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Abstract— Modeling and control of systems represented by
Partial Differential Equations (PDEs) is an interesting research
field as the process under investigation is infinite dimensional
and most commonly used techniques are for finite dimensional
systems. This paper considers the development of a finite
dimensional observer obtained after an appropriate model
reduction stage. A sliding mode observer is considered as it
utilizes the sign of a quantity and ensures good reconstruction
performance. The paper compares the fictitious state variables
that are obtained after projecting the instantaneous snapshots
on an eigenbasis and the state variables predicted by the
observer. The results emphasize that the designed observer
functions well on some set of operating conditions, which are
elaborated in the paper.

I. INTRODUCTION

Processes modeled by PDEs have been in the focus of

many researchers as they display quite complicated and rich

sets of responses under different initial and boundary condi-

tions. One such problem is to develop an observer extracting

a finite number of dominant modes from a temporal evolution

of a spatially continuous process. The essence of such an

application is to alleviate the adverse effects of noise on the

observed process output while providing a set of descriptive

and useful state information.

The design of observers for finite dimensional linear

systems is a mature field and well-developed schemes are

available such as Kalman estimators. Lyapunov techniques

are useful when the process under investigation is nonlinear,

and further, the Lyapunov techniques can also be extended

to the applications where the dynamics are governed by

PDEs, as we consider here. In the first step, the process

model undergoes an order reduction scheme to represent the

essential dynamics with few Ordinary Differential Equations

(ODEs). A widely used technique for the modal decom-

position is Proper Orthogonal Decomposition (POD) with

method of snapshots. This approach is first proposed by

Lumley [1] to extract the dominant modes from turbulent

flows, and Sirovich [2] improved it by introducing the

method of snapshots and this technique has found many

applications in flow modeling and control science, where the

observed quantities are quite noisy in practice, and the use

of an observer is oftentimes inevitable.

A low dimensional (LD) model, if it is achievable, may be

useful for designing a LD observer. In this paper, a sliding

mode observer (SMO) is considered to obtain the finite

dimensional state information of a 2D heat flow characterized
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by a parabolic PDE. The concept of SMO originates from the

context of variable structure systems (VSS) theory in general

and sliding mode control (SMC) in particular, [3], [4]. As

a control technique, SMC is well known for its robustness

against disturbances, [5]. The behavior emerges as a result

of forcing the error vector towards a particular subspace of

the state space, which is a stable locus having a unique

equilibrium at the origin of the phase space. Despite the

power of the method, chattering is a major problem of SMC

systems since the sign of a quantity which is very close to

zero is utilized. Nonetheless, the methods like sign function

smoothing introduces a boundary layer with finite thickness

offering a practical solution to the problem of chattering, [6].

Once designed, the LD model described above can be utilized

as an observer quickly providing the state of the process. The

crux of the design is to elaborate the conditions over which

the observer functions appropriately.

This paper is organized as follows. In the second section,

we present the POD, and POD based LD modeling strategy.

Following this, we focus on the design and analysis of the LD

SMO. The fourth section presents the simulation studies with

particular emphasis on the operating conditions affecting the

performance of the SMO. The concluding remarks are given

at the end of the paper.

II. ORDER REDUCTION VIA POD METHOD

Let Ui(x, y), i = 1, 2, . . . , Ns be a set of entities, where

Ns is the number of elements. Every element of this set

corresponds to a snapshot (instantaneous solution) observed

from a process, say for example the 2D heat flow with initial

and boundary conditions,

ut(x, y, t) = c2 (uxx(x, y, t) + uyy(x, y, t))

u(x, 0, t) = f(x)γ(t)

u(1, y, t) = 0, u(x, 1, t) = 0, u(0, y, t) = 0

u(x, y, 0) = 0 ∀(x, y) (1)

where, c is the constant thermal diffusivity parameter that is

known, f(x) is the gain effective along the y = 0 boundary

segment, and the subscripts x, y and t refer to the partial

differentiation with respect to x, y and time, respectively. The

continuous time process takes place over the physical domain

Ω := {(x, y)|(x, y) ∈ [0, 1] × [0, 1]} and the solution is

obtained on a spatial grid denoted by Ωd, which describes the

coordinates of the pixels of every snapshot in the ensemble.

