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ABSTRACT

Artificial neural networks opened a new horizon in many research areas. This

understanding, also, brought a new way of thinking into the concept of  control. The ever-

increasing technological demands steered the control engineers to design more

sophisticated controllers. In this respect, artificial neural networks were proposed as a new

approach because of their massively parallel data processing properties, adaptiveness and

powerful mapping capabilities. Especially the learning property of these networks made

them extremely attractive.

There are various methods that are used for the training of artificial neural networks.

Two of them are included in this study. These are, namely, the backpropagation method

and the Levenberg-Marquardt optimization technique. The learning time for the former is

excessively long especially around the minima since it uses the first order derivatives of the

performance function, while in the latter, the learning time is very short because of the

extra information coming form the second derivatives of the performance function. The

computational complexity and the hardware requirements are large for the latter.

The identification of nonlinear dynamical systems is a substantial part of the controller

training therefore it is included in this work and discussed in the simulation results. The

main idea that lie under the procedure is obtaining a regular and mathematically tractable

model of the system which is of interest.

Based on these two learning methods and concept of system identification, various

control strategies are discussed in this work. Design methodology for error

backpropagation, inverse control, self-tuning control, model reference adaptive control,

self-learning control and dynamical neural unit based control are explained and numerous

simulation results are discussed.
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ÖZET

<DSD\�VLQLU�D÷ODUÕ�ELUoRN�DUDúWÕUPD�DODQODUÕQGD�\HQL�ELU� XIXN� DoWÕ��%X�DQOD\Õú�� NRQWURO

NDYUDPÕQD� GD� \HQL� ELU� G�ú�Q�ú� WDU]Õ� JHWLUGL�� $UWDQ� WHNQRORMLN� WDOHSOHU� NRQWURO

mühendislerini daha yetenekli denetleyiciler tasarlamaya yöneltti. Bu noktada yeni bir

\DNODúÕP�RODUDN�SDUDOHO� YHUL� LúOH\HELOPH�|]HOOLNOHUL�� X\DUODQDELOLUOLN� YH� J�oO�� G|Q�úW�UPH

\HWHQHNOHUL� QHGHQL\OH� \DSD\� VLQLU� D÷ODUÕ� |QHULOGL�� g]HOOLNH� |÷UHQHELOPH� |]HOOL÷L� EX� D÷ODUÕ

GDKD�oHNLFL�NÕOGÕ�

<DSD\� VLQLU� D÷ODUÕQÕQ� H÷LWLPLQGH� ELUoRN� \|QWHP� NXOODQÕOPDNWDGÕU�� %X� oDOÕúPDGD� LNL

\|QWHP�HOH� DOÕQPÕúWÕU�� KDWD�JHUL\H�\D\PD�\|QWHPL�YH�/HYHQEHUJ�0DUTXDUGW�RSWLPL]DV\RQ

WHNQL÷L�� +DWD� JHUL\H� \D\PD� \|QWHPLQGH� SHUIRUPDQV� IRQNVL\RQXQXQ� ELULQFL� W�UHYL

NXOODQÕOGÕ÷ÕQGDQ�|÷UHQPH�]DPDQÕ�|]HOOLNOH�PLQLPXP�HWUDIÕQGD�oRN�X]XQGXU��EXQD�NDUúÕOÕN

/HYHQEHUJ�0DUTXDUGW�\|QWHPLQGH�|÷UHQPH�]DPDQÕ�GDKD�NÕVDGÕU�YH�EX�� LNLQFL� W�UHYOHUGHQ

JHOHQ� HN� ELOJLQLQ� GH� NXOODQÕOPDVÕQD� DWIHGLOLU�� /HYHQEHUJ�0DUTXDUGW� \|QWHPLQGH� LúOHP

NDUPDúÕNOÕ÷Õ�YH�GRQDQÕP�LKWL\DoODUÕ�GDKD�ID]ODGÕU�

'R÷UXVDO�ROPD\DQ�GLQDPLN�VLVWHPOHULQ�WDQÕPODQPDVÕ�GHQHWOH\LFL�H÷LWLPLQGH�|QHPOL�ELU

E|O�PG�U��%X�\�]GHQ�WDQÕPD��EX�oDOÕúPDQÕQ�NDSVDPÕQD�DOÕQPÕú�YH�VLPXODV\RQ�VRQXoODUÕ�LOH

ELUOLNWH� WDUWÕúÕOPÕúWÕU�� 3URVHG�U�Q� DOWÕQGD� \DWDQ� DQD� G�ú�QFH� LOJLOHQLOHQ� VLVWHPH� LOLúNLQ

G�]HQOL�YH�PDWHPDWLNVHO�RODUDN�NROD\�LúOHQHELOLU�ELU�PRGHOLQ�HOGH�HGLOPHVLGLU�

%X� LNL�H÷LWLP�\|QWHPLQH�YH� WDQÕPD�NDYUDPÕQD�GD\DQDUDN�oHVLWOL�NRQWURO� VWUDWHMLOHUL�EX

oDOÕúPD�LoHULVLQGH�WDUWÕúÕOPÕúWÕU��+DWD�JHUL\H�\D\PD�LOH�NRQWURO��VLVWHP�WHUVLQL�HOGH�HWPH�LOH

NRQWURO�� NHQGLQL� D\DUOD\DQ� NRQWURO�� PRGHO� UHIHUDQVOÕ� X\DUODPDOÕ� NRQWURO�� NHQGL� NHQGLQH

|÷UHQPH� LOH� NRQWURO� YH� GLQDPLN� VLQLU� D÷Õ� PRGHOL� LOH� NRQWURO� \DNODúÕPODUÕ� LOH� GHQHWOH\LFL

WDVDUÕPÕ�PHWRGRORMLVL�ELUoRN�VLPXODV\RQ�VRQXoODUÕ�LOH�HOH�DOÕQPÕúWÕU�
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1. INTRODUCTION

During the last three decades, artificial neural networks have gained a lot importance

because of their extensive capabilities in many application domains. Therefore the concept

of neurocomputing became an interdisciplinary research area.

The model of a neuron was formed by imitating the biological one. A neuron model

was thought of having some inputs from other neurons, and an activation or thresholding

operation and an output to other neurons. Actually, this model is compatible with the

biological neurons in the central nervous system. Highly complex interconnected structure

of these neurons makes the analysis difficult and also makes the brain capable of relating

all kinds of data with each other. This is called intelligence. Hopfield [1], a theoretical

physicist, says that;

"Simple elements often display complicated behavior when they come in large group"

[1].

Examining the nature of learning is reduced to its components and examining their

elementary functions. Because the autonomous behavior of the brain gains learning

property from billions of interconnected adaptive neurons. The dynamics of biological

learning process was also developed for the artificial neural networks. In our study, we

elaborated two learning methods, namely, backpropagation method and Levenberg-

Marquardt optimization technique. These methods are used in both the identification and

the control of nonlinear dynamical systems.

The concept of intelligent control is a primary interest of systems and control area.

Technological demands, today, necessitate control of highly complex systems. As the

complexity of the system to be controlled increases the need for more sophisticated

controllers arises. The lack of precise knowledge about the process, significant parameter

changes over time and issues of saturation and long delays make the design of a

conventional controller extremely difficult. There are various methods for the control of

linear systems but if the system of interest has a nonlinear dynamics, design of a controller

requires a highly involved analysis. Using artificial neural networks is a new approach

which facilitates the controller design. In some control strategies, the system to be

controlled is firstly identified by neural networks then a controller training takes place. The

autonomous or self governing properties of the neural networks, enable the controller to

compensate the system failures under significant uncertainties without external

intervention. Gaining this autonomy requires both algorithmic and numeric methods.

The main problem in designing a controller is that the target outputs of the plant may

be known but not the control signals that produce them [2]. Different control strategies
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such as self-tuning adaptive control, model reference adaptive control, self learning control

and control via inversion of the plant and many other methods provide valuable

information that constructs the control signal by employing various techniques introduced

to the area systems and control.

Our first nonlinear control strategy is the error backpropagation technique. By

propagating the output error back through the neural identification model, the error in

neural controller output is obtained. This error is then backpropogated through the

controller with adjusting the weights and biases. In fact, the neural controller is expected to

realize the inverse dynamics of the plant. Provided that the dynamics of the plant is

invertible, method works well. Psaltis, Sideris and Yamamura [3] discuss the error

backpropagation technique with general and specialized learning architectures.

Inversion of the plant equations can be carried out by the use of state transition

knowledge. In this approach, controller is expected to produce a control such that, in

response to this control, plant performs the desired state transition. This method is

applicable as long as the states of the process are observable and the dynamics of the plant

is invertible.

Self-tuning adaptive control is another nonlinear neural control technique considered in

this study. The method works on-line and its applicability is limited to single-input-single-

output (SISO) and feedback linearizable systems. Based on the past control inputs and the

outputs of the plant, controller evaluates a control input such that, plant output follows the

desired trajectory. Chen [4] proposed this scheme and he gives some simulation results in

his work.

Model reference adaptive control (MRAC) is also considered in this thesis. In MRAC

technique, the parameters of the controller are adjusted so that the plant output follows the

output of a stable reference model. We applied the method to various types of plant

models. The method is explained by Narendra and Parthasarathy [5] in detail. They discuss

the concept with example simulation results. In our study, we also duplicated some of their

work. Especially for the bioreactor control problem, we constructed a reference model and

carried out a detailed analysis parallel to the methodology discussed in [5].

Next, we considered self-learning control scheme. In this scheme, in finite number of

steps, the system output is brought to its desired value. No external command signal is

used, the parameter adjustment is carried out by the use of error backpropagation

technique. Nguyen and Widrow [6] applied the method to a truck backer upper plant. They

claim that;

"Without the learning process, however, substantial amounts of human effort and

design time would have been required to devise the controller" [6].
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Finally, dynamical neural units were taken into consideration. The approach adopts a

new neuron model including a second order pulse transfer function in the synaptic part and

a nonlinear activation function with variable slope in the somatic part. Adaptation is carried

out on the feedforward, feedback and somatic gains of the neuron model. The neuron

model is mathematically tractable for the stability analysis. Gupta and Rao [7] tested the

success of this approach for different types of plants. Model uncertainties, noisy

observations, and varying input signals were simulated in [7], and the performance of the

controller is evaluated.

This study includes a comparison for these control strategies from several performance

measures such as tracking performance, applicability to different nonlinear plant models,

robustness under perturbations, mathematical tractability for stability analysis, noise

reduction and capability of fault tolerance.
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2. ARTIFICIAL NEURAL NETWORKS

2.1 Neuron Model

In the development of the artificial neuron models, the main inspiration was the

biological neurons which process and communicate information. From an information

processing point of view, the biological neuron possesses four main parts that are

illustrated in Fig. 2.1.

1. The synapse is the junction point of an axon with a dendrite. Synapses provide

memory to the past accumulated experience, that is, knowledge is stored in the synaptic

strengths which are called weights.

2. The dendrites receive the information from other neurons. In other words, they carry

the information obtained at the neuron side of a synaptic connection to the axon.

3. The soma combines the information come via dendrites. It functions as an evaluation

unit, because it collects thousands of information coming from other neurons, and

depending upon the current state, it generates a response that is to be sent to other neurons.

4. The axon transmits the response of the neuron to other neurons.

Figure 2.1 A schematic view of the biological neuron body
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From a systems theoretic point of view, a neuron can be considered as a multi-input-single-

output system which is illustrated in Fig. 2.2.

Figure 2.2 Artificial neuron model

As can be seen from the Fig. 2.2, the neuron model performs a weighted sum of n

neuronal inputs then adds a bias value to the summation. The resulting value is passed

through a nonlinear activation function. The neuron output is then branched for other

neurons. The mathematical explanation of a single neuron is as follows;

u t x t x t x tn( ) ( ) ( ) ( )  w   w   ...   w   w1 2 n 0= + + + +1 2 (2.1)

y t w x ti i( ) ( )      w0
i=1

n
= +









∑Ψ (2.2)

The nonlinear activation function cited in Equation (2.2) is a sigmoidal or hard-limiting

function which is used in the vast literature. In Equations (2.3), (2.4) and (2.5), different

forms of commonly used nonlinear activation functions are given and in Fig. 2.3,

characteristics of these functions are illustrated.

Ψ( )x   
1 exp( x)

1 + exp( x)
= − −

−
λ
λ (2.3)

Ψ( )x   
1

1 + exp( x)
=

−λ (2.4)
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Ψ( )x   
 1   if x  0

 0   if x  0
=

≥
<





(2.5)

Figure 2.3 Behavior of nonlinear activation function (a) Bipolar, sigmoidal nonlinearity,

(b) Unipolar, sigmoidal nonlinearity, (c) Unipolar hard-limiting nonlinearity

The choice of nonlinear activation function is important in examining the behavior of

the neuron. The main idea that lies under the choice of these kinds of squashing functions

is that at the center of the nonlinearity the derivative is maximum, on the other extreme, if

the input to the nonlinearity is large positive or large negative, the derivative tends to zero.

This means that, in order to produce a meaningful output the input must be around the

center of the nonlinearity, extreme cases result in saturation and this enables the neuron to

handle large input values. Thus, the output of the neuron is limited to [-1,1] or [0,1]. In this

study, we used the nonlinearity defined in Equation (2.3).

As can be seen easily, the nonlinear activation function will form a hypersurface. The

properties of this hypersurface are influenced depending on the type of nonlinear activation

function. For the hard-limiting activation function, the hypersurface will exhibit abrupt

transitions while for the sigmoidal activation functions it exhibits smooth transitions.

Therefore, the former is very sensitive to the small changes around the origin.

This neuron model (which is also called perceptron in the literature) can be used for the

basic classification problems. For instance, a single perceptron is able to realize logical OR

and logical AND functions but it is unable to solve logical XOR problem. Once the

synaptic weights are set to fixed values, in response to any input pattern, the neuron yields

a single output value representing the measure of similarity. Nevertheless, it is not so

powerful from the point of multidimensional view. In our study, we used multilayer
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feedforward neural network structures which is illustrated in Fig. 2.4. For convention, we

define the terms frequently used in this work.

1. Layer : Neurons are connected to each other with weights in a certain pattern so that,

in a layer no neurons have an operational priority.  Input vector dimension is fixed for all

neurons in the same layer, also, the input vector is applied to all of them simultaneously.

Generally, in a layer, all neurons possess the same type of nonlinear activation function.

The output vector dimension of a layer is equal to the number of neurons in that layer.

2. Hidden Layer : Hidden layers have the same properties defined above but their input

and output vectors are not directly accessible. They take inputs form outputs of preceding

layer and their outputs are the inputs of the next layer.

3. Input Layer : Input layer gets the input vector from real world and transmits it to the

first hidden layer of the neural network. Sometimes input layer is called fan-in layer.

4. Output Layer : In response to a specific input vector, the neural network produces an

output which is carried to real world by means of output layer.

Figure 2.4 Multilayer feedforward neural network

By utilizing a proper method, the weights of the neural network can be adjusted such

that the network  performs a mapping in a desired sense. This type of learning implies a

kind of supervision which provides training patterns obtained from the process inputs and

outputs and which generates the necessary information for the weight updating. There are

various types of learning methods, and two of them will be used in our study.

