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Abstract: In this paper, a novel method for the 
establishment of a sliding mode in a nonlinear system is 
presented. The method discussed aims to minimize a cost 
measure, which is a function of the switching surface. For 
this purpose, an adaptive fuzzy controller is selected and 
the parameters o f  the defuzzifier are adjusted such that the 
cost is minimized and the system is enforced to behave in 
sliding mode. The paper considers a 2-DOF direct drive 
robotic manipulator as the test bed and a standard fuzzy 
system is used as the controller. The results obtained 
clearly stipulate that a sliding motion can be achieved by 
appropriately tuning the parameters of  the controller. 

I. INTRODUCTION 

Systems having structural uncertainties or a known 
complicated structure are difficult to control. Modeling of 
the uncertainties or handling the deterministic complexity 
are typical problems frequently encountered in the field of 
systems and control engineering. From this point of view, 
the designer is generally in pursuit of best utilization of 
what is known about the system in hand. Sometimes the 
knowledge about the system is best expressed in words. If 
the response of the system can be expressed in certain 
regions of the input space, the designer can come up with 
some IF-THEN statements, which constitute the basis of the 
fuzzy inference systems. 
Fuzzy Inference Systems are the most popular constituent of 
the computational intelligence area because of their ability 
to represent human expertise in the form of IF antecedent 
THEN consequent statements. In this domain, the system 
behavior is modeled through the use of linguistic 
descriptions. Although the earliest work by Prof. Zadeh on 
fuzzy systems was not paid as much attention as it deserved 
in early 1960s, since then the methodology has become a 
well-developed framework. The typical architectures of 
fuzzy inference systems are those introduced by Wang [1- 
2], Takagi and Sugeno [3], and Jang [4]. In [1], a fuzzy 
system having Gaussian membership functions, product 
inference rule and weighted average defuzzifier is 
constructed and has become the standard method in most 
applications. Takagi and Sugeno change the defuzzification 
procedure where dynamic systems are used for this 
purpose. The potential advantage of the method is that, 
under certain constraints, the stability of the system can be 
studied. Jang et al [4] propose an Adaptive Neuro Fuzzy 

Inference System (ANFIS), in which polynomials are used 
in the defuzzification stage. This structure is commonly 
seen in the related literature. The choice concerning the 
order of the polynomials and the variables to be used in the 
defuzzifier are left to the designer. 
In control engineering practice, stability and robustness are 
of crucial importance. Because of this, the implementation- 
oriented control engineering expert has always been in 
pursuit of a design, which provide accuracy as well as 
insensitivity to environmental disturbances and structural 
uncertainties. At this point, it must be emphasized that these 
ambiguities can never be modeled accurately. When the 
designer tries to minimize the ambiguities by the use of a 
detailed model, then the design becomes so tedious that its 
cost increases dramatically. A suitable way of tackling with 
uncertainties without the use of complicated models is to 
introduce Variable Structure Systems (VSS) theory based 
components into the system structure. 
Variable Structure Control (VSC) has successfully been 
applied to a wide variety of systems having uncertainties in 
the representative system models. The philosophy of the 
control strategy is simple, being based on two goals. First, 
the system is forced towards a desired dynamics, second, 
the system is maintained on that differential geometry. In 
the literature, the former dynamics is named the reaching 
mode, while the latter is called the sliding mode. The 
control strategy borrows its name from the latter dynamic 
behavior, and is called Sliding Mode Control (SMC). 
Earliest notion of SMC strategy was constructed on a 
second order system in the late 1960s by Emelyanov [5]. 
The work stipulated that a special line could be defined on 
the phase plane, such that any initial state vector could be 
driven towards the plane and then be maintained on it, 
while forcing the error dynamics towards the origin. Since 
then, the theory has greatly been improved and the sliding 
line has taken the form of a multidimensional surface, 
called the sliding surface around which a switching control 
action takes place. 
Numerous contributions to VSS theory have been made 
during the last decade, some of them are as follows: Hung 
et al [6] has reviewed the control strategy for linear and 
nonlinear systems. In [6], the switching schemes putting the 
differential equations into canonical forms and generating 
simple SMC based controls are considered in detail. Gao et 
al [7], apply the SMC scheme to robotic manipulators and 
discuss the quality of the scheme. The latest studies 
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consider this robustness property by equipping the system 
with computationally intelligent methods. In [8] and [9], 
fuzzy inference systems are proposed for SMC scheme. A 
standard fuzzy system is studied and the relevant robustness 
analyses are carried out. Particularly, the work presented in 
[8] emphasizes that the robustness and stability properties 
of intelligent control strategies can be studied through the 
use SMC theory. It is shown in the paper in this way that 
the approach is robust i. e. it can compensate the 
deficiencies caused by poor modeling of plant dynamics 
and external disturbances. 
In [10-11], it is demonstrated that the theory of VSS can 
well be used for the purpose of learning. The method 
discussed is based on the stabilization of gradient based 
training strategies with the aim of reducing the parametric 
change effort. 
The method discussed in this paper is first proposed by 
Sira-Ramirez and Colina-Modes for learning in adaptive 
linear elements (ADALINE) [12]. The paper gives the 
example of an inverse dynamics identification of a Kapitsa 
pendulum with a single ADALINE. Yu et al  discuss the 
same algorithm for ADALINE with the improvement on 
uncertainty bound adaptation [ 13]. The strategy adopted is 
based on the adaptive adjustment of uncertainty bounds. 
The approach presented in this paper is similar to what is 
discussed in [12] and [13] except the extension is specific to 
models having linear combiners at the output and used 
particularly for sliding mode control purposes. 
This paper is organized as follows: Second section 
describes the fuzzy system used in the study, the following 
section presents the derivation of the learning algorithm. In 
the fourth section how the SMC design is performed is 
discussed. The next section describes the plant used as the 
test bed. In the sixth section simulation results are 
presented. Conclusions constitute the last part of the paper. 