The entities described over Ωd are matrices in R
Ny×Nx . The
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goal is to find an orthonormal basis set letting us to write

the solution as

u(x, y, t) =

RL
∑

i=1

αi(t)Φi(x, y) (2)

where αi(t) is the ith temporal mode, Φi(x, y) is the ith

spatial function (basis functions or the eigenbasis) defined

over Ω, RL is the number of independent basis functions that

can be synthesized from the given ensemble, or equivalently

that spans the space described by the ensemble. If the basis

set {Φi(x, y)}RL

i=1 is an orthonormal set, Galerkin projec-

tion yields the autonomous Ordinary Differential Equations

(ODEs) directly. The POD procedure utilized in this study

is described in [7] in detail.

Fundamental Assumption: The majority of works deal-

ing with POD and model reduction applications presume

that the flow (the solution of the PDE process) is dominated

by coherent modes. Because of the dominance of coherent

modes, the typical spread of the eigenvalues of the correla-

tion matrix turns out to be logarithmic and the terms decay

very rapidly in magnitude. This fact enables us to assume that

a reduced order representation, say with M < RL modes can

also be written as an equality

u(x, y, t) =

M
∑

i=1

αi(t)Φi(x, y), (3)

and the reduced order model is derived under the assumption

that (3) satisfies the governing PDE in (1), (See [7], [8], [9]).

Unsurprisingly, such an assumption results in a model having

uncertainties, however, one should keep in mind that the goal

is to find a model, which matches the infinite dimensional

system in some sense of approximation with typically M ≪
RL ≤ Ns, where RL denotes the rank of the correlation

matrix L. To represent how good such an expansion is, a

percent energy measure is defined as follows

E =

∑M

i=1 λi
∑RL

i=1 λi

× 100% (4)

where the tendency of E → 100% means that the model cap-

tures the dynamical information contained in the snapshots

well. Conversely, an insufficient model will be obtained if E

is far below 100%. In above, λi stands for an eigenvalue of

L.

The second part of the fundamental assumption empha-

sizes the discretization of the PDE. Since the numerical

solver computes the behavior of the process over a grid

having finite number of pixels, we assume that the solution

obtained over the computational grid is descriptive enough

to admit the solution as a snapshot from the process.

In the order reduction phase, we need to obtain the

autonomous ODE model first. Towards this goal, if (3) is

a solution to the PDE in (1), then it has to satisfy the PDE.

Substituting (3) into (1) with the fundamental assumption

yields

M
∑

i=1

α̇i(t)Φi(x, y) = c2
M
∑

i=1

αi(t)Ψi(x, y) (5)

where Ψi(x, y) = ∂2Φi(x,y)
∂x2 + ∂2Φi(x,y)

∂y2 . Taking the in-

ner product of both sides with Φk(x, y) and remembering

〈Φi(x, y), Φk(x, y)〉Ω = δik with δik being Kronecker delta

yields

α̇k(t) = c2
M
∑

i=1

αi(t)〈Φk(x, y), Ψi(x, y)〉Ω (6)

Defining ζk as the entity in Ωd corresponding to the entity

Ψk in Ω, one could rewrite (6) as

α̇k(t) = c2
M
∑

i=1

αi(t)〈φk, ζi〉Ωd
(7)

Let A,B ∈ R
Ny×Nx . Define the inner product seen in (7) as

A ⋆ B := 1
Ns

∑Ny

i=1

∑Nx

j=1 A(i, j)B(i, j) The equation in (7)

can be written explicitly by using ⋆ operator as

α̇k(t) = c2
M
∑

i=1

αi(t) (φk(x, y) ⋆ ζi(x, y)) (8)

Notice that ⋆ operator can be applied over nonoverlapping

subdomains of Ωd. This lets us separate the entries cor-

responding to boundaries without modifying the values of

φk(x, y) ⋆ ζi(x, y) as seen in (9),

α̇k(t) = c2
M
∑

i=1

αi(t)(φk(x, 0) ⋆ ζi(x, 0)) +

c2
M
∑

i=1

αi(t) (φ◦
k(x, y) ⋆ ζ◦i (x, y)) (9)

In above, φ◦
k(x, y) denotes a matrix that is obtained when the

y = 0 boundary elements of φk(x, y) are removed. The kth

component of the first summation above, which is obtained

when i = k, can be separated from the expression and we

obtain (10), which let us embed the boundary conditions into

the expression,

α̇k(t) = c2αk(t)φk(x, 0) ⋆ ζk(x, 0) +

c2
M
∑

i=1

αi(t)(1 − δik)φk(x, 0) ⋆ ζi(x, 0) +

c2
M
∑

i=1

αi(t) (φ◦
k(x, y) ⋆ ζ◦i (x, y)) (10)