The functional capabilities of the multilayer perceptrons (MLP) can be viewed from

three different perspectives. Firstly, they have the ability of implementing Boolean logic

functions, secondly they can partition the pattern space for classification problems, lastly

they can perform highly nonlinear functional approximation problems.
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2.2 Approximate Realization via Neural Networks

Parallel, layered structure of the artificial neural networks are responsible for solving

formidable problems in the fields such as system identification, control, learning,

adaptation and pattern classification. In this section, we give the mathematical preliminary

for the mapping capabilities of artificial neural networks. We studied the problem of

approximate realization from the point of input-output mappings. In conjunction with

these, we shall consider the representation of continuous mappings by means of neural

networks whose nonlinear activation functions (squashing or logistic functions) in the

hidden layers are sigmoidal.
Let x = (x1, x2, ... , xn)

T
 be a vector in the n-dimensional Euclidean space R

n
. Then the

norm of x is defined by;

 x       x  i
2

i  1

n
=

=
∑ (2.6)

Theorem 1

Let Ψ(x) be a nonconstant, bounded, monotone increasing continuous function, and, let K
be a compact subset (bounded and closed subset) of R

n
 and let f(x1, x2, ... , xn) be a real

valued continuous function on K. Then, for any arbitrary ε>0, there exists an integer N and
real constants ci, θi, wij (i = 1, 2, ... , N and j = 1, 2, ... , n) such that

$f i j
j 

(x ,x ,..., x )   c   w  x   1 2 n
i  1

N

ij i
 1

n
= −













= =
∑ ∑Ψ θ (2.7)

satisfies Equation (2.8).

max $
x K∈ − <  f(x , x ,..., x )  f(x , x ,..., x )   1 2 n 1 2 n ε (2.8)

In other words, for an arbitrary ε>0, there exists a three-layer network whose output

functions for the hidden layer are Ψ(x), whose output functions for input and output layers
are linear and which realizes f(x1, x2, ... , xn) approximately over the range of interest such

that Equation (2.8) is satisfied [8]. The proof of this theorem is given in [8].



9

Theorem 2

Let Ψ(x) be a nonconstant, bounded, monotone increasing continuous function, and, let K

be a compact subset (bounded and closed subset) of R
n
 and fix an integer k ≥ 3, then any

continuous mapping f : K → Rm
 defined by x = (x1, x2, ... , xn) → (f1(x), f2(x), ..., fm(x))

can be approximated in the sense of uniform topology on K by input-output mappings of k-

layer (k-2 hidden layers) networks whose output functions for hidden layers are Ψ(x), and

whose output functions for  input and output layers are linear [8]. The proof of this theorem

is given in [8].

Remark 1

Any mapping is approximately realized by a three layer (one hidden layer) network.

However, it should be theoretically noted that k > 3-layer networks can realize a given

mapping with less costs (number of neurons and connections) than three-layer networks

within error ε [8].

Remark 2

The main idea that theorems 1 and 2 imply is that any mapping can be realized

perfectly by the use of three-layer neural networks. Hornik [9] points out that this sort of a

result has a little practical usefulness, despite its great theoretical utility. Because, the

approach necessitates a continuum of hidden neurons. Consequently, using a finite number

of hidden neurons puts a limit to the approximation accuracy.

2.3 Lipschitz Condition

Consider a dynamical system which is given in the state space model as described by

Equation (2.9) in which F is the nonlinearity of the equation set. More explicitly, F is a

vector of functions that govern the behavior of the dynamical system. The argument of the
nonlinearity F is an N-by-1 vector, x = (x1 , x2 ,  ... , xn)

T
, which is called state vector.

d

d t
 x(t)  F [x(t)]= (2.9)
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F(x) is defined to be continuous in all of its arguments. In order to have an unique solution

for Equation (2.9) Lipschitz condition must be satisfied. Let the norm of  Euclidean length
be denoted by the operator || . ||, and let x1 and x2 are different vectors from state space,

then there exists a constant K such that

 F F(x )  x x  2 1 2( )x K 1 − ≤ − (2.10)

Provided that F(x) satisfies Equation (2.10) then it is said to be Lipschitz, and, all of its

partial derivatives are finite everywhere. Also, existence and uniqueness of the solution of

state-space equation are ensured. In the neural control theory this condition plays an

important role because it gives a valuable knowledge about the stability around the

neighborhood of the equilibrium state under some perturbations.

2.4 Controllability and Observability

Control of nonlinear dynamical systems is generally a difficult problem even in the

cases that we have a priori knowledge about the nonlinearity or the order of the system.

When neural networks are used for the identification and control of these systems, certain

assumptions have to be made. Without loss of generality, the governing equations of the

system can be given as follows;

   x   f

  h

( ) [ ( ), ( )]

( ) [ ( )]

k x k u k

y k x k

+ =
=

1
(2.11)

where x ∈ ∈ ∈R ,  u  R  and y  R  denote  the  state,   input  and  output  respectively.n r m

Controllability

The main aim in the control action is finding of an input sequence so that the response

of the system to this input sequence is the desired behavior. Desired behavior may be one

of the following;

1. System is stabilized around an equilibrium point.

2. System tracks a desired trajectory.

Conceptually, controllability states that for some sequence of inputs which is of finite

length, the state vector of the system can be moved from its initial position to a target

position in R
n
. Generally, explaining the controllability of a nonlinear system for the entire
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state space requires highly involved analysis. Therefore this property is usually restricted to

a local region around the point which is of interest. Based on this, Narendra [10] points out

that;

"A system is said to be locally controllable around a specific state vector, if for

every neighborhood ℵ of this specific state, there is some neighborhood ℘ of this

state such that for any two states x1 and x2 from ℘, there exists an input sequence of

finite length that will transfer the system from x1 to x2 without leaving ℵ." [10]

Observability

A dynamical system is said to be observable if an input sequence which is of length l is

suffice to determine the time evolution of the state variables uniquely. This requirement is

difficult to satisfy even when the system is linear, consequently this global observability

definition, in some sense, needs to be relaxed for nonlinear systems such that if an input

sequence of length l, where l may be greater than the order of the system, is sufficient to

determine the time evolution of the states uniquely, then the system is said to be

observable.

Observability is substantial for neural network based controller design because it

implies the construction of the state by the use of input and output pairs. What makes it so

important, in the sense of neurocontrol, is that this construction is made by the neural

network. For any ε>0,

  
r r r
x k NN y k u kf( ) [ ( ), ( )]− < ε (2.12)

where the dynamical system is described by Equation (2.11). It should be noted that if the

system is Lipschitz, its neural representation is obtained easily by the use of powerful

learning algorithms. In the next chapter, we shall elaborate two learning methods which is

widely used in the literature.
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3. LEARNING ALGORITHMS

As mentioned in the previous chapter, neural networks are able to perform complex

nonlinear mappings under certain conditions. Neural networks gain this property through

learning. Learning is the key step in the neural network based implementations. The

parameters of the neural network are adjusted such that a previously defined performance

function is minimized. Here, parameters are the synaptic weights and biases of all

individual neurons. Conceptually, neural network learning can be divided into two main

categories [5];

1. Supervised learning

2. Unsupervised learning

In supervised learning, desired response to a specific input vector is available. As a

consequence of this, the algorithm tries to relate all presented input vectors to their desired

output vectors. The main problem in this approach is the choice of the training data set.

Because, the representative adequacy of the neural network is proportional to how well the

training data set represents the behavior of the actual process.

In unsupervised learning, there is no external supervision providing the desired input-

output pairs to the neural network.  In this approach, the neural network discovers the

patterns, associations and regularity in the data. The network response means that how

similar the input pattern is to average patterns seen in the past.

In this work, we elaborated two learning methods that are commonly used in the neural

network applications.

3.1 Backpropagation Learning Algorithm

The backpropagation algorithm is the most popular training method which is widely

used in the neural network applications [5]. The method is applicable to the multilayer

perceptron and it minimizes a performance or cost function defined on the actual and

desired outputs of the network. The choice of this kind of a performance function stems

from the fact that, first, it should represent each training pair’s contribution to the total

output error, second, it must be differentiable. In updating of each individual weight, the

gradient information obtained from the differentiation of the cost function is used. As a

matter of fact, we are looking for least mean squares. This can be attained by moving the

weight vector in a direction that the performance function decreases. It is obvious that this

direction is the negative gradient direction of the performance function.
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E  
1

2
  ( t   o )j j

k +1 2

j  1

= −
=

+

∑
n k 1

(3.1)

Assuming that the objective is to minimize this kind of a performance function, the

weight updating rule is given by Equation (3.2)

w t t( ) ( )+ = − ∇1   w     Eη (3.2)

As can be seen from Equation (3.2), the weight updating is performed by evaluating the

gradient of the performance function with respect to each individual weight in the network.
By convention, superscripts denote layer order, wijk denotes the weight between ith neuron

of kth layer and jth neuron of (k+1)th layer, ojk denotes the output of the jth neuron in the

kth layer and Sjk denotes the linear summation output of the jth neuron in the kth layer.

Assume that (k+1)th layer is the output layer, the derivative of the performance

function with respect to a weight belonging to outmost weight matrix can be evaluated

easily.

∂
∂

∂
∂

∂

∂
 E

 w
  

 E

 o
 

 o

 wij
k

j
k +1

j
k +1

ij
k

= (3.3)

Since Equation (3.4) holds for overall network, the chain rule can be applied once more.

o j
k + =1  (S )j

 k +1Ψ (3.4)

The first term of Equation (3.5) is evaluated from Equation (3.1), the second term in

Equation (3.5) is differentiation of the nonlinear activation function with respect to its

argument, and the last term is differentiation of a linear summation with respect to a certain

weight.

∂
∂

∂
∂

∂

∂

∂

∂
 E

 w
  

 E

 o
 

 o

 S
 

 S

 wij
k

j
k +1

j
k +1

j
k +1

j
k +1

ij
k

= (3.5)

∂
∂

 E

 o
  ( t   o )

 j
 k +1 j  j

 k +1= − − (3.6)
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∂

∂

 o

 S
  

d (S )

d S
  (S )

j
k +1

j
k +1

j
k +1

j
k +1 j

k +1= = ′
Ψ

Ψ (3.7)

Equation (3.8) represents the combination of Equations (3.6) and (3.7).

∂
∂

 E

 S
  (t   o )

j
k +1 j j

k +1= − − ′ +Ψ (S )j
k 1

(3.8)

As mentioned earlier, the function of linear summation is given by Equation (3.9),

consequently, the derivative with respect to a certain weight will result in its multiplier

which is a neuron output comes from the kth layer. This is given in Equation (3.10);

S j
k +

=
= ∑1   w  oij

k
i
k

i  1

n k

(3.9)

∂

∂
∂

∂

 S

 w
  

 w
 w  o   o

j
k +1

ij
k

ij
k ij

k

 1

n

i
k

i
k

k

=










 =

=
∑

i 
(3.10)

Thus, the change in weight vector is stated as follows;

∆ w     Eij
k = − ∇η (3.11)

For a weight value in the outmost weight matrix, the update rule is given by Equation

(3.12)

∆ Ψ w    (t   o ) (S ) oj j
k +1

 i
k

ij
k

j
k= − ′+η 1 (3.12)

It must be designated that the derivation which has been carried out so far is only for

the output layer. What made the derivation of Equation (3.12) easy is the availableness of

the target or desired outputs. Therefore, evaluation of the error is easy. For the hidden

neurons desired outputs are not available, so the error measure must be transformed into a

tractable form for these neurons.

Let’s define (k+1)th layer as a hidden layer. The gradient of the performance function

by employing the chain rule is stated in Equation (3.13). Evaluation of the second term in

Equation (3.13) is given by Equation (3.10).
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∂
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∂
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We know from the previous derivation, the first term can be expanded once more. The

evaluation of the second term in Equation (3.14) is given by Equation (3.7)

∂
∂

∂
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j
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j
k +1

j
k +1

j
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= (3.14)

Since the hidden neuron output is connected to all neurons in the output layer, obviously,

the change in its output will affect the network outputs. In conjunction with this, the value

of the performance function will be affected from this change. Therefore, the first term in

Equation (3.14) will be a summation of derivatives which must be evaluated from (k+2)th

layer back through the (k+1)th layer by utilizing an additional chain rule. Equation (3.15)

represents this case.
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=
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If the linear summation is written in open form, differentiation ends up with Equation

(3.17)
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If we define delta terms as stated in Equation (3.18), Equation (3.15) is rewritten as

Equation (3.19)

δ ∂
∂

j
k + = −1  

 E

 S

k +1

j
k +1 (3.18)
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If the results are combined together, the derivative of the performance function is obtained

as follows;
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The weight change for the hidden layer neurons is given by Equation (3.21)

∆ w     Ek +1
ij
k = − ∇η (3.21)

If the gradient information given in Equation (3.20) is substituted into Equation (3.21), the

general weight update rule for the overall network can be given by Equation (3.23).

∆ w    (  oi
k

ij
k

j
k= − − +η δ 1) (3.22)

∆ w     oi
k

ij
k

j
k= +η δ 1 (3.23)

The delta values for the output layer is evaluated by using Equation (3.24).

δ j
k + = − ′1  ( t   o ) (S )j j

k +1
j
k +1Ψ (3.24)

On the other hand, the delta values for the hidden layer neurons are evaluated using

Equation (3.25).

δ δj
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 ′∑1     w  (S )h
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h  1

n

j
k +1

k+2

Ψ (3.25)

In the derivation of the algorithm, we used a scaling factor η, which is generally called

the learning rate or convergence rate. This variable determines the step size and usually

chosen between zero and one.

The name of the algorithm comes from the operation itself, because the error measure

is evaluated at the output neurons and then propagated back through the network. The
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algorithm works iteratively, and at each iteration, it tries to improve the performance of the

network. Algorithmically, the method can be summarized as follows;

1. Set all the network parameters (weights and biases) to small random values.

2. Set epoch counter to 1.

3. Set epoch error to 0.

4. Set sample error to 0.

5. Present a pattern.

6. Evaluate the outputs and the delta values attached to output neurons.

7. Evaluate the sample error, epoch error = epoch error + sample error

8. Backpropagate the delta values.

9. Update weights and biases.

10. If all patterns are presented then continue

else go to step 4.

11. If the convergence criterion is satisfied then continue

else increase epoch counter by one, go to step 3

12. Test for completion.

In the implementation level, convergence criterion may be one of the followings:

1. The epoch error, which is the cumulative error measure over one pass of entire training 

set, decreases under a previously defined error level.

2. The iterative procedure terminates until a previously defined number of epochs 

reached.

This study adopts the first type of convergence criterion.

3.2 Effect of Momentum Term

In the previous section, we derived the weight updating equations of the

backpropagation algorithm. In some cases where the cost function exhibits narrow and

steepest valleys that have small floor slope, backpropagation method shows an oscillatory

behavior. Since it utilizes only the first order derivatives of the performance function, it has

a tendency to follow a zigzag shaped trajectory on the hypersurface which is defined by the

cost function.

The momentum term is the most basic method to improve the shape of the trajectory.

The weight update rule which is given in Equation (3.23)  is modified by adding a fraction

of previous parameter change vector.
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∆ ∆ w (t)    o   w (t -1)i
k

ij
k

j
k

ij
k= ++η δ α1 (3.26)

Basically, this term damps the instantaneous fluctuations. Long term component

becomes dominant during the time evolution of the algorithm. Moreover, in many cases,

momentum term prevents getting stuck to a local minimum.

3.3 Effect of Learning Rate Adaptation

The most important drawback of the backpropagation learning is its slow convergence

property. Since it employs the first derivatives, the path to be followed on the cost function

is determined by the negative gradient direction in the weight space. Additionally, the

backpropagation error surface is generally flat along a weight direction. Therefore the

instantaneous gradient information will be small in magnitude. Consequently, to reach the

desired performance, the algorithm will need to carry out many iterations. If the weight

vector is near to the global minimum, the weight change vector will have small values in

magnitude, therefore, as the time evolution progresses speed will decrease logarithmically.