2. STANDARD FUZZY SYSTEMS 

This section considers the standard fuzzy system approach 
introduced in [1-2] as the computationally intelligent 
architecture. The architecture utilized in this study uses bell 
shaped membership functions as described by (1). 

. , ( . , ) =  l 
2b 6 

1 + u)  - c i  

I .i: I 

(1) 

In above, ci~ defines the center of the membership function, 
a 0 and b 0 characterize the slope and flatness of the function 
respectively. The structure of the fuzzy system is illustrated 
in Fig. 1, for which the following type of a rule base 
structure is adopted. 

I F  ul  is U1 A N D  u2 is U2 A N D . . .  A N D  urn is Urn 
T H E N  F = Yi 

In the I F  part of this representation, the lowercase variables 
denote the inputs and the uppercase variables stand for the 
fuzzy sets corresponding to the domain of each linguistic 
label. T H E N  part is comprised of the prescribed decision in 
the form of a scalar number. 
The overall realization performed by the system considered 
is given in (2), where weighted average defuzzifier is used 
with algebraic product aggregation method. 

R 

F = i = l  j= l  - ~ y i W n i  (2) 
R m 
£ H / 2 i j ( . j  ) i=1 

i=1 j = l  

j=I (3) W ni -- R m 

2 rI.k:(.:) 
k = l  j = l  

In above, R is the number of rules contained in the rule base 
and m is the number of inputs. If the vector of firing 
strengths denoted by w is normalized and the resulting 
vector is represented by wn, the i th entry of this vector can 
be expressed as given in (3). In the application example 
discussed, parameter tuning is performed on the y variables 
of the fuzzy system. 

3. D E R I V A T I O N  OF THE L E A R N I N G  
A L G O R I T H M  

In this section, it is assumed that the physical constraints on 
the controller outputs put a bound on adjustable parameter 
magnitudes (y<By), time derivative of the normalized firing 
strengths (rb,<Bgn) and the time derivative of the desired 
output of the fuzzy controller (Fa<B:a). 