At this stage of the modeling, we need to restate the boundary

conditions in such a way that the final expression above can

be incorporated with these conditions. The underlying idea

is straightforward: If (3) is a solution to the PDE in (1), then

is must be satisfied at the boundaries as well. This lets us

write the following
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M
∑

i=1

αi(t)φi(x, 0) = f(x)γ(t) (11)

which can be rewritten as

αk(t)φk(x, 0) = f(x)γ(t) −
M
∑

i=1

(1 − δik)αi(t)φi(x, 0)

(12)

The expression above can be inserted into the first line of

(10) and we explicitly see γ(t), and the following expression

is obtained.

α̇k(t) = c2 (f(x) ⋆ ζk(x, 0)) γ(t) +

c2
M
∑

i=1

αi(t)(φk ⋆ ζi − φi(x, 0) ⋆ ζk(x, 0))

which can be written compactly as

α̇(t) = Aα(t) + Bγ(t) (13)

where α(t) = (α1(t) α2(t) . . . αM (t))T and

Aki = c2(φk(x, y) ⋆ ζi(x, y) − φi(x, 0) ⋆ ζk(x, 0))

and the kth row of the input vector is

Bk = c2(f(x) ⋆ ζk(x, 0)) (14)

This result practically lets us have a non-autonomous

linear dynamical model for the infinite dimensional process

in (1), which constitutes a basis for the finite dimensional

SMO.

A natural question is whether this model recovers the

unforced dynamics, which is obtained by setting γ(t) = 0,

and the steady state dynamics obtained when α̇(t) = 0.

Straightforward manipulations will show that the dynamics

in (6) is recovered in both cases.

As seen clearly, once the finite dimensional model for an

infinite dimensional process is obtained, one might imple-

ment an observer to obtain a useful state information, which

is discussed in the sequel.

III. SLIDING MODE OBSERVER

First we demonstrate that a sliding mode PDE observer

can be proposed while maintaining the stability. Consider

the following process

vt(x, y, t) = c2 (vxx(x, y, t) + vyy(x, y, t)) + Ksgn(u − v)

v(x, 0, t) = f(x)γ(t)

v(1, y, t) = 0, v(x, 1, t) = 0, v(0, y, t) = 0 (15)

where K > 0 stands for the observer gain and we choose the

following Lyapunov function candidate to study the stability

V =
1

2

∫ 1

0

∫ 1

0

(u − v)2dxdy (16)

and evaluate its time derivative as seen below,

V̇ =

∫ 1

0

∫ 1

0

(u − v)(ut − vt)dxdy

= −K

∫ 1

0

∫ 1

0

|z|dxdy +

c2

∫ 1

0

∫ 1

0

z(zxx + zyy)dxdy (17)

where z := u−v is the switching variable. Since the process

under investigation is first order, z = 0 is the sliding manifold

for each (x, y) ∈ Ω. It is straightforward to show that

∫ 1

0

∫ 1

0

zzxxdxdy =

∫ 1

0

(

zzx|
x=1
x=0 −

∫ 1

0

z2
xdx

)

dy

= −

∫ 1

0

∫ 1

0

z2
xdxdy (18)

which is due to the fact that z(1, y, t)zx(1, y, t) −
z(0, y, t)zx(0, y, t) = 0 as z(1, y, t) = u(1, y, t) −
v(1, y, t) = 0 and z(0, y, t) = u(0, y, t) − v(0, y, t) = 0
Likewise we have

∫ 1

0

∫ 1

0

zzyydxdy = −

∫ 1

0

∫ 1

0

z2
ydxdy (19)

which is due to the fact that z(x, 1, t)zx(x, 1, t) −
z(x, 0, t)zx(x, 0, t) = 0 as z(x, 1, t) = u(x, 1, t) −
v(x, 1, t) = f(x)γ(t) − f(x)γ(t) = 0 and z(x, 0, t) =
u(x, 0, t) − v(x, 0, t) = f(x)γ(t) − f(x)γ(t) = 0.