The most useful method to handle these difficulties is adapting the learning rate by

comparing the instantaneous epoch error with previous epoch error, and giving a change to

the learning rate. This is given by Equation (3.27).
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(3.27)

This last equation simply states that, if a decrease is occurred in the cost function then

the magnitudes in weight change vector decrease, in order to speed up the convergence

increase learning rate by adding a constant γ. If the cost function is increased through

several weight changes in the past iterations this means that the learning rate is so large that

the trajectory tends to overshoot the minima. In conjunction with this, more precise steps

are needed to be taken and learning rate should be decreased by  (1-β).
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3.4 Levenberg-Marquardt Learning Algorithm

Levenberg-Marquardt method is an approximation to Newton’s method [11]. Newton’s

original approach assumes that a function E(w) is minimized if the successive changes

defined by Equation (3.28) are given to the parameter vector w.

∆ w   E= − ∇ ∇−( ( )) ( )2 1E w w (3.28)

We assume the performance function is defined as follows;

E w
Q

( )  
1

2
 (t   o ) (t   o )q q

T
q q

q  1

= − −
=
∑ (3.29)

In Equation (3.29) q indexes the training pairs, and Q is the number of training pairs, t

denotes the target output and o denotes the actual output of the network. If Equation (3.29)

is rewritten with respect to the output error which depends on the weight vector, we obtain

Equation (3.30).

E w w e wq
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The objective is to minimize each individual multiplication in Equation (3.30). If Taylor
series expansion is applied to eq(w) around w0;

e w e w w wq q
T( ) $ ( ) ( )    e (w )  Jq 0≈ = + − 0 (3.31)

In Equation (3.31) J is the Jacobian matrix and evaluated at w0. The entries of this matrix

represent the derivative of the error evaluated at the ith output with respect to the jth

parameter of the parameter vector. And, this statement obviously implies that the number

of rows of the Jacobian matrix is equal to the multiplication of the number of network

outputs and the number of the training pairs. Similarly, the parameter vector will have an

entry for all weights and biases of the network.

J
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ij  
 e

 w
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∂

( )
(3.32)
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We define an approximate error component as described in Equation (3.33). Differentiating

this equation with respect to parameter vector w and equating zero gives the usual "normal

equation" of the linear least squares problem.

φ( ) $ ( ) $ ( )w e w e wq
T

q   = (3.33)

J J w w J e wT T
q( ) ( )− + =0 0 (3.34)

From Equation (3.34), the change in parameter vector turns out to be Equation (3.35).

∆ w = − −( ) ( )J J J e wT T
q

1 (3.35)

The terms appear in Equation (3.35) are explained as follows;

∇ = E( ) ( )w J e wT
q (3.36)

∇ =2E w J JT( ) (3.37)

Equation (3.36) represents the first derivative of the performance function, Equation (3.37)

represents the second derivative of the performance function and is called Hessian matrix.

Levenberg and Marquardt modified Equation (3.35) by adding an extra term to the Hessian

matrix. The resulting parameter update rule is then introduced to be;

∆ w  J  I = − + −( ) ( )T T
qJ J e wµ 1 (3.38)

In fact, the reason for this modification is that this additional term compensates the

approximation errors. Actually, the method seems to minimize Φ but this may not always

imply that E(w) is minimized. Therefore, a scaling is introduced to Hessian matrix

evaluation part of the method. If a step reduces E(w) then µ is decreased, otherwise µ is

increased by some factor greater than one. Note that, if µ is large, the method becomes

steepest descent because the modification dominates the term J
T
J term and only the first

order derivative information remains, on the other extreme, if µ is too small then the

method becomes pure Gauss-Newton method. Therefore the method is considered as a trust

region modification to Gauss-Newton [11]. The key step in the algorithm is the evaluation
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of the Jacobian matrix. Below, we explain the evaluation of this matrix for the multilayer

perceptron case.

1. The number of rows of the Jacobian is equal to QxN where Q denotes the number of

training pairs and N denotes the number of network outputs. Therefore, the first N rows

correspond to the evaluated derivatives for the first training pattern. For each training

pattern such a submatrix is formed.

2 The number of columns of the Jacobian is equal to number of parameters of the

network. These are the weights and biases.
3. For the entries corresponding to a weight whtk, Equation (3.39) defines the

evaluation of that entry. The entries that correspond to kth layer’s hth neuron bias are

evaluated by using Equation (3.40).

J ij   oh
k

t
k -1= δ (3.39)

J ij  h
k= δ (3.40)

4. Equation (3.39) and Equation (3.40) imply that the classical error backpropagation is

utilized. Since each output’s derivatives appear in different rows of the Jacobian, in

backpropagation of the error vector, only the delta value that is of interest is

backpropagated, others are temporarily set to zero and backpropagated next.

We considered this method as the second method for neural network based controller

training. Below, the application to MLP is explained procedurally.

1. Set all weights and biases to small random values.

2. Set the µ and  β. (In our tests we chosen µ = 0.01  β =10)

3. Present an input pattern to the network.

4. Evaluate delta values and compute N rows of the Jacobian

5. If all inputs are presented then continue

else go to step 3.

6. Solve the Equation (3.38) obtain the changes in the parameter vector

7. Pass an epoch by using new parameter vector

8. If new sum squared error decreased then reduce µ by β, continue

else cancel the last update and increase µ by β go back to step 6.

9. If the algorithm converged then stop

else  go back to step 3.
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3.5 Results and Comparison

We tested both of the algorithms for many types of input-output relations. In order to

make an assessment on the performance of these algorithms, we included the XOR

problem and a function approximation problem.

The simulation results presented in this thesis were carried out by the use of a

486DX4-100 computer and all of the source codes were developed in Turbo C 3.1

environment.

In Figures 3.1 and 3.2, mean squared error trends are given for backpropagation,

backpropagation with momentum, backpropagation with momentum and adaptive learning

rate and for the Levenberg-Marquardt methods.

In backpropagation simulations, for the XOR problem 2-4-1 network with linear output

neuron was used with the parameters η = 0.1, momentum = 0.7, β = 0.1 and γ = 0.001 ; for

the function approximation problem 1-4-1 network with linear output neuron was used

with the same parameters. In the Levenberg-Marquardt training simulations, same network

structures were used with the parameters β = 10 and  µ = 0.01.

Table 3.1 describes the input-output relation of logical XOR function.

Table 3.1 XOR Function

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0
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Figure 3.1 Mean squared error graph for XOR problem

The second test was approximation of a function described by Eqn. (3.41), and the MSE

graph is illustrated in Fig. 3.2. In this problem 20 patterns were used as the training set.

f x
x

( )
sin( )= + ≤ ≤1 2

2

π
     [0 x 1] (3.41)

Figure 3.2 Mean squared error graph for function approximation problem
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As can be seen from the error trends of the cited problems, momentum term

considerably improves the performance for the backpropagation algorithm. In the XOR

problem, adaptive learning rate sped up the convergence while in the function

approximation it resulted in some fluctuations in the level of MSE. Nevertheless, the

varieties introduced to the classical backpropagation algorithm did not make it as fast as

the Levenberg-Marquardt method.

This obvious result stems from the fact that, the Levenberg-Marquardt numerical

optimization technique utilizes the second order partial derivatives of the cost function

whereas the classical backpropagation or simple gradient descent rule employs only the

first order partial derivatives. More explicitly, in the latter, the trajectory to be followed on

the cost surface simply states that moving along the negative gradient direction with

respect to the parameter vector. Therefore, the successive parameter updates may follow a

zigzag shaped or spiral shaped trajectory and this slows down the convergence. In contrast

to this, Levenberg-Marquardt method finds the best parameter change vector that does not

infringe the previously taken steps. Because second derivatives provide extra information

about the cost surface and this results in the fast convergence property.

Another comparison metric is the computational complexity and hardware

requirements of the above mentioned methods. From the derivation of these algorithms,

one may easily see that the memory requirement of the Levenberg-Marquardt method is

larger than the backpropagation method. In the former the dimension of the problem

exponentially increases as the number of parameters (weights and biases) increases. This

stems from the fact that the number of columns of the Jacobian is equal to the number of

parameters. Therefore the complexity of Levenberg-Marquardt method can be expressed as

O(n2). Consequently, when the matrix inversion is needed the number of computations

becomes proportional to the dimensions of the matrix. Similarly, this requires more

memory area to store the Jacobian and the matrix which is to be inverted. In the

backpropagation method, memory requirement is relatively low with respect to the

Levenberg-Marquardt method. The necessary memory area increases linearly as the

number of parameters of the network increases. The complexity of backpropagation

training method is expressed as O(n).

As a result, the Levenberg-Marquardt method performs a precise approximation but it

necessitates more memory and more computations, while the backpropagation method

necessitates less memory but it takes too long time to reach the same MSE level when it is

compared with the Levenberg-Marquardt method.
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4. SYSTEM IDENTIFICATION USING NEURAL NETWORKS

Control of systems requires representative knowledge about the system to be

controlled. In many applications, model uncertainty arises as a problem that control

engineers frequently encounter. Therefore, the representative adequacy of the model should

have as many properties as the actual plant has. What make the modeling so difficult are

the nonlinearity, time delay, saturation and time varying parameters of the actual plant.

Therefore, including these kinds of challenging difficulties in a mathematically tractable

model is a formidable problem.

Artificial neural networks opened a new horizon in identification and control of highly

nonlinear and complex structured systems. These networks are implemented using massive

connections among the neurons with variable strengths. Moreover, their parallel,

distributed and fault tolerant processing properties make them powerful tools for both

identification and control of nonlinear dynamical systems. Especially learning capabilities

of these networks enable them to process the information adaptively.

This chapter presents a brief mathematical background for neural network based

identification of systems. Then the simulation results are given.

4.1 Concept of Identification

The system that is to be identified can be represented by a transformation operator Tp,

which maps the compact subset U ∈ R
n
 to Y ∈ R

m
. The purpose is to find a class Ti such

that Tp is represented by Ti adequately well. The operator Tp is defined by specific input-

output pairs that are obtained form the inputs and the outputs of the system to be identified.

The objective is expressed as follows;

 T     ,  u  Ui pu T u( ) ( )− ≤ ∈ε (4.1)

for some desired ε>0. Ti(u) denotes the identification model output. As can be seen easily,

the approach requires the input-state-output representation of the system. Generally, a

continuous time dynamical system can be given by;

d x(t)

d t
x t =   =  [x(t), u(t)]   t  R +& ( ) Φ ∈

y t x t( ) [ ( )] =  Ψ (4.2)
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where, x(t) = [x1(t) x2(t) ... xn(t)]
T , u(t) = [u1(t) u2(t) ... up(t)]

T , y(t) = [y1(t) y2(t) ... ym(t)]
T

denoting state, input and output vectors respectively. In discrete domain, Equation (4.2)

becomes;

x k( )+ 1  =  [x(k),u(k)]Φ
y k x k( ) [ ( )] =  Ψ (4.3)

Even in the cases where Φ and Ψ are not known, neural networks can construct an

approximate model which when the same input vector is applied to both the actual plant

and the identification model, the difference between the outputs remains within a

predefined error level. In Fig. 4.1, system identification structure is illustrated.

Figure 4.1 System Identification Structure

The emphasis on the neural network based identification is determination of an

adaptive algorithm that minimizes the difference between the actual plant and the

identification model outputs by using a set of training pairs which represent the

approximate behavior of the actual plant.

We simulated many identification problems. In order to convey a concrete idea, we

give some of the simulation outputs in the section 4.3.

There are some widely used identification models which are mentioned in [5].
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Model 1:

y k k ip p
i 

( ) ( )+ −∑1 =   y  +  g[u(k),  u(k -1),  ...  ,  u(k - m +1)]i
=  0

n-1
α (4.4)

Model 2:

y kp i( )+ ∑1  =  f[y (k),  y (k -1),  ...  , y (k - n +1)] +    u(k - i)p p p
i =  0

n-1
β (4.5)

Model 3:

y kp( )+1  =  f[y (k),  y (k -1),  ...  ,y (k - n +1)] +  g[u(k),  u(k -1),  ...  ,  u(k - m +1)]p p p (4.6)

Model 4:

y kp ( )+ 1  =  f[y (k),  y (k -1),  ...  , y (k - n + 1),u(k),  u(k -1),  ...  , u(k - m + 1)]p p p (4.7)

In all of these models, the plant under consideration is a SISO plant whose response to

permissible inputs is assumed to be bounded. In the first model, the output of the plant is

linearly dependent on its past n values. Since the model chosen for the plant has to be

stable, this directly implies that the characteristic equation has the roots that lie within the

unit circle. In the second model, the output is linearly dependent on past input values. The

third and the fourth models can represent highly nonlinear dependencies to past outputs and

past inputs. In [5], the fourth model is said to be analytically least tractable. The functions

f(.) and g(.) in these models are assumed to be differentiable with respect to their

arguments.

4.2 Training and Overtraining in Identification

The function of neural networks in identification is representation of a process

adequately. In this respect, two questions arise: how well a process can be represented by

neural networks and what are the conditions for accurate representation. If we were able to

train the network by utilizing infinite number of training samples that are obtained from a

time-invariant process, and if we were able to wait for zero epoch error, one would easily



28

say that the resulting network has the same dynamics as the actual process possesses. But

fulfillment of these two conditions is practically impossible. Therefore, we choose a set of

training pairs and we terminate the training process at an admissible level of epoch error.

Two important cases must be taken into consideration. Firstly, if the training set

includes all possible input vectors, just as in the case of XOR problem, it is desired to

terminate the training with zero epoch error. Obviously, this conclusion is valid for discrete

or Boolean functions’ realization. On the other hand, the second case concerns the

continuous function approximation. Since the function is continuous, we may have limited

number of training pairs and the neural network interpolates a surface passing through

these training data points. If the identification procedure terminates with zero epoch error,

it is guaranteed that all of the training data points are on the interpolated surface.

The main emphasis on the neuronal morphology is performing a generalization. If an

input vector is similar to another vector which is in the training data set, the response to

this vector should be near to the response to the vector in the training data set. More

explicitly, similar inputs should cause similar outputs. This is the main idea that lie behind

the concept of generalization.

At the beginning of this discussion we mentioned about an admissible level of  epoch

error. If  the network is trying to identify a process, the network should be tested with

another set of data obtained from the same process. The elements of this new set do not

intersect the elements of the training data set. This obviously prevents the memorization of

the training data set. If the performance of the network is compared by using these two sets,

after a while, the network begins to memorize training data set and its performance

decreases for the test set. This instant is the proper instant for the termination for the

identification procedure.

Another method for preventing the memorization problem is regularly changing the

training data set. After a predefined number of epochs passed, training data set is

regenerated. In this case, the period for refreshing the training data set is chosen

experimentally.

In our simulations, especially for the bioreactor benchmark problem which is explained

in detail in Appendix A, we used the last technique. The identification results are given in

the next section. In the bioreactor identification problem we regenerated 670 training pairs

for every four epochs, and we observed a highly precise approximation.