If one defines the adjustable parameter vector as given in 
(4), defining the error at the output of the controller as in 
(5), the Lyapunov function in (6) could be a suitable 
function for describing the learning performance. The time 
derivative of the function is as given by (7). 

where 

Y = [YI Y2 ... yR] r (4) 

e c = F - F d (5) 

1 2 
V = -~e  c (6) 

(1 = b c e c  (7) 

ec = P -  & (8) 

In order to evaluate the expression in (7), we have the 
following relations: 
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F = y T Wn (9) 

P = ~Tw n + yTfe n (10) 

Theorem: If the dynamic defuzzification strategy is 
adopted as described in (11), the learning strategy becomes 
stable in the sense of Lyapunov [14]. 

~Y = wn ksign(ec) (1 1) 
T 

w n w n 

Proof: If (I 1) is substituted into (7) with the aid of (5), (8), 
(9) and (10), the error dynamics in (12) is obtained. Using 
the bounds of the uncertainties mentioned at the beginning 
of the section leads to (13). 

bc =_ksign(ec)+ yT fe n - [:d 

: _klec I + (yT fen - Fd )ec 

(12) 

(13) 

In order to have a negative time derivative for the 
Lyapunov function in (6), the parameter k must satisfy the 
following relation. 

k > ByBiv ~ +Bpa (14) 

4. SLIDING MODE CONTROL DESIGN 

The analysis presented in the previous section aims to 
minimize the Lyapunov function in (6), which is an 
instantaneous cost measure used in most neuro-fuzzy 
control strategies. It is apparent that the use of the presented 
analysis in control applications entails the desired values of 
the controller outputs. Therefore, for the applications in 
which the desired signals are available, the method can 
easily be used without any modification. 
In this part, parallel to the philosophy of variable structure 
controller design procedure, a switching function is defined 
and described by (15). The symbol e seen in (15) is the 
discrepancy between the reference state value and observed 
state value. 

s---&+2e (15) 

If one replaces e,. of (11) with s of (15), it is straightforward 
to prove that the Lyapunov function in (16) is minimized in 
time and its time derivative is enforced to have negative 
values due to the adjustment strategy in (11). 

V =Ls  2 (6) 
2 

For this case, the selection of k values must be reasonably 
large for compensating the bounds introduced with the new 

selection. The details of the analysis are not included due to 
the space limit. 

5. PLANT MODEL 

In the simulations the dynamic model of a two degrees of 
freedom direct drive robotic manipulator, which is 
illustrated in Fig. 2, is used as the test bed. Since the 
dynamics of such a mechatronic system is modeled by 
nonlinear and coupled differential equations, precise output 
tracking becomes a difficult objective due to the strong 
interdependency between the variables involved. Besides, 
the ambiguities on the friction related dynamics in the plant 
model make the design much more complicated. Therefore 
the methodology adopted must be intelligent in some sense. 
The general form of robot dynamics is described by (17) 

where M(O), V(0,O ), r and f,, stand for the state varying 
inertia matrix, vector of Coriolis terms, applied torque 
inputs and friction terms respectively. The plant parameters 
are given in Table 1 in standard units. 

(17) 

If the angular positions and angular velocities are described 
as the state variables of the system, four coupled and first 
order differential equations can define the model. In (18) 
and (19), the terms seen in (17) are given explicitly. 

ha,M, rPl + 2P3C°S(02) P2 + p3c°s(02)] 
(u) =~ P2 + P3C°S(t~2) P2 ] (18) 

V(O,[~ )= [ - 0 2  (2t~lt~2p3 sin(02 ) + t}2 )P3 sin(g2 )- (19) 

In above, Pl = 2.0857+0.0576Mp, P2 = 0.1168+0.0576Mp 
and P3 = 0.1630+0.0862Mm Here Mp denotes the payload 
mass. The details of the plant model are presented in [15]. 

6. SIMULATION RESULTS 

In the simulation studies presented, the plant introduced in 
the fifth section is controlled by the proposed control 
scheme. The aim is to produce some torque signals that 
create a sliding motion in the phase plane for each link. As 
the controller, the architecture discussed in the second 
section is adopted with nine rules (R=9) and two inputs 
(m=2) for each link. The structure of the control system is 
as illustrated in Fig. 3, in which the plant is in an ordinary 
feedback loop. The membership functions of the controller 
have been selected as that illustrated in Fig.4. Based on the 
tracking error vector, first the value of s(e, k) is evaluated 

