
given below:

µ0 = 0.35+0.15cos(2πt/10) [l/h]
Ks = 0.105 + 0.095sin(2πt/15+3π/2) [g/l]
KI = 5+4.975cos(2πt/25) [g/l]

During the simulations, in order to show the
robustness against disturbances, Gaussian distributed
random noise having zero mean and variance equal
to 1.64e-6 is added to S(t), which is one of the inputs
to the controller.

Furthermore, the initial value of S is set to a value
which is quite larger than its desired set value. By
this means, the ability to compensate the large initial
errors can fairly be assessed.

During simulations, the bound for the uncertainty
denoted by ζ has been set to 1.4. The simulation step
size has been selected as 0.01 h and the simulations
have been performed under Matlab 5.1 environment.



In Figs. 1 and 2, the time behavior of the substrate
concentration and that of cell concentration are
illustrated. It is apparent that the substrate
concentration reaches its desired value after a
sufficiently fast transient regime. Fig. 3 depicts the
control signal, which is the dilution rate. One should
notice that the signal seen on this plot is smooth
enough to allow the discussed scheme for real-time
applications. Another important feature of the
approach is the bounded evolution in the adjustable
parameter space. As seen from Figs. 4-6, the
controller parameters evolve in a finite volume. For a
detailed treatment of bounded evolution, the reader id
referred to [17]. Lastly, in Figs. 7 and 8, the errors in
substrate concentration and cell concentration are
depicted. It is clear from these figures that the
controller meets the desired specifications in terms of
the error performance.

Based on what has been obtained, the controller
suggested in this paper has some advantages over the
one discussed in [15]. These can be summarized as
follows:

- The method discussed does not require the
detailed mathematical model of the plant under
control, while most conventional controllers
need.

- The error trend is sufficiently fast, which is clear
from Fig. 7. The error in the substrate
concentration converges quickly to origin so that
by-product formation is considerably reduced.

- The control input D(t) doesn’t change abruptly
in spite of changing variables. This property is
important if the reaction time of the actuator, e.g.
the control valve, is limited.

- The observation noise, which is inevitable in
practice, has no considerable effect on the
performance of the controller.

5. CONCLUSIONS

In this paper, the performance of a method based
on the adoption of a nonlinear dynamic adjustment
strategy in an ADALINE based controller is
evaluated in bringing substrate and cell
concentrations of a bioreactor process with unknown
parameters to the desired levels as fast as possible in
a noisy environment. The results show that it works
well. What makes the algorithm so attractive in this
sense is the fact that the controller possesses only
three parameters, the adopted adjustment strategy for
which leads to less computational complexity and
stability in the Lyapunov sense.

Briefly, the controller shows its functionality and
flexibility by achieving the given tasks even in the
deficiencies caused by the imperfect observations of
the state variables, abruptly changing and complex
plant dynamics. From these points of view, the
method proposed is highly promising in control
engineering practice.
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Figure 1. The trend in substrate concentration
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Figure 2. The trend in cell concentration
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Figure 3. Time behavior of the dilution rate, which is
the output of the controller
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Figure 4. Time evolution of the controller parameter
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Figure 5. Time evolution of the controller parameter
(Ki)
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Figure 6. Time evolution of the controller parameter
(KP)
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Figure 7. Error in substrate concentration
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Figure 8. Error in cell concentration
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