Briefly, limited number of exemplar patterns generally can not represent the dynamics

of a continuous process perfectly. Therefore, this may lead on the network to memorize

only a part of the actual dynamics. This can be prevented by the use of a test set and

stopping the learning by considering the performance to this test set or by regularly

changing the training data set.
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4.3 Identification Results and Performance Assessment

Plant Type                  :  Model 1

Governing equation    :  y(k +1) =  0.3 y(k) +  0.6 y(k -1) +  tanh(u(k)) (4.8)

Input signal                 :  u(k) = sin
2 k

160

π





(4.9)

Network Structure      :  3-6 -1,  with linear output neurons

Figure 4.2(a) Actual and predicted outputs for the plant defined by Equation (4.8)
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Figure 4.2(b) Applied input signal to the plant defined by Equation(4.8) and

identification model

Figure 4.2(c) Error between actual and predicted outputs for the plant defined by

Equation (4.8)
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Plant Type                  :  Model 2

Governing equation    :  y(k +1) =  
tanh(0.3 y(k) +  0.6 y(k -1) -  0.1 y(k - 2))

 +  y (k)
 +

21

                                                          0.3 u(k) -  0.6 u(k -1) +  0.1 u(k -2) (4.10)

Input signal                 :  u(k) =
1

2
 sin

2 k

150
 sin

2 k

40

π π









 (4.11)

Network Structure      :  6 - 20 -10 -1,  with linear output neuron

Figure 4.3(a) Actual and predicted outputs for the plant defined by Equation (4.10)
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Figure 4.3(b) Applied input signal to the plant defined by Equation (4.10) and

identification model

Figure 4.3(c) Error between actual and predicted outputs for the plant defined by

Equation (4.10)
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Plant Type                  :  Model 3

Governing equation    :  y(k +1) =  
y(k)

 +  y (k)
 +  u (k)

2
3

1
(4.12)

Input signal                 :  h(k) =  

0.01k                                  0 k 50

-0.01k +  0.5                  50 k 100

0                                        otherwise

≤ ≤
≤ ≤






(4.13)

                                      u  =   h(k -100i)
i=0

( )k
∞
∑ (4.14)

Network Structure      :  2 - 6 -1,  with linear output neuron

Figure 4.4(a) Actual and predicted outputs for the plant defined by Equation (4.12)
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Figure 4.4(b) Applied input signal to the plant defined by Equation (4.12) and

identification model

Figure 4.4(c) Error between actual and predicted outputs for the plant defined by

Equation (4.12)
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PlantType                   :  Model 4

Governing equation    :  y(k +1) =  f(-y(k) -  0.6 y(k -1) +  0.3 y(k - 2) +  u(k) +  u(k -1) ) (4.15)

                                      f  =  
tanh(x)

1 + x2
( )x (4.16)

Input signal                 :  u(k) =
1

2
 sin

2 k

150
 sin

2 k

40

π π









 (4.17)

Network Structure      :  5- 20 -10 -1,  with linear output neuron

Figure 4.5(a) Actual and predicted outputs for the plant defined by Equation (4.15)
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Figure 4.5(b) Applied input signal to the plant defined by Equation (4.15) and

identification model

Figure 4.5(c) Error between actual and predicted outputs for the plant defined by

Equation (4.15)
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Plant Type                  :  Model 4

Governing equation    :  y(k +1) =  f(-0.2 y(k) +  1.8 u(k)) (4.18)

                                      f  =  
x

1+ x2
( )x (4.19)

Input signal                 :  u(k) =
1

2
 sin

2 k

150
 sin

2 k

40

π π









 (4.20)

Network Structure      :  2 - 4 -1,  with linear output neuron

Figure 4.6(a) Actual and predicted outputs for the plant defined by Equation (4.18)
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Figure 4.6(b) Applied input signal to the plant defined by Equation (4.18) and

identification model

Figure 4.6(c) Error between actual and predicted outputs for the plant defined by

Equation (4.18)



39

Plant Type                  :  Biorector model with coupled nonlinear difference eqns.

( )c (k + 1) =  c (k) +    -  c (k) r(k) +  c (k) 1- c (k)  e1 1 1 1 2

c (k)2

∆ γ
















(4.21)

( )c (k + 1) =  c (k) +   -c (k) r(k) +  c (k) 1 - c (k)  e
1 +

1+ - c (k)2 2 2 1 2

c (k)

2

2

∆ γ β
β

















(4.22)

Input signal : Randomly generated between [0,1] for c1(k) and c2(k), between [0,2] 

  for r(k).

Network Structure      :  3 - 25-16 - 2,  with linear output neuron

Figure 4.7(a) Actual and predicted c1 values
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Figure 4.7(b) Error between actual and predicted c1 values

Figure 4.7(c) Actual and predicted c2 values
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Figure 4.7(d) Error between actual and predicted c2 values

As can be seen from the simulation results, neural identifiers are capable of

representing the dynamical behavior of  complex systems. Our simulations showed also

that there is a small discrepancy between the outputs of the neural identifiers and the actual

plants. We attribute this discrepancy to two important causes;

1. If the training set does not represent the plant dynamics sufficiently well, then the

resulting neural identification model will exhibit some deviations from the actual plant

output.

2. If the neural identification model is not well trained, then the same deviations will

occur at the outputs.

Briefly, provided that these two adverse effects are eliminated, the procedure yields

admissible neural models which can be used, in turn, for the control of nonlinear dynamical

processes. In the remainder of this thesis, we elaborated different control strategies by the

use of neural networks.
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5. CONTROL ARCHITECTURES FOR ERROR
BACKPROPAGATION

In the previous chapters of this thesis, we mainly dwelt on two widely used learning

algorithms and system identification using neural networks. This chapter presents control

of nonlinear dynamical systems using neural networks and employs the concepts that have

been explained so far and the error backpropagation technique.

As mentioned earlier, the problem in controlling of a plant is finding of an input

sequence so that the plant behaves in a desired fashion. Unfortunately, the complexity of

the plant makes the issue highly involved. From this point of view, neural networks can be

used as controllers because of their powerful mapping capabilities. The main emphasis in

this approach is that the mapping generated by the neural network must adequately

represent the system’s behavior in the range of interest. In this chapter, we considered the

neural controller synthesis for various types of plant models. The error backpropagation

technique is utilized in training of the neurocontroller.

The second topic in this chapter is performance improvement in output tracking by

adding a conventional controller to the control system. The need for adding such a

controller arose because of the fact that the model mismatches in the plant identification

model results in learning of an inexact inverse dynamics of the plant. Therefore the

resulting neurocontroller is not able to control the plant at some operating points and it

causes some steady state errors even in the cases that the reference signal is sufficiently

smooth.

Lastly, we considered the direct inversion of the plant dynamics where the controller

training procedure resembles to an identification procedure.

5.1 Control Strategy

Error backpropagation constitutes the basis of the neural network based controller

design. Once the neurocontroller is trained, it simply cancels the effect of the plant under

control. This means that, without loss of generality, controller realizes the inverse

dynamics of the plant and the overall transfer function of the control system is therefore

reduced to the system which is comprised of unity transfer function.

The key step in this approach is how the controller learns the inverse dynamics of the

plant. Two main architectures are proposed by Psaltis, Sideris and Yamamura [3]. These

architectures illustrated in Fig. 5.1 and Fig. 5.2.
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Figure 5.1 Generalized learning architecture

In Fig. 5.1, generalized learning architecture is illustrated. The objective is

minimization of the error signal in magnitude. In response to u(t), the plant generates an

output y(t) which is then applied to the neural network. Neural network is supposed to

relate the output value y(t) with the input u(t). As training progresses, neural network learns

the inverse dynamics of the plant and will then be able to control the plant. Psaltis, Sideris

and Yamamura [3] say that the neurocontroller could not be trained selectively in the

regions of interest. This basically stems from the fact that we do not know which control

inputs will cause the desired plant outputs. Therefore, by the use of this architecture, neural

controller just gains the general behavior of the inverse dynamics of the plant over a wide

range of inputs.

Figure 5.2 Specialized learning architecture

In Fig. 5.2, specialized learning architecture is shown. In this approach, neural

controller is trained only in the region of interest and the desired response of the overall

system is provided to the controller. Again, as the training progresses, the error signal is

minimized in magnitude and this is also achieved through error backpropagation. In [3], it

is said that beginning with the generalized learning architecture and continuing with the
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specialized learning architecture would be a proper training method. Because, general

learning provides better initial weights for the specialized learning.

The main difference between these two learning architectures is that the minimization

is carried out on different error measures. In the generalized method, the error signal is

obtained from the reproduction of  the input signal, whereas in the specialized method,

error signal is obtained from the difference between desired and actual responses of the

plant. Theoretically, both of these methods go to the minima by following different

trajectories on the cost surface.

The specialized learning architecture requires the derivatives of the plant. More

explicitly, we want to evaluate the effect of a change in each input of the plant on the

outputs. Two different methods can be proposed for obtaining the derivatives of the plant.

In the first method, derivatives are evaluated by using the iterative values of the inputs and

outputs. The second method assumes the plant as an unmodifiable neural network, which is

the identification model of the plant, and utilizes the error backpropagation technique.

Figure 5.3 illustrates the controller training architecture by the use of error backpropagation

technique.

Figure 5.3 Controller training architecture by the use of plant identification model

Once the neural controller is trained, then the identification model is replaced with the

real plant. This approach is called off-line training, on the other hand, if the controller is

trained in the real operation of the plant, this is called on-line training. This section adopts

off-line training method. Besides, the reference model is a system with unity transfer

function i.e. the controller is expected to learn the inverse dynamics of the plant over the

range of interest.
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5.2 Simulation Results

Simulation 1.

Plant     k                       :  y =
u(k)

1+ u (k)2
( )+ 1 (5.1)

Identification model : 1-6-1 MSE : 1e-6

Controller : 1-10-4-1 MSE : 178e-6

Figure 5.4 Controller training architecture for the first simulation

Figure 5.5(a) Reference and actual trajectories for the first plant, reference input is

r(t) = 0.1+0.2*[1+sin(2πt)]
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Figure 5.5(b) Tracking error for the first plant, the reference input is

r(t) = 0.1+0.2*(1+sin(2πt))

Figure 5.6(a) Reference and actual trajectories for the first plant, reference input is

r(t) = 0.5*sgn[sin(πt)]
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Figure 5.6(b) Tracking error for the first plant, the reference input is

r(t) = 0.5*sgn[sin(πt)]

Simulation 2.

( )Plant     k u k                       :  y = tanh y(k)( ) ( )+ +1 (5.2)

Identification model : 2-6-1 MSE : 1e-6

Controller : 2-10-1 MSE : 843e-6

Figure 5.7 Controller training architecture for the second simulation
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Figure 5.8(a) Reference and actual trajectories for the second plant, reference input is

r(t) = sgn[sin(πt)]

Figure 5.8(b) Tracking error for the second plant, the reference input is

r(t) = sgn[sin(πt)]
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Figure 5.9(a) Reference and actual trajectories for the second plant, reference input is

r(t) = sin(2πt)

Figure 5.9(b) Tracking error for the second plant, the reference input is

r(t) = sin(2πt)
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Simulation 3.

Plant     k                       :  y = 1.3679y(k) - 0.3679y(k -1) + 0.3679u(k) + 0.2642u(k -1)( )+ 1 (5.3)

Identification model : 4-10-1 MSE : 29e-6

Controller : 3-16-4-1 MSE : 978e-6

Figure 5.10 Controller training architecture for the third simulation
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Figure 5.11(a) Reference and actual trajectories for the third plant, reference input is

r(t) = 0.1+0.2*[1+sin(πt)]

Figure 5.11(b) Tracking error for the third plant, the reference input is

r(t)=0.1+0.2*[1+sin(πt)]
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Figure 5.12(a) Reference and actual trajectories for the third plant, reference input is

r(t) = 0.5*sgn[sin(πt)]

Figure 5.12(b) Tracking error for the third plant, the reference input is

r(t) = 0.5*sgn[sin(πt)]
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5.3 Performance Improvement by Adding a PI Controller

In this section, we discuss the performance improvement by adding a PI controller to

the control system. The architecture is illustrated in Fig. 5.13. The need for a conventional

control support arose because of the following two crucial facts:

1. The governing equations of the plant may be non-invertible. Consequently, the

neural controller realizes the inverse dynamics roughly. Provided that the transfer relation

of the plant is invertible, then a neural network can learn the inverse dynamics accurately

and can be used as a controller. But, in general, proving the invertibility of the plant

equations requires a highly involved analysis. In this respect, a PI controller can be added

to improve the tracking performance.

2. Even in the case that the inverse dynamics of the plant exists, neural network will

perform an approximation. Since we can not train the network with infinite number of

training pairs with zero mean squared error, there will be an approximation error at the

output of the neural identification model and the neural controller. Because of the

controller training strategy, the model mismatch in the plant identification model will

directly affect the performance of the neural controller.

These two important drawbacks will obviously result in considerable errors in tracking.

In this respect, a conventional controller can be used to tolerate the tracking errors such that

it does not dominate the control generated by the neurocontroller.

Figure 5.13 Architecture for using a conventional controller with the neurocontroller
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We tested the conventional control support for the plant explained in the second

simulation. A pulse train and a sinusoidal signal were used as the reference trajectories. A

PI controller was used to compensate the errors in the output of the neurocontroller. The

pulse transfer function of the digital PI controller is given by Equation (5.4).

T(z) =  K  +  
K

1- z
P

I
-1 (5.4)

where KP and KI are position and integral constants respectively and for the second plant,

which is given by Equation (5.2), these constants were chosen to be KP = -0.1 and KI = 0.2

.

Figure 5.14(a) Reference and actual trajectories when a PI controller was used with the

neural controller. Reference input is r(t) = sgn[sin(πt)]
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Figure 5.14(b) Tracking error when the PI controller is active. Reference input is

r(t) = sgn[sin(πt)]

Figure 5.15(a) Reference and actual trajectories when a PI controller was used with the

neural controller. Reference input is r(t) = sin(2πt)
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Figure 5.15(b) Tracking error when the PI controller is active. Reference input is

r(t) = sin(2πt)

As can be seen from Fig. 5.8(a), the actual plant output exhibits a steady state error

when a pulse train is used as the reference input. Fig. 5.14(a) illustrates the output of the

same simulation with PI control support. Our observations for the architecture shown in

Fig. 5.13 revealed that the additional controller improved the steady state performance of

the control system. For this test, our second reference was a sinusoidal signal. Fig. 5.9(a)

illustrates the result of pure neurocontrol. In this simulation, we observed that the plant

output could not reach the peak points of the reference signal. The same simulation was

carried out with the PI control support, and it stipulated that the tracking ability is

considerably improved around the maximum and the minimum levels of the reference

signal.

Briefly, the architecture in Fig. 5.13 improved the tracking performance of the overall

system from three points of view : firstly the steady state error is reduced because of the

integral control action, secondly, the inaccurate tracking around the peak points of the

reference signal is improved, lastly, for a single period of reference signal, the time that the

plant output remains at a high error level is reduced.



57

5.4 Inverse Control Strategy and Application to a Bioreactor Plant

In this approach, the neural controller directly interpolates the inverse dynamics of the

plant by using the training data obtained from the plant itself. Assume the governing

equation of the plant is given by Equation (5.5)

x k( )+1  =  F [x(k), u(k)] (5.5)

where x ∈ Rm
 and u ∈ Rn

 , the plant performs a nonlinear mapping from R
m+n

 to R
m

. Our

objective is solving the plant equation for the input vector.

u k( ) =  G[x(k +1),x(k)] (5.6)

If a controller realizes the nonlinear mapping G, then it is able to control the plant.

From a systems theoretic point of view, the controller realizes the inverse dynamics of the

plant. Given the state values and the desired next state, it generates the input which will

cause the desired state transition. In this respect, neural networks come into the picture. As

long as the states are observable, we can generate the training data for the neural controller

so that it realizes the mapping G which is from R
2m

 to R
n
.