and this quantity is applied to the adjustment mechanism. In 
evaluating the value of the quantity s, the slope of the 
switching surface (3,) has been set to 0.2. 
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In practical implementations a number of difficulties are 
encountered, which make it difficult to achieve an accurate 
trajectory tracking. The simulation studies carried out 
address these difficulties. The first difficulty to be 
alleviated is the varying payload conditions, which 
introduces abrupt changes in the dynamics of the system 
under control. As the reference trajectory illustrated in Fig. 
5. implies, the motion starts with no payload. At time t=2 
sec, a payload of 2 kg is grasped and released at time t=5 
sec. The same variation is repeated at time t=9 sec and t=12 
sec. After the time t= 15, the manipulator is kept motionless. 
The second difficulty is the existence of observation noise. 
The information used by the controller is corrupted by a 
Gaussian distributed random noise having zero mean and 
variance equal to 33e-6. The peak magnitude of the noise 
signal is within +1 with probability very close to unity. The 
third difficulty is the nonzero positional initial conditions. 
In order to demonstrate the reaching mode performance of 
the algorithm, the first link is moved to rd50 radians and the 
second link is moved to -rt/50 radians initially. 

Under these conditions, the state tracking error graph in 
Fig. 6 is obtained. The trend in position and velocity errors 
clearly stipulate that the algorithm is able to achieve precise 
tracking objective. The motion in the phase plane is 
illustrated in the top row of Fig. 7. The upper subplots of 
the figure show that for both links, after a fast reaching 
mode, a sliding mode is enforced and is maintained by 
producing a suitable control signal. In the bottom row of the 
figure, it is shown for both links that the Lyapunov function 
in (16) is minimized. In order to show the minimization 
activity of the algorithm presented, the vertical axes for 
these subplots are selected as logarithmic. It is seen that 
some small magnitude spikes occur in time and they are 
dampened out quickly. We relate these spikes to the 
difficulties stated above. What should be emphasized as a 
last point is the torque signal produced by the controller. As 
seen in Fig. 8, the controller outputs are directly applied to 
the manipulator without exceeding the limits of the 
applicable control ranges. The control signal has a smooth 
characteristic, which does not violate the potential limits of 
the actuators. 
During the simulations kj, k2 and the sampling rate have 
been set to 10000, 1000 and 2,5 msec respectively. 
Furthermore, in order to reduce the chattering effect in the 
sliding mode, the function in (20) has been used instead of 
the sign function in the dynamic defuzzification strategy 
described in (11 ). 

e C 

sign(ec)= lec[+O.O 5 (20) 

7. CONCLUSIONS 

In this paper, a novel method for establishing a sliding 
motion in the phase plane of a nonlinear plant is discussed. 
The method is based on the adoption of a dynamic 
defuzzification strategy in a fuzzy controller having the 

standard architecture. It is seen that the algorithm discussed 
is able to compensate deficiencies caused by the imperfect 
observations of the state variables, abruptly changing plant 
dynamics, initial condition errors and complex plant 
dynamics. From these points of view, the method proposed 
is highly promising for control purposes. 
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Figure 2. Physical structure of the manipulator 
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Figure 4. Membership functions used in the simulations 
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Figure 6. State tracking errors 
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Figure 7. Motion in phase plane for each link (top row) and 
the behavior of the Lyapunov function in time (bottom row) 

Table 1. Manipulator Parameters 

Motor 1 Rotor Inertia 
Arm 1 Inertia 

0.2670 
0.3340 

Motor 2 Rotor Inertia 0.0075 
Motor 2 Stator Inertia 0.0400 
Arm 2 Inertia 0.0630 
Motor 1 Mass 73.000 
Arm 1 Mass 9.7800 
Motor 2 Mass 14.000 
Arm 2 Mass 4.4500 
Arm 1 Length 
Arm 2 Length 
Arm 1 Center of Gravity 
Arm 2 Center of Gravity 
Axis 1 Friction 

0.3590 
0.2400 
0.1360 
0.1020 
5.3000 

Axis 2 Friction 1.1000 
Torque Limit 1 245.00 
Torque Limit 2 39.200 
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Figure 8. Evaluated and applied torque signals 
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