We applied this control strategy to a bioreactor plant whose discretized state space

representation is given in Equation (5.7) and Equation (5.8). The reader is referred to

Appendix A for further details of the bioreactor benchmark problem.

( )c (k + 1) =  c (k) +    -  c (k) r(k) +  c (k) 1- c (k)  e1 1 1 1 2

c (k)2

∆ γ
















(5.7)

( )c (k + 1) =  c (k) +   -c (k) r(k) +  c (k) 1 - c (k)  e
1 +

1+ - c (k)2 2 2 1 2

c (k)

2

2

∆ γ β
β

















(5.8)

The control objective of this problem is keeping the state variable c1 at a desired level by

changing the flow rate over time.
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Figure 5.16 Control system architecture for bioreactor plant

Figure 5.17 (a) Command signal (b) Actual c1 trajectory
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Figure 5.17 (c) Actual c2 trajectory (d) The difference between command signal

and actual c1 value

Figure 5.18 (a) Command signal (b) Actual c1 trajectory
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Figure 5.18 (c) Actual c2 trajectory (d) The difference between command signal

and actual c1 value

5.5 Performance Assessment

We trained the neural controller with 670 training pairs until the mean squared error

decreased to 1e-4. Besides, the neural network has the topology 3-5-5-1 with linear neurons

in the input layer and sigmoidal neurons in the hidden layers and the output layer.

Specifically, output neuron has the nonlinearity F(x)=2/(1+exp(-x)) because of the

maximum flow rate constraint of the problem.

Our simulations for the bioreactor benchmark problem revealed that, the neural

controller is able to control the plant roughly, because there are extremely sharp deviations

in the outputs. As mentioned earlier, the inversion of the plant by means of this method is

not an efficient way of controller design for this kind of a highly nonlinear plant.

Nevertheless, the method is applicable to various types of plants whose inverses can be

realized by inverse control strategy.
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6. SELF TUNING ADAPTIVE CONTROL USING
BACKPROPAGATION NEURAL NETWORKS

Self-tuning controllers automatically adjust, or tune, themselves to achieve prespecified

performance objectives related to the system to be controlled. Use of neural networks

facilitates dealing with unknown nonlinearities. Additionally, unmodeled dynamics of the

plant can be disregarded by utilizing a self-tuning control scheme.

In this chapter, we explain the concept of self tuning adaptive control using neural

networks. The approach that we considered was introduced by Chen [4], and it is

applicable only to the single-input-single-output and feedback linearizable systems.

6.1 Control Strategy

The governing equation of the plant under control is given by Equation (6.1),

y(k+1) = f( y(k) , y(k-1) , ... , y(k-p) , u(k-1) , u(k-2) , ... , u(k-p) ) +

g( y(k) , y(k-1) , ... , y(k-p) , u(k-1) , u(k-2) , ... , u(k-p) ) u(k)
(6.1)

where y(k) and u(k) denote the output of the system at time k and the input of the system at

time k respectively. The algorithm presumes that the function g(.) is a nonzero function.

From Equation (6.1) the control at time k can directly be evaluated if the functions f(.) and

g(.) are exactly known. This control is given by Equation (6.2).

u k( ) =  -  
f(.)

g(.)
 +  

d

g(.)
k+1

(6.2)

where dk+1 is the desired next output of the plant. In what follows, Chen [4] proposed that

the functions f (.) and g(.) can be realized by neural networks and the control at time k can

be evaluated by using the estimates of these functions as follows;

u k( )
$

$ $
 =  -  

f(.)

g(.)
 +  

d

g(.)
k+1 (6.3)

Several past values of the plant inputs and the outputs are provided to the neural

network by means of tapped delay lines (TDL), then, the neural network evaluates the

estimated values of the functions f(.) and g(.). By the use of these estimates and the target
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output, as stated in Equation (6.3), the control at time k is evaluated. This control obviously

forces the plant to track the target output. Based on the tracking error, the weights and the

biases of the neural network are updated using backpropagation technique. The control

scheme is illustrated in Fig. 6.1.

Figure 6.1 Self-tuning control scheme with neural networks

The neural network in Fig. 6.1 is comprised of two sub-networks realizing the

functions f(.) and g(.) separately. In our simulations, we restricted our plant model to which

is given by Equation (6.4). For this case, structure of the neural network is illustrated in

Fig. 6.2.

y k( )+1  =  f(y(k)) +  g(y(k)) u(k) (6.4)
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Figure 6.2 Structure of the neural  network

In Fig. 6.2, both of these sub-networks have linear neurons in the input and in the

output layers, and, neurons possessing sigmoidal nonlinearities in the hidden layers. The

performance criterion for this approach is defined as follows;

ek+1 =  d  -  y(k +1)k+1 (6.5)

E ek k =  
1

2 +1
2 (6.6)

Control objective is based on the minimization of this performance measure. Chen [4]

proposed the following update rule for the weights and biases of the neural network.

( )
( )

( )
w k k

g y k W k

y k W k

w k
ef

F

F

f
k( ) ( )

$ ( ), ( )

$ ( ), ( )

( )
+ +1 1 =  w  -  (k) 

sgn g( y(k) )
 

f
f η

∂
∂ (6.7)
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
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




∑

∑

2

2 (6.9)

Algorithmically, this control scheme can be summarized as follows:

1. Initialize all of the weights and biases to small random values

2. Initialize the plant output and the control value (we chosen y(0) = 0.1, u(0) = 0.1)

3. Evaluate neural network outputs

4. Evaluate the control u(0)

5. Evaluate the plant output

6. Evaluate the tracking error

7. Assign delta values to the output neurons of the sub-networks

8. Evaluate hidden layer deltas

9. Update weights and biases
10.Present the next desired output dk+1 and go to step #3.
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6.2 Simulation Results

Simulation 1.

( )Plant     k e u ky k                      :  y  =  0.8sin 2 y(k)( ) ( )( )+ + −1
2

π (6.10)

Desired trajectory       :  r(t) =  

sin(2 t / 50)        if 0 t 50

sgn(sin(2 t / 50))   if 50 t 100

                     otherwise

π
π

≤ ≤
≤ ≤





 0

(6.11)

Figure 6.3(a) Output graph for the first plant

Figure 6.3(b) Tracking error graph for the first plant
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Simulation 2.

Plant     k                      :  y  =  
1

1 + y (k)
 +  y(k)u(k)

2
( )+ 1 (6.12)

Desired tr tajectory       :  r  =  sin(2 t / 100)( ) π (6.13)

Figure 6.4(a) Output graph for the second  plant

Figure 6.4(b) Tracking error graph for the second plant
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Simulation 3.

( ) ( )Plant     k y k                      :  y  =  sin y(k)  +  0.08u(k)( ) sin ( )+ 1 10 (6.14)

( )Desired tr tajectory       :  r  =  sgn sin(2 t / 10)( ) π (6.15)

Figure 6.5(a) Output graph for the third  plant

Figure 6.5(b) Tracking error graph for the third plant
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6.3 Performance Assessment

The method which was proposed by Chen [4] showed an admissible performance in the

sense of tracking ability. Secondly, the approach does not require a detailed plant model,

consequently model uncertainties can directly be compensated by neural adaptation.

There are also some important drawbacks of the strategy. The control scheme is

applicable solely to the plant model described by Equation (6.1). Besides, the sign of the

function g(.) is assumed to be known. Apart from all of these, there is no closed loop

stability result. This last drawback, perhaps the most important one, cannot be explained

because of the fact that there is no concrete study examining the stability of neural

controllers and neural network based control systems.

Briefly, the control strategy is able to tolerate model mismatches but it is not

mathematically tractable in the sense of stability analysis.
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7. MODEL REFERENCE ADAPTIVE CONTROL USING
NEURAL NETWORKS

Model reference adaptive control (MRAC) is another technique that we consider in this

thesis. This control scheme generates some controls so that the plant output follows the

output of a prespecified stable reference model. In many control problems, the parameters

of the plant are not known exactly. In order to compensate the errors stemming from the

changes in the parameters of the plant, controller must adapt itself. In this respect, neural

networks are proposed as the parameter estimators that utilize the available information

dealing with the system and performance objectives. Additionally, as time passes, there

must be a convergence on the vector of control parameters. In this chapter, we applied the

method to various types of plant models. Narendra and Parthasarathy [5] stipulated a

concrete study dealing with MRAC. In our simulations we also duplicated some parts of

their work.

7.1 Control Strategy

Model reference adaptive control technique is applicable to wide variety of linear and

nonlinear systems. The strategy evaluates some control inputs so that the plant output

tracks a stable reference model output. There are two approaches in the control strategy:

direct adaptive control and indirect adaptive control. These approaches are illustrated in

Fig. 7.1 and Fig 7.2.

Direct adaptive control scheme utilizes the instantaneous tracking error, which is

denoted by ec, in parameter updating. Several past control inputs and plant outputs are

provided by tapped delay lines. Narendra [5] in his work points out that the parameters of

the controller are directly adjusted to reduce some norm of the output error.

Indirect adaptive control scheme employs an additional plant identification model

which provides the information about the nonlinear functions in the governing equations of

the plant. The identification is carried out on-line.
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Figure 7.1 Direct adaptive control scheme

Figure 7.2 Indirect adaptive control scheme
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7.2 Simulation Results

In the first simulation we applied the control strategy to the plant defined by Equation

(7.1) and the stable reference model defined by Equation (7.2). We applied the reference

input which is given by Equation (7.3).

( )
Plant     k

y k y k
p

p p

                      :  y  =  
y (k)y (k -1) y (k) + 2.5

 +  u(k)
p p p

( )
( ) ( )

+
+ + −

1
1 12 2 (7.1)

Model     km                    :  y  =  0.6y (k) +  0.2y (k -1) +  r(k)m m( )+ 1 (7.2)

Reference input            : r(t) = 0.5sin(0.07t) (7.3)

The plant belongs to the second representation which is explained in the fourth chapter and

defined by Narendra [5]. Our aim is to derive a control law so that the plant behaves as the
model. We can consider the plant equation as yp(k+1) = f(yp(k),yp(k-1)) + u(k). As long as

the relation f is known accurately, the control at time k can be solved from the equation of

the plant as follows;

u(k) = yp(k+1) - f(yp(k),yp(k-1)) (7.4)

Under the assumption that the plant output follows the reference model output ym ,  yp(k+1)

can be replaced with ym(k+1).

u(k) = 0.6yp(k) + 0.2yp(k-1) + r(k) - f(yp(k),yp(k-1)) (7.5)

If this u(k) is written into Equation (7.1), plant equation turns out to be as follows;

yp(k+1) = 0.6yp(k) + 0.2yp(k-1) + r(k) (7.6)

From this point, we have to prove that if the control given by Equation (7.5) is applied to

the plant, the error between the reference model output and the plant output must go to zero

in the limiting case. In this respect we introduce the neural networks into the control

strategy. If a neural estimator provides the value of the function f(.), then this value can be
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used to evaluate the control at time k which is stated in Equation (7.5). Let N(yp(k),yp(k-1))

denote the approximate value of f(yp(k),yp(k-1));

yp(k+1) - ym(k+1) = f(yp(k),yp(k-1)) + u(k) - 0.6ym(k) - 0.2ym(k-1) - r(k) (7.7)

If u(k) in Equation (7.7) is evaluated by using Equation (7.8) we end up with Equation

(7.9).

u(k) = 0.6yp(k) + 0.2yp(k-1) + r(k) - N(yp(k),yp(k-1)) (7.8)

ec(k+1) =  0.6ec(k) + 0.2ec(k-1) + f(yp(k),yp(k-1)) - N(yp(k),yp(k-1)) (7.9)

ec(k+1) = yp(k+1) - ym(k+1) (7.10)

In Equation (7.9), the forcing term comes from the difference between the actual f value

and the estimated f value. As long as the neural network performs a precise approximation,

effect of this term can be neglected.

In this simulation we used a neural network with the structure 2-8-4-1. Input and output

layer neurons are linear and hidden layers’ neurons are sigmoidal. The network was trained

until the mean squared error decreased to 45e-5. We used Levenberg-Marquardt method for

the neural network training.

Figure 7.3(a)  Reference model and the actual plant outputs which are defined by

Equations (7.2) and (7.1) respectively (Reference input is sinusoidal)
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Figure 7.3(b) Applied reference input to the system

Figure 7.3(c) Error graph for the first reference input defined by Equation (7.3) and

illustrated in Fig. 7.3(b)

In the second simulation of the same plant, we applied the reference input, which is defined

by Equation (7.11), to the system.
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Reference input            : r(t) = 0.5sgn(sin(2πt/200)) (7.11)

Figure 7.4(a)  Reference model and the actual plant outputs which are defined by

Equations (7.2) and (7.1) respectively (Reference input is a pulse train)

Figure 7.4(b) Applied reference input to the system
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Figure 7.4(c) Error graph for the second reference input defined by Equation (7.11) and

illustrated in Fig. 7.4(b)

We carried out the third simulation with a MIMO plant which is used in [5]. If the same

analysis explained for the first plant is applied to the plant defined by Equation (7.12),

again, a stable control law is obtained.

Plant     
y k

y k y k y k

y k

p

p p p

p

                      :   =  

y (k)

1 + y (k)
 +  

u (k)

u (k)
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2

1
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2
2

1

1

1

( )

( ) ( ) ( )

( )

+
+





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

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



























 (7.12)

Model     
y k

y k
m

m
                   :   =  

0.6
 

y (k)

y (k)
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r (k)

r (k)
m1

m2

1

2

1

2

1

1
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01 0 8

( )

( )

.

. .

+
+









 −





























 (7.13)

Reference input 1     : r1(t) = sin(2πt/200) (7.14)

Reference input 2       : r2(t) = cos(2πt/200) (7.15)
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Figure 7.5(a) Reference model and the actual plant outputs which are defined by Equations

(7.13) and (7.12) respectively (Reference inputs are sinusoidal)

Figure 7.5(b) Applied reference inputs to the system



76

Figure 7.5(c) Error graph for the first reference input group defined by Equations (7.14)

and (7.15) and are illustrated in Fig. 7.5(b)

In the fourth simulation reference inputs are changed to pulse trains which are given by

Equations (7.16) and (7.17).

Reference input 1     : r1(t) = sgn(sin(2πt/200)) (7.16)

Reference input 1     : r2(t) = 2sgn(sin(2πt/200)) (7.17)
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Figure 7.6(a) Reference model and the actual plant outputs which are defined by Equations

(7.13) and (7.12) respectively (Reference inputs are pulse trains)

Figure 7.6(b) Applied reference inputs to the system
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Figure 7.6(c) Error graph for the first reference input group defined by Equations (7.16)

and (7.17) and are illustrated in Fig. 7.6(b)

Our fifth and sixth simulations are comprised of controlling the bioreactor model which is

given in Appendix A with the MRAC strategy. For this plant we will derive the control law

once more. The continuous time differential equations of the bioreactor model are given by

Equations (7.18) and (7.19).

( )& ( )

( )

c t

c t

1

2

 =  - c (t)w(t) +  c (t) 1- c (t)  e1 1 2
γ (7.18)

( )& ( )c t2  =  - c (t)w(t) +  c (t) 1 - c (t)  e
1 +

1 +  -  c (t)2 1 2

c (t)

2

2

γ β
β

(7.19)

In Equations (7.18) and (7.19) β and γ are constants. Let’s drop time parentheses and define
f(c1,c2) and g(c2) and rewrite these equations as follows;

&c1 =  - c w +  f(c ,c )1 1 2 (7.20)

&c2 =  - c w +  f(c ,c )g(c )2 1 2 2 (7.21)

where
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f c c( , )1 2  =  c (1- c ) e1 2

c2

γ (7.22)

g c( )2  =  
1+

1+  -  c2

β
β (7.23)

From this point of view, we will construct the reference model and explain the philosophy
that lies behind this choice. Firstly, c1m(t) must follow command signal r(t); when

c1m(t) = r(t) at a moment t0 ( i.e. if c1m catches r ) for all t > t0 Equation (7.24) is satisfied.

&c cm m1 1(t) =  (t) +  r(t)− (7.24)

Secondly, since c2m is a free-state variable, the conditions imposed by c2m on the system

must be redundant, equivalently c2m must be function of c1m. Hence, at the differential level

c2m is linearly dependent on c1m.

( )c t c tm m m2 2 1( ) ( ) =  c (7.25)

( )& ( )
( )

( )
& ( )

( )

( )
( )c  =  

 c

 c
 c  =  

 c

 c
  +  r(t)2m 1mt

t

t
t

t

t
c tm

m

m

m
m

∂
∂

∂
∂

2

1

2

1
1− (7.26)

If Equation (7.26) is arranged;

& ( )
( )

( )
( )

( )

( )
c t

t

t
t

t

tm2  =   
 c

 c
 c  +  

 c

 c
 r(t)2m

1m
1m

2m

1m
− ∂

∂
∂
∂ (7.27)

Now, we interpret the terms in Equation (7.27) as follows;

− − 
 c

 c
 c  =  2m

1m
1m

∂
∂

c m2 (7.28)

( )∂
∂
 c

 c
 r =  g  r2m

1m
c m2 (7.29)

Note that, in our model g(c2m) is defined as follows;
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g c
c

c cm
m

m m
( )2

2

1 2
 =   =  

1+

1+

β
β − (7.30)

This analysis imposes the model defined by Equations (7.31) and (7.32);

& ( ) ( )c t tm1  =  c  +  r(t)1m− (7.31)

( )& ( ) ( ) ( )c t t tm2  =  c  +  g c r(t)2m 2m− (7.32)

Dynamics of the bioreactor plant is characterized by Equations (7.33) and (7.34).

( )& ( ) ( ) ( ), ( )c c t w t c t c t1 1 1 2(t) =   +  f− (7.33)

( ) ( )& ( ) ( ) ( ), ( ) ( )c c t w t c t c t g c t2 2 1 2 2(t) =   +  f− (7.34)

where,

( ) ( )f c t c t

c t

1 2

2

( ), ( )

( )

 =  c (t) 1 c (t)  e1 2− γ (7.35)

( )g c t
c t2

2
( )

( )
 =  

1+

1+

β
β − (7.36)

Equations (7.33) and (7.34) can be rewritten as follows;

( )
& ( ) ( )

( ), ( )

( )
c t t

t t

t1  =  c w(t)  
f c c

c1
1 2

1
− −







 (7.37)

( ) ( )
& ( ) ( )

( ), ( ) ( )

( )
c t t

t t t

t2  =  c w(t)  
f c c  g c

c2
1 2 2

2

− −






 (7.38)

Since c1(t) and c2(t) are nonzero, Equations (7.37) and (7.38) are valid.

Proposition

There exists a function F(c1,c2,w(c1,c2,r)) such that,

( )( )& ( ) ( ) ( ) ( ) ( ) ( )c t t t t t t1  =  c  F c  ,  c  ,  w c  ,  c  ,  r(t)  +  r(t)1 1 2 1 2− (7.39)
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( )( ) ( )& ( ) ( ) ( ) ( ) ( ) ( ) ( )c t t t t t t t2  =  c  F c  ,  c  ,  w c  ,  c  ,  r(t)  +  g c  r(t)2 1 2 1 2 2−
(7.40)

Proof

We know that the variable w is the control input and is a function of state variables
(c1(t),c2(t)) and command signal r(t).

( )( ) ( ) ( )− −c  F c  ,  c  ,  w c  ,  c  ,  r  +  r(t) =   w c  ,  c  ,  r  +  f c ,c1 1 2 1 2 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )t t t c t t t1 (7.41)

( )( ) ( ) ( )
F c  ,  c  ,  w c  ,  c  ,  r  =  w c  ,  c  ,  r  +  

r(t)

c  
  

f c , c

c  1 2 1 2 1 2
1

1 2

1
( ) ( )

( )

( ) ( )

( )
t t

t

t t

t
− (7.42)

Since the control input w depends continuously and differentially on r(t) with the condition
∂w /∂r ≠ 0 for all t, by the inverse function theorem r = r(c1,c2,w). Hence, Equation (7.42) is

trivially true. Putting F in Equation (7.40), we obtain;

( ) ( ) ( ) ( )& ( ) ( )
( )

( )
, ,

( )

( )
, , ,c t c t w

c t

c t
c c w

c t

c t
c c g c c c w2 2

2

1
1 2

2

1
1 2 2 1 2 =   r    f  r− − − + (7.43)

( ) ( ) ( )& ( ) ( ) , ,
( )

( )

( )

( )
,c t c t w c c w g c

c t

c t

c t

c t
c c2 2 1 2 2

2

1

2

1
1 2 =   r     f− − −







 − (7.44)

Now, we claim that, each choice of  control input with a given command signal can be
considered as a constant value of the function F, namely, F(c1,c2,w(c1,c2,r(t))) = K where K

is a constant. This is equivalent to say that w = w(c1,c2,r(t)) by implicit function theorem.

However, this imposes three conditions as stated in Equations (7.45), (7.46) and (7.47).

∂
∂

 F

 w
  0≠ (7.45)

∂
∂

 F

 c
  0

1
≠ (7.46)

∂
∂

 F

 c
  0

2
≠ (7.47)

Since F(c1,c2,w(c1,c2,r(t))) = K the derivative of F with respect to t must be equal to zero.
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∂
∂

∂
∂

∂
∂

 F

 c
 c  +  

 F

 c
 c  +  

 F

 w
 w =  0

1
1

2
2& & & (7.48)

( ) ( )∂
∂

∂
∂

∂
∂

 F

 c
 +  f  +  

 F

 c
 +  f g  +  

 F

 w
 w =  0

1 2
− −c w c w 1 2 & (7.49)

Among many other solutions (restricting F by further conditions) Equations (7.50), (7.51)

and (7.52) can be proposed as a possible solution set.

c1 2 
 F

 c
 +  c  

 F

 c
 =  0

1 2

∂
∂

∂
∂ (7.50)

∂
∂

∂
∂

 F

 c
 +  g 

 F

 c
 =  0

1 2
(7.51)

∂
∂

 F

 w
 w =  0& (7.52)

In this case, we can rewrite the solution set in a matrix form.

( )
c c

g c

w

1 2

2

0

1 0

0 0 &








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



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

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
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


















 

 F /  c

 F /  c

 F /  w

 =  

0

0

0

1

2

∂ ∂
∂ ∂
∂ ∂

(7.53)

Let the matrix in the left hand side of Equation (7.53) is denoted by A. If  A is invertible,

this means that ∂F/∂w = 0 which contradicts with our assumption. Then det A = 0.

( )( )& ( ) ( ) ( )w c t c t t  g   c  =  01 2 2− (7.54)

Now, either ∂w/∂t = 0 or c1g(c2) - c2 = 0. If  ∂w/∂t = 0, the question reduces to,

( )
c c

g c
1 2

21





























 

 F /  c

 F /  c
 =  

0

0
1

2

∂ ∂
∂ ∂ (7.55)

If c1g(c2) - c2 is nonzero then ∂F/∂c1 = 0 and ∂F/∂c2 = 0 which contradict with our

assumption. Then we conclude with;
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( ) ( )c t c t t c t
c t

c t1 2 2 2
2

1
( ) ( ) ( ) ( )

( )

( )
 g   c  =  0  g  =  − ⇒ (7.56)

Now the equations of the plant reduce to,

( )( )& ( ) ( ) ( ) ( ) ( ) ( )c t t t t t t1  =  c  F c  ,  c  ,  w c  ,  c  ,  r(t)  +  r(t)1 1 2 1 2− (7.57)

( )( )& ( ) ( ) ( ) ( ) ( ) ( )
( )

( )
c t t t t t t

t

t2  =  c  F c  ,  c  ,  w c  ,  c  ,  r(t)  +  
c

c
 r(t)2 1 2 1 2

2

1
− (7.58)

In order to equate our reference model to the plant, we must choose w such that
F(c1,c2,w(c1,c2,r(t))) = 1. This implies that,

( ) ( )
w c  ,  c  ,  r(t)  +  

r(t)

c  
  

f c ,c

c  
 =  11 2

1

1 2

1
( ) ( )

( )

( ) ( )

( )
t t

t

t t

t
− (7.59)

If Equation (7.59) is arranged, we find Equation (7.60)

( ) ( )
w t c t r t

t c t t

c t
c  =  

f c  +  c (t)  r
1

1 1( ), ( ), ( )
( ), ( ) ( )

( )2
2

1

−
(7.60)

Equation (7.60) imposes that c1m(t) = c1(t) and c1(t) follows r(t) by the construction of our

model. In what follows, we must show that the errors between the reference model outputs

and the actual plant outputs tend to zero in the limiting case. Let the neural network realize
the function f(c1,c2), then Equation (7.60) becomes,

w 
c

=  
f(c ,c ) +  c  -  r1 2 1
$

1
(7.61)

If this control is written into Equations (7.20) and (7.21), we find Equations (7.62) and

(7.63).

( )& $c1 1 =  - c  +  f(c ,c ) -  f(c ,c )  +  r1 2 1 2 (7.62)

( )& $c2 =  - c  +  g(c ) r -  
g(c )

f(c ,c )
 f(c ,c ) -  f(c ,c )2 2

2

1 2
1 2 1 2 (7.63)
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From the theorems explained in the second chapter, the function f(c1,c2) can be realized by

neural networks such that the error in the neural network output remains within a
prespecified level. As long as the neural network realizes the function f(c1,c2) precisely, we

can neglect the difference between the network output and the actual value of the function.

Below, we explain the effect of this difference.

& &c m1  -  c  =  - (c  -  c ) -  (t)1 1m 1 ε (7.64)

& &c m2  -  c  =  - (c  -  c ) -  
g(c )

f(c ,c )
(t)2 2m 2

2

1 2
ε (7.65)

&e1  - e  -  (t)1= ε (7.66)

&e2  - e  -  
g(c )

f(c ,c )
(t)2

2

1 2
= ε (7.67)

Equations (7.66) and (7.67) reveal that the error model has the roots on the left half s-plane,
moreover, the error in c1 is forced to track ε(t) and the error in c2 is forced to track (g/f)ε(t).

Therefore, our inferences dealing with the accuracy of the neural network stipulated that

the bioreactor is forced to track the reference model. In the remainder of this section, we

give the simulation results for the bioreactor control problem.

Figure 7.7(a) Cell and nutrient concentration graphs for the reference model and

for the actual plant. Command signal is r(t) = 0.1207 + 0.1sin(2πt/200)
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Figure 7.7(b) Command signal graph, r(t) = 0.1207 + 0.1sin(2πt/200)

Figure 7.7(c) Error graph for the cell and nutrient concentration,

command signal is r(t) = 0.1207 + 0.1sin(2πt/200)
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Figure 7.8(a) Cell and nutrient concentration graphs for the reference model and

for the actual plant. Command signal is r(t) = 0.11 + 0.1sgn(sin(2πt/200))

Figure 7.8(b) Command signal graph, r(t) = 0.11 + 0.1sgn(sin(2πt/200))
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Figure 7.8(c) Error graph for the cell and nutrient concentration,

command signal is r(t) = 0.11 + 0.1sgn(sin(2πt/200))

7.3 Performance Assessment

MRAC technique is one of the well-known and widely used method for controlling

nonlinear dynamical systems. Recent studies showed that the method can be combined

with the neural networks. In our simulations, we considered the control problems from this

point of view.

In the first two simulations, the plants and the models were extracted from [5] and each

one of them was simulated for two different kinds of reference signals. These two

simulations showed that the performance of this approach is good enough in the sense of

tracking ability. In the third simulation, the bioreactor plant was controlled by means of

MRAC technique. The results for this case revealed that the performance of this approach

is considerably better than the method explained in the fifth chapter. MRAC showed a

smooth tracking of reference model outputs whereas in the inverse control strategy, we had

observed sharp deviations in the bioreactor outputs.

The vital problem of the approach is the stability of the controller. As mentioned

earlier, there is no concrete work explaining the stability of neural controllers and the

stability of  update dynamics.
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In brief, if the reference model is stable, and if we can show the difference between

reference model output and the actual plant output tends to zero in the limiting case, also, if

we can prove the convergent behavior of the parameters of the control strategy, then,

MRAC technique yields an admissible performance in the sense of output tracking ability.
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8. SELF-LEARNING CONTROL USING NEURAL NETWORKS

In this chapter, we elaborated the self-learning control scheme which was originally

proposed by Nguyen and Widrow [6]. The method differs from those explained earlier in

that this scheme is goal directed. The controller is trained to keep the plant output at a

desired and previously defined level. The approach utilizes the well-known

backpropagation method in the training of the controller. Nguyen and Widrow applied the

method to a truck backer-upper plant. We tested the performance of the method by

applying it to different types of plants and the bioreactor benchmark problem.

8.1 Control Strategy

The first step of the control procedure is obtaining the neural identification model of

the plant. In Fig. 8.1, identification model, which is also called plant emulator, is

represented by E boxes. If the identification model represents the plant dynamics

accurately, it can be used in the architecture shown in Fig. 8.1. This architecture implies
that after K time steps, plant output could be pulled from its initial state y0 to the desired

state yd. K is determined by the designer and represents the length of the chain-like

structure. The objective of the strategy is minimization of the cost function defined by

Equation (8.1).

( )J =  E   y  -  y  d K 
2

(8.1)

The minimization of Equation (8.1) is carried out through evaluating the output error at

the Kth step and propagating it back through the structure illustrated in Fig. 8.1. Utilizing

the plant emulator makes the training process easy. The details of the error

backpropagation have been scrutinized in the fifth chapter of this study. An important point

in the weight updating is the succession that appears in the controller training structure. In

fact, the weight change at the Kth stage influences the (K-1)th stage. This obviously

requires the saving of each individual weight change evaluated at the corresponding stage.

Nguyen and Widrow [6], in their work, say that the weight changes could be applied

immediately as they are evaluated because they are the accumulated effects that improve

the performance of the controller and this does not affect the final performance

significantly. Having trained the neural controller, it is installed to the control system as

shown in Fig. 8.2.
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Figure 8.1 Controller training architecture for the self-learning control scheme

Figure 8.2 Control system structure with neural controller

8.2 Simulation Results

In the simulation results given in this section, we used the neural controller and neural

identification blocks that have the neurons possessing linear activation functions in the

input and the output layers, and the neurons possessing sigmoidal activation functions in

the hidden layers.
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Simulation 1.

( )Plant     k u k                       :  y = tanh y(k)( ) ( )+ +1 (8.2)

Identification model : 2-6-1 MSE : 1e-6

Controller : 1-8-1 MSE : 1e-6

Figure 8.3(a) Output graph for the plant defined by Equation (8.2). The desired level of the

output is 0.0 and the plant was initiated at every 0.8 seconds randomly.

Figure 8.3(b) The control signal that was applied to the plant defined by Equation (8.2)

and that was generated by the neural controller



92

Simulation 2.

Plant     k u k                       :  y =  
1

1+ y (k)
 +  y(k)

2
( ) ( )+1 (8.3)

Identification model : 2-4-1 MSE : 3e-6

Controller : 1-6-1 MSE : 1e-6

Figure 8.4(a) Output graph for the plant defined by Equation (8.3). The desired level of the

output is 1.0 and the plant was initiated at every 0.8 seconds randomly.

Figure 8.4(b) The control signal that was applied to the plant defined by Equation (8.3)

and that was generated by the neural controller
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Simulation 3.

Plant                            :  Bioreactor model with coupled nonlinear difference eqns.

( )c (k + 1) =  c (k) +    -  c (k) r(k) +  c (k) 1- c (k)  e1 1 1 1 2

c (k)2

∆ γ
















(8.4)

( )c (k + 1) =  c (k) +   -c (k) r(k) +  c (k) 1 - c (k)  e
1 +

1+ - c (k)2 2 2 1 2

c (k)

2

2

∆ γ β
β

















(8.5)

Identification model : 3-25-16-2 MSE : 88e-6

Controller : 2-8-4-1 MSE : 1e-6

Figure 8.5(a) The time evolution of cell concentration (c1). The desired level was

defined to be 0.1000
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Figure 8.5(b) The time evolution of nutrient concentration (c2). The desired level was

defined to be 0.8800

Figure 8.5(c) The control signal (flow rate) that was applied to the bioreactor defined by

Equations (8.4) and (8.5) and that was generated by the neural controller



95

8.3 Performance Assessment

In our simulations, we chosen the plants that were used in the strategies explained

earlier. In this section, we consider the control strategy from the point of goal direction

rather than following a user defined trajectory.

In the first simulation, we used the plant which was used in the fifth chapter of this

study. The simulation results in Fig. 8.3(a) showed that the neural controller which was

trained with the self-learning control scheme is able to bring the plant output to its desired

level very accurately. The plant used in the second simulation is taken from the sixth

chapter. The same accuracy was observed, also, for this simulation. Our third simulation is

controlling the bioreactor plant which is explained in Appendix A in detail. The desired

cell (c1) and nutrient (c2) concentrations were defined to be 0.1000 and 0.8800 respectively.

As can be seen form Figs. 8.5(a), 8.5(b) and 8.5(c), the method shows an admissible

performance when these results are compared with those obtained in the fifth chapter.

Firstly, we observed a smooth change in the plant outputs and a fast response. If the Figs.

5.18(a) through 5.18(d) are taken into consideration, we had observed sharp deviations in

the tracking even in the regions that the desired trajectory is constant. The method that we

introduced in this chapter resulted in better performance in the sense of steady state

performance and in the sense of  controlling the plant in a few seconds. The stability of the

neural controller is again an unanswered problem for this approach.
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9. DYNAMICAL NEURAL UNITS FOR CONTROL OF
NONLINEAR DYNAMICAL SYSTEMS

In this chapter, we opened a highly promising way of designing neural network based

controllers. The method changes the classical neuron model to a second order system with

synaptic and somatic parts and adopts this new neuronal model. Additionally, the

adaptation is carried out on the coefficients of this second order block and the on the slope

of its nonlinear activation function. The authors who proposed this method called the new

neuron model as Dynamical Neural Unit (DNU) and separated the learning process into

two different adaptation mechanisms. The strategy is comprised of synaptic adaptation and

somatic adaptation. In the former, parameters of the linear second order dynamical system

are adjusted while in the latter the gain of the nonlinear activation function is adjusted.

The authors Gupta and Rao [7] point out that the resulting neural controller which is

trained using the proposed method possesses a higher degree of mathematical tractability in

the sense of stability analysis.

9.1 Control Strategy

The topology of a single dynamical neural unit consists delay elements, feedforward

and feedback synaptic weights and a nonlinear somatic operator. The architecture of the

DNU model is illustrated in Fig 9.1.

Figure 9.1 Structure of a single dynamical neural unit
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The difference equation which describes the behavior of the second order dynamical
structure is given in Equation (9.1) in which v1(k), x(k) ∈ R1

. Similarly, the pulse transfer

function of this part can be given by Equation (9.2).

v k b v k1 2 1 2 1 2( ) ( ) ) =  b v (k -1)  +  a x(k) +  a x(k  +  a x(k )1 1 0 1 2− − − − − (9.1)

T(z) =  
a  +  a z  +  a z

1 +  b z  +  b z
0 1

-1
2

-2

1
-1

2
-2 (9.2)

The output of the DNU can then be evaluated as follows;

v k( ) =  g v (k)s 1 (9.3)

( ) ( )u k( ) =  v(k)  =  tanh g v (k)s 1Ψ (9.4)

The objective is based on the minimization of the instantaneous error evaluated at the

output of the system. The cost function which is to be minimized is defined by Equation

(9.6) in which E denotes the expectation operation. If w denotes the parameters of a single

DNU, the update rule can be given by;

wk+ −1 =  w    
 J

 wk µ ∂
∂ (9.5)

where;

( )J =  
1

2
 E e (k)2

(9.6)

e k( ) =  y (k)  u(k)d − (9.7)
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∂
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∂
∂

 v

 a
 =  g  x(k )  i = 0,1,2

i
s − i (9.11)

∂
∂

 v

 b
 =  g  v (k )  j = 1,2

j
s 1− − j (9.12)

∂
∂

 v

 g
 =  v

s
1 (9.13)

More compactly, the parameter update rule is given by Equations (9.14) through (9.16)

where i = 0,1,2 and j = 1,2 ;

( )∆ a  =   g (k) sech  x(k )a s
2 2

ii k E e k v k i( ) ( ) [ ( )]+ −1 1µ (9.14)

( )∆ b  =   g (k) sech  v (k )b s
2 2

1jj k E e k v k j( ) ( ) [ ( )]+ − −1 1µ (9.15)

( )∆ g  =  g  sech  vg
2

ss sk k E e k v k k( ) ( ) ( ) [ ( )] ( )+1 1 1µ (9.16)

In the parameter update equations, the coefficients µai, µbj and µgs, denote the step size for

the corresponding parameter and chosen to be constant throughout a simulation.

Figure 9.2 Control system architecture with DNU based controller network

In Fig. 9.2, DNU layer includes the desired number of individual DNU blocks whose

inputs are connected together and whose outputs are added to form the control u(k).

Depending on the magnitude of the output error, the algorithm updates the feedforward and

feedback weights and the gain of the nonlinear activation functions of each dynamical

neural unit in the DNU layer. The derivation of the algorithm is given in [7] in detail.
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9.2 Simulation Results

Simulation 1

Plant  :

( )

( ) ( )
y k

u k

y k y k y k

( )
)

) ) ( )

( ) ( ) ( )

+
− − −

<

− − − − −

+ + − + −
≥














1
1 2

2 1 2

1 1 22 2 2

=   

sin y(k) +  u(k)

1+ y (k) + y (k ) + y (k - 2) + u (k 1) + u (k
 +  u(k)  t  15 sec

sin y(k)  sin y(k 1)y(k   u(k
 +  u(k)                t  15 sec

2 2 2 2 2

(9.17)

Input  :   0.8sin
t

2

π



 (9.18)

Figure 9.3(a) Output of the plant defined by Equation (9.17) in response to the input

defined by Equation (9.18)

At time t = 15, plant is changed as described by Equation (9.17) so that we tested the

robustness of the DNU based controller. We observed a spike at the output of the plant at

t = 15. It is clear that the adaptation mechanism compensated the changes in the plant

parameters quickly. The effect of this change can also be seen from Figs. 9.3(b) through
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9.3(e). In this simulation a single DNU block adequately controlled the plant. In Figs.

9.4(a) through 9.4(c), we carried out the same simulation with the addition of Gaussian

random noise to the measured state y(k).

Figure 9.3(b) Output error for the plant defined by Equation (9.17) in response to the input

defined by Equation (9.18)

Figure 9.3(c) Control signal applied to the plant defined by Equation (9.17) and generated

by DNU
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Figure 9.3(d) The changes observed at the feedforward synaptic weights of the DNU

Figure 9.3(e) The changes observed at the somatic gain and the feedback

synaptic weights of the DNU
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Figure 9.4(a) Output of the plant defined by Equation (9.17) in response to the input

defined by Equation (9.18) 10% Gaussian random noise is added to the measured state y(k)

Figure 9.4(b) Output error for the plant defined by Equation (9.17) in response to the input

defined by Equation (9.18), 10% Gaussian random noise is added to the measured state

y(k)
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Figure 9.4(c) Control signal applied to the plant defined by Equation (9.17) and generated

by DNU 10% Gaussian random noise is added to the measured state y(k)
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Simulation 2

Plant  : k y  =  
y(k)

1+ y (k)
 +  u (k)

2
3( )+ 1 (9.19)

Input  :   sin
t

2

π



 (9.20)

Figure 9.5(a) Output of the plant defined by Equation (9.19) in response to the input

defined by Equation (9.20), 10% Gaussian random noise is added to the measured state

y(k)

This simulation also concerns the 10% additive Gaussian random noise which affects

the state y(k). Additionally, the DNU layer is comprised of a single DNU block. As can be

seen from Fig. 9.5(a), as time progresses an overshoot appears in the plant output at the

maximum values of the input signal. For this plant, the algorithm could not compensate

this undesired behavior which is observed at the output.
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Figure 9.5(b) Output error for the plant defined by Equation (9.19) in response to the input

defined by Equation (9.20), 10% Gaussian random noise is added to the measured state

y(k)

Figure 9.5(c) Control signal applied to the plant defined by Equation (9.19) and generated

by DNU, 10% Gaussian random noise is added to the measured state y(k)
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Figure 9.5(d) The changes observed at the feedforward synaptic weights of the DNU,

10% Gaussian random noise is added to the measured state y(k)

Figure 9.5(e) The changes observed at the somatic gain and the feedback synaptic weights

of the DNU, 10% Gaussian random noise is added to the measured state y(k)
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Simulation 3

( )Plant  : k y  =  tanh y(k)  +  u(k)( )+ 1 (9.21)

Input  :   sin
t

2

π



 (9.22)

Figure 9.6(a) Output of the plant defined by Equation (9.21) in response to the input

defined by Equation (9.22)
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Figure 9.6(b) Output error for the plant defined by Equation (9.21) in response to the input

defined by Equation (9.22)

Figure 9.6(c) Control signal applied to the plant defined by Equation (9.21) and generated

by DNU
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Figure 9.6(d) The changes observed at the feedforward synaptic weights of the DNU

Figure 9.6(e) The changes observed at the somatic gain and the feedback

synaptic weights of the DNU
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Simulation 4

Plant  :

( )
( )
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y k
y k u k

u k

y k y k
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





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

1
1 08
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1

1 1 2
1 2

15 30

2

2 2

 =  

sin 0.9y(k) +  u(k)
      0 t  and 15 t

  sin y(k) + u(k)u(k  +  u(k)

                                           7.5 t  and 22.5 t

(9.23)

Input  :   sin
t

2

π



 (9.24)

Figure 9.7(a) Output of the plant defined by Equation (9.23) in response to the input

defined by Equation (9.24)

The success of the DNU based controller in terms of the parameter adaptation and fast

response is apparent in this simulation too. The nonlinearity of the plant under control was

regularly switched between two different models and the dynamical neural controller

adapted itself quickly. This can also be seen from Fig. 9.7(b). The error trend for t ∈ [0,7.5)

is similar to t ∈ [15,22.5), the same appearance is valid for the intervals t ∈ [7.5,15) and
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t ∈ [22.5,30].The effect of this switching shows itself as spikes occurring at the

corresponding instants.

Figure 9.7(b) Output error for the plant defined by Equation (9.23) in response to the input

defined by Equation (9.24)

Figure 9.7(c) Control signal applied to the plant defined by Equation (9.23) and generated

by DNU
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Figure 9.7(d) The changes observed at the feedforward synaptic weights of the DNU

Figure 9.7(e) The changes observed at the somatic gain and the feedback

synaptic weights of the DNU
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Simulation 5

( )
( )Plant  : k
y k u k

 y  =  
sin 0.9y(k) +  u(k)

( )
. cos ( ) ( )

+
+ +

1
1 0 8

(9.25)
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t
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
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







. sgn

. cos( ) exp( . )t t

(9.26)

Figure 9.8(a) Output of the plant defined by Equation (9.25) in response to the input

defined by Equation (9.26)

In this simulation, we tested the plant defined by Equation (9.25) for different input

types. Our aim was to demonstrate the performance of the dynamical neural unit under the

condition that  considerable variations occur in the input signal. As can be seen from Fig.

9.8(a), a single DNU is able to control the plant even in the occurrence of large variations

in the input signal.
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Figure 9.8(b) Output error for the plant defined by Equation (9.25) in response to the input

defined by Equation (9.26)

Figure 9.8(c) Control signal applied to the plant defined by Equation (9.25) and generated

by DNU
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Figure 9.8(d) The changes observed at the feedforward synaptic weights of the DNU

Figure 9.8(e) The changes observed at the somatic gain and the feedback

synaptic weights of the DNU
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Simulation 6

Plant  : Bioreactor model with coupled nonlinear difference equations (Defined in

Appendix. A)

( )c (k + 1) =  c (k) +    -  c (k) r(k) +  c (k) 1- c (k)  e1 1 1 1 2

c (k)2

∆ γ
















(9.27)

( )c (k + 1) =  c (k) +   -c (k) r(k) +  c (k) 1 - c (k)  e
1 +

1+ - c (k)2 2 2 1 2

c (k)

2

2

∆ γ β
β

















(9.28)

Input  :  0.1 +  0.05sin
2 t

50

π



 (9.29)

Figure 9.9(a) c1(t) Output of the bioreactor plant defined by Equations (9.27) and (9.28)

in response to the input defined by Equation (9.29)
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Figure 9.9(b) Tracking error in c1(t) for the plant defined by Equations (9.27)  and (9.28)

in response to the input defined by Equation (9.29)

Figure 9.9(c) c2(t) Output of the bioreactor plant defined by Equations (9.27) and (9.28)

in response to the input defined by Equation (9.29)
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Figure 9.9(d) Control signal applied to the plant defined by Equations (9.27) and (9.28)

and generated by DNU

Simulation 7

Plant : Bioreactor model with coupled nonlinear difference equations (Defined in

Appendix. A)

Input  : u t i 0.05 +  0.01   ,  u(t) is the unit step function
i =  1

8
( )−∑ 200 (9.30)
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Figure 9.10(a) c1(t) Output of the bioreactor plant defined by Equations (9.27) and (9.28)

in response to the input defined by Equation (9.30)

Figure 9.10(b) Tracking error in c1(t) for the plant defined by Equations (9.20)  and (9.21)

in response to the input defined by Equation (9.23)
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Figure 9.10(c) c2(t) Output of the bioreactor plant defined by Equations (9.27) and (9.28)

in response to the input defined by Equation (9.30)

Figure 9.10(d) Control signal applied to the plant defined by Equations (9.27) and (9.28)

and generated by DNU
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Simulation 8

Plant : Bioreactor model with coupled nonlinear difference equations (Defined in

Appendix. A)

Input  :  0.1207 (desired level is constant)

Figure 9.11(a) c1(t) Output of the bioreactor plant defined by Equations (9.27) and (9.28)

in response to the constant input 0.1207
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Figure 9.11(b) Tracking error in c1(t) for the plant defined by Equations (9.27)  and (9.28)

in response to the constant input 0.1207

Figure 9.11(c) c2(t) Output of the bioreactor plant defined by Equations (9.27) and (9.28)

in response to the constant input 0.1207
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Figure 9.11(d) Control signal applied to the plant defined by Equations (9.27) and (9.28)

and generated by DNU

9.3 Performance Assessment

In this chapter, we discussed the dynamical neuron model for the control of nonlinear

systems. Our assessment perspective includes three performance metrics. The first one is

the occurrence of  wild changes in the nonlinearity of the plant models. The aim was to

demonstrate the adaptation capability of the DNU based controller training algorithm. In

the first and fourth simulations we tested this aspect of the method. Our simulations

showed that the resulting DNU based controller is robust under parametric perturbations.

The second performance metric is the level of noise rejection property. The first and

second simulations deal with this topic. As can be seen from Fig. 9.3(a) and Fig. 9.4(a),

even in the case that the observed state value is corrupted by the 10% Gaussian random

noise additively, the performance of the controller is again at an admissible level. The third

performance metric is the response to the variations in the input signal. In the fifth

simulation, we considered this case and applied different types of inputs successively. Our

simulation results stipulated that the controller is able to adapt itself such that the input

signal is followed as quickly and as perfectly as possible. The most important property of
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the approach is that the stability of the controller can be explained since it is comprised of a

second order dynamical system and a sigmoidal logistic function. In the Tables 9.1 through

9.9 we give the positions of the zeroes and the poles of the resulting DNU based controller

in the z-plane. Stable poles or zeroes are represented by (S), unstable ones are represented

by (U). In conjunction with all of these, for the first five simulations, a single DNU

adequately controlled the plant. In the bioreactor control problem we used ten DNU blocks

in the DNU layer.

TABLE 9.1 Resulting controller poles and zeroes for the first simulation

Zero 1 Zero 2 Pole 1 Pole 2

0 ≤ t < 15 -0.6460+j0.9918 (U) -0.6460+j0.9918 (U) 0.0439+j0.1494 (S) 0.0439-j0.1494 (S)

15 ≤ t ≤ 30 -0.6297+j0.9823 (U) -0.6297-j0.9823 (U) 0.2789 (S) -0.1179 (S)

TABLE 9.2 Resulting controller poles and zeroes for the second part of the first simulation
(Noise addition)

Zero 1 Zero 2 Pole 1 Pole 2

0 ≤ t < 15 -1.0962+j1.6709 (U) -1.0962-j1.6709 (U) -0.0639+j0.2901 (S) -0.0639-j0.2901 (S)

15 ≤ t ≤ 30 -0.7156+j1.2030 (U) -0.7156-j1.2030 (U) 0.1812 (S) -0.1533 (S)

TABLE 9.3 Resulting controller poles and zeroes for the second simulation
(Noise addition)

Zero 1 Zero 2 Pole 1 Pole 2

0 ≤ t ≤ 30 -0.6203+j0.7805 (S) -0.6203-j0.7805 (S) -0.1115+j0.6904 (S) -0.1115-j0.6904 (S)

TABLE 9.4 Resulting controller poles and zeroes for the third simulation

Zero 1 Zero 2 Pole 1 Pole 2

0 ≤ t ≤ 30 -0.3194 (S) -0.5591 (S) -0.0160+j0.2826 (S) -0.0160-j0.2826 (S)

TABLE 9.5 Resulting controller poles and zeroes for the fourth simulation

Zero 1 Zero 2 Pole 1 Pole 2

0 ≤ t < 7.5 -0.8149+j0.9077 (U) -0.8149-j0.9077 (U) -0.1379+j0.7137 (S) -0.1379-j0.7137 (S)

7.5 ≤ t ≤ 15 -0.3161 (S) -1.3629 (U) -0.3291+j0.9121 (S) -0.3291-j0.9121 (S)
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TABLE 9.6 Resulting controller poles and zeroes for the fifth simulation

Zero 1 Zero 2 Pole 1 Pole 2

0 ≤ t < 8 - 0.4681+j1.0966 (U) - 0.4681-j1.0966 (U) -0.2171+j0.6967 (S) -0.2171-j0.6967 (S)

8 ≤ t < 16 -0.2742+j0.6334 (S) -0.2742-j0.6334 (S) -0.3036+j0.7902 (S) -0.3036+j0.7902 (S)

16 ≤ t ≤ 30 -0.2087+j0.3506 (S) -0.2087-j0.3506 (S) -0.3417+j0.7558 (S) -0.3417+j0.7558 (S)

In brief, the method introduced in this chapter exhibited high performance from several

performance metrics, additionally, the stability of the resulting controller can be analyzed

easily when it is compared with the classical neuron model based controllers.
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10. DISCUSSION AND CONCLUSIONS

In this thesis, we considered the artificial neural networks from the control engineering

perspective. We simulated various types of plant models with the architectures and control

strategies explained throughout the study.

The backpropagation learning method and the Levenberg-Marquardt optimization

technique were examined as training methods. We first tested the performance of these two

methods on the well-known XOR problem. Next, the varieties, namely momentum term

and adaptive learning rate, that are introduced to the backpropagation algorithm, were

studied. Nevertheless, none of these varieties could make the backpropagation method as

successful as the Levenberg-Marquardt technique. The success of this method is attributed

to the fact that it employs both the first and the second order derivatives of the performance

function and goes to the minima rapidly. These two methods are utilized in the

identification and control of the nonlinear dynamical systems whose numerous simulation

results are presented in this study.

It is well known that the concept of identification plays an important role in the systems

and control area. This, mainly, stems from the fact that we generally want to obtain an

approximate  model of the system, such that the resulting model is mathematically tractable

and it closely matches the system dynamics. Neural networks were proven to be successful

identifiers, because they can learn any kind of nonlinear mapping with any degree of

accuracy. From this point of view, neural networks can identify a system so that the

identification model could be used to devise a controller. Training range is another

important point in the neural identification procedure. Neural networks can realize the

system’s dynamics solely in the range of interest. This range, without loss of generality,

includes the permissible operating points.

Neural network controller design is a natural consequence of neural identification

process. In this study, we elaborated the controller training by means of error

backpropagation. This approach needs an emulator, which is the neural identification

model of the system to be controlled. The reason that we use an emulator instead of the

actual plant is that, the output error can easily be backpropagated through the plant

emulator. The necessary condition is that the plant emulator must realize the actual plant’s

behavior in the range of interest. Different plant models were simulated. It has been found

that if the equations of the plant model are simple, the tracking performance is at an

admissible level. As the complexity of the system equations increases, training takes a long

time. Consequently, the method yields a neurocontroller that cannot fulfill the performance

objectives as well as we desired. We proposed a PI control support in order to improve the

performance of the overall control system. The main reason that lies behind our proposal
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was that the neurocontroller caused a tracking error even in the case where the reference

signal is extremely smooth. It is well known that this kind of an error can be reduced by the

use of a conventional controller that includes integral action. The simulation results

revealed that the tracking ability could be improved by means of this method. Nevertheless,

the overall performance, again, is not as satisfactory as we expected. Because the

proportional and integral gain constants were chosen experimentally.

Another way of controller training is the inversion of the plant dynamics. If the state

transition knowledge and the control that causes this transition are known, this approach

can be applicable. In some sense, this implies the observability of the state variables. We

applied the method to a bioreactor plant and ended up with unsatisfactory results. The main

problem in this approach is that the invertibility or non-invertibility of the plant dynamics,

especially for a real system, cannot be foreseen easily. Therefore, if the plant possesses a

non-invertible dynamics, this method will only yield a poor approximate of the inverse

dynamics and the resulting neurocontroller cannot fulfill the control objectives

satisfactorily. As we expected, bioreactor control trial showed sharp deviations around the

desired operating points because of the nonlinearities and long time delays introduced to

the problem and the method’s inadequacy in the inversion of the plant equations.

The next strategy is the self-tuning adaptive control using neural networks. The method

is applicable to a fixed type of plant models. Additionally, the method presumes that an

extra knowledge dealing with the sign of the nonlinearity that appears in the plant model.

The strategy operates on-line and is able to compensate model mismatches. The tracking

performance is relatively better than the error backpropagation based controller training

method.

Model reference adaptive control (MRAC) is also considered in this work. Specifically,

the method was designed so that the plant under control follows the output of a stable

reference model. We mainly used the ideas proposed by Narendra and Parthasarathy [5]

and Narendra and Boskovic [12]. The main conclusions about this control strategy can be

summarized as follows : Firstly, neural controller provides the value of the nonlinear

function that exist in the plant dynamics. Secondly, the error equation has to be evaluated

and it has to be proven that the output error tends to zero in the limiting case. This implies

that the plant output follows the output of a reference model. The method was firstly

applied to a SISO plant and a MIMO plant which were used in [5] and the results were

duplicated. Our last simulation for MRAC strategy was the control of the bioreactor plant.

A detailed analysis was carried out for the bioreactor control problem. All of our

simulation results showed that the method did better than the strategies explained earlier in

the sense of output tracking ability. It should be designated that we used the direct adaptive

control scheme in our MRAC simulations.



128

The next control strategy is the self-learning control scheme. The most remarkable

feature of this approach is its goal directed behavior. During the normal operation, no

external reference or command signal is provided to the control system. The controller is

trained so that, it brings the plant outputs to their desired values regardless of initial

conditions. Desired plant outputs are defined before training and the controller is trained

for these values. Nguyen and Widrow [6] proposed the controller training architecture and

they tested the method on a truck backer-upper example. We applied the method to

different plants and the bioreactor plant. Our simulation results, especially the bioreactor

control problem, showed that the resulting neural controller is able to achieve performance

specifications such as fast response and small tracking error. The controller training

structure is comprised of a chain-like architecture and utilizes the error backpropagation

through the components of this architecture. In our simulations, we trained the neural

controller by initializing the plant outputs to many positions which are possible initial

outputs that lie in the state space. We did the same initialization during the normal

operation. Plant output, after a while, settled down to a fixed value which is close to the

desired value of the plant output. In order to see the performance of the controller, in the

normal operation, we initialized the plant output at some certain instants. Our observations

for this case stipulated that the resulting neural controller is able to tolerate some failures

that occur in the normal operation.

The last control strategy differs from previous ones in that, it employs a different

neuron model which is explained in detail by the theory of discrete time control systems.

The method employs a dynamical neuron model which is comprised of a second order

discrete pulse transfer function and a nonlinear activation function. The training

methodology adopts the simple gradient descent rule in determining the coefficients of the

second order system and the slope of the nonlinear activation function. Gupta and Rao [7]

separated the parameter adaptation into two main parts: the first part includes the

adaptation of synaptic feedforward and feedback gains which are the coefficients of the

second order block. The second part is the adaptation of the somatic gain which is the slope

of the nonlinear activation function. The method is applied to many plant models with

different reference trajectories. Our numerous simulation results revealed that the method

is more successful than the other methods considered in this thesis. For this comparison,

output tracking ability, adaptation capability under some considerable perturbations such as

observation noise, changes in the plant parameters and changes in the nonlinearity were

used as performance measures. The most important property of the method is that the

resulting neurocontroller is mathematically tractable in the sense of stability analysis. Since

the dynamical part of the neuron model is a second order discrete pulse transfer function,

the stability concepts form discrete time control theory can be used in explaining the

stability of the controller.



129

A common problem of the methods explained so far but the last one, is that there is no

concrete study that explains the stability of neural controllers. Still, this constitutes a

serious problem that needs to be explained when artificial neural networks are of interest.

Another important question that is to be answered is the size of the neural network, and the

value of learning parameters such as convergence rate, momentum coefficient etc. Which

parameter set is optimal and which network configuration does the best for our desires are

still unanswered questions as well as the stability problem.

The conclusions obtained in our simulations are given compactly in Table 10.1.

TABLE 10.1 Comparison of neural network based control algorithms

Error BP
Plant

Inversion

Self-

Tuning

Control
MRAC

Self-

Learning

Control

Dynamical

Neural

Unit

Tracking

Performance
LOW LOW MIDDLE HIGH HIGH HIGH

Applicability

to different

plants
MIDDLE LOW LOW MIDDLE HIGH HIGH

Robustness

under

perturbations
LOW LOW LOW HIGH HIGH HIGH

Mathematical

tractability for

stability analysis
NO NO NO NO NO YES

Noise reduction - - - - - HIGH

Capability of

Fault Tolerance
- - - - MIDDLE HIGH
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As we explained throughout this study, artificial neural networks as systems which are

capable of learning, opened a new horizon in the area systems and control. If the nature

that lies behind the machine learning is explained adequately, more complex tasks can be

achieved. Although the results are not perfect, the subject itself keeps its mystery in the

sense of machine learning. In the future, new neuron models can be devised so that the

drawbacks of the classical neuron model of the artificial neural networks can be overcome

and more versatile controllers can be designed.
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Appendix A

Definition of the Bioreactor Benchmark  Problem

The bioreactor is a tank containing water, nutrients, and biological cells as shown in

Fig. A.1. Nutrients and cells are introduced into the tank where the cells mix with nutrients.
The state of this process is characterized by the number of cells c1(t) and the amount of

nutrients c2(t). The volume in the tank is maintained at a constant level by removing tank

contents at a rate equal to the incoming rate which is denoted by r(t). This rate is called the

flow rate and is the variable by which the bioreactor is controlled. The bioreactor control

problem is to maintain the amount of cells at a desired level.

The state variables can take values between zero and one, the flow rate can take
values between zero and two. In [13], the stable state of the process is defined to be          c1

= 0.1207, c2 = 0.8801, and r = 0.7500; initialization of the state variables and the flow rate

is made by considering these values such that the initial value of any parameter is within

plus or minus ten percent of its stable value. Moreover, initial values exhibit uniform

distribution over their interval and chosen randomly.

Figure A.1

The bioreactor is a tank of a liquid mixture of cells and nutrients.

The objective is to control the amount of cells by adjusting the flow rate.



132

Continuous-time equations of the plant dynamics are given by;
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If these equations are discretized by the use of first order approximation, we obtain;

( )c (k + 1) =  c (k) +    -  c (k) r(k) +  c (k) 1- c (k)  e1 1 1 1 2

c (k)2

∆ γ
















(A1.3)

( )c (k + 1) =  c (k) +   -c (k) r(k) +  c (k) 1 - c (k)  e
1 +

1+ - c (k)2 2 2 1 2

c (k)

2

2

∆ γ β
β

















(A1.4)

where ∆ = 0.01 sampling interval,  β = 0.02 growth rate parameter, γ = 0.48 nutrient

inhibition parameter. Controller inputs are the state variables. The control interval is

defined to be 50∆. The output of the controller is the flow rate r(t). The objective is to

achieve and maintain a desired cell amount, by altering the flow rate throughout a learning

trial.

The bioreactor is a challenging problem for neural network controllers for several

reasons. Although the task involves few variables and is easily simulated, its nonlinearity

makes it difficult to control. For example, small changes in parameters’ values can cause

the bioreactor to become unstable. The issues of delay, nonlinearity, and instability can be

studied with the bioreactor control problem. Significant delays exist between changes in

flow rate and the response in cell concentration. Nonlinearities in the bioreactor’s dynamics

present a challenge to networks for learning nonlinear models. Additionally, uncontrolled

equations exhibit limit cycles. Neural networks that learn to compensate for deficiencies in

the performance of the conventional controllers for this task can be tested. This is also a

proper problem for investigating combinations of methods for predicting future states with

controllers that learn to avoid unstable regions of the state space.
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