Under these conditions, (17) becomes

V̇ = −K

∫ 1

0

∫ 1

0

|z|dxdy − c2

∫ 1

0

∫ 1

0

(

z2
x + z2

y

)

dxdy < 0

(20)

Since V̇ < 0 is guaranteed, v(x, y, t) → u(x, y, t) as t →
∞, i.e. v(x, y, t) reconstructs u(x, y, t) in a globally stable

fashion. If the process state (u(x, y, t)) is noisy, the observer

filters out the noise and enables us to have a representative

and finite dimensional state information.

An interesting question here is whether this observer is

useful for feedback control purposes. Towards this goal,

recall the fundamental assumption, stating that the M -

term summation can be assumed as the true solution and

the error is negligible. This lets us write v(x, y, t) =
∑M

i=1 βi(t)Φi(x, y), i.e. the dynamical constituents of the

observer are projected onto the spatial eigenfunctions derived

in the modeling stage, and this lets us have M dimen-

sional observer state, β(t). Substituting above expression of

v(x, y, t) into the PDE in (15) yields

M
∑

i=1

β̇i(t)Φi(x, y) = c2
M
∑

i=1

βi(t)Ψi(x, y) +

Ksgn

(

u(x, y, t) −

M
∑

i=1

βi(t)Φi(x, y)

)

(21)
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where βi(t) is the temporal part corresponding to spatial

eigenbasis Φi(x, y). Taking the inner product of both sides

with Φk(x, y) lets us obtain (22),

β̇k(t) = c2
M
∑

i=1

βi(t)〈Φk(x, y), Ψi(x, y)〉Ω + Kσ(t) (22)

where σ(t) = (σ1(t) σ2(t) . . . σM (t))
T

and

σk(t) = 〈sgn

(

u −

M
∑

i=1

βi(t)Φi(x, y)

)

, Φk(x, y)〉Ω

= 〈sgn

(

Ut −

M
∑

i=1

βi(t)φi

)

, φk〉Ωd
(23)

where Ut ∈ Ωd is the snapshot of the process at time t.

Following the modeling procedure discussed before, we end

up with the LD observer given below

β̇(t) = Aβ(t) + Bγ(t) + Kσ(t) (24)

where A and B have been defined in (13)-(14). One should

note that the computation of the term in (23) entails an

infinite dimensional output feedback from the process, Ut,

which is projected onto the eigenbasis, φk, thereby forming

a finite dimensional state information that is the counterpart

of αk(t) := 〈Ut, φk〉Ωd
.

A last remark in this section is about meaning of the Lya-

punov function in (16). Under the presence of the fundamen-

tal assumption, one can write the equalities in (25), which

tells us that the infinite dimensional form of the Lyapunov

function is mapped to a well-known Lyapunov function in

R
M . Therefore the proof of negative definiteness of one

would clearly imply the other as long as the fundamental

assumption holds true. In the next section, we consider the

boundary control of the system by using the state information

from the LD observer.

Vo =
1

2

∫ 1

0

∫ 1

0

(u − v)
2
dxdy

=
1

2

∫ 1

0

∫ 1

0

(

M
∑

i=1

αiΦi −

M
∑

i=1

βiΦi)
2dxdy

=
1

2

∫ 1

0

∫ 1

0

(

M
∑

i=1

eiΦi)
2dxdy

=
1

2

∫ 1

0

∫ 1

0

(

M
∑

i=1

e2
i Φ

2
i +

M
∑

i=1

M
∑

j=1,j 6=i

eiejΦiΦj)dxdy

=
1

2
eTe (25)

IV. SIMULATION RESULTS

In the simulations, we have solved the PDE in (1) with

Crank-Nicholson algorithm. The numerical grid has Nx =
30, Ny = 30 points in x and y directions, final time is

T = 0.5 sec. and the simulation step size in 50µs. The PDE

has f(x) = sin(2πx) as the boundary gain effective along

y = 0 segment of Ω and c = 1 as the thermal diffusivity

parameter. The boundary excitation signal utilized during the

model derivation is given by

γ(t) = sin(2π50t(T − t)) (26)

which is a spectrally rich signal exciting the modes of the

infinite dimensional process. The first four modes (M = 4)

have been chosen and linearly sampled 251 snapshots out

of 1001 were used in the derivation of the LD model. For

these choices, E=99.9989% of the total energy contained in

the samples is preserved in the LD model.

In simulating the process, we have embedded the PDE

solver into the Matlab/Simulinkr environment. We investi-

gate the quantity given by

Q(t) :=

√

√

√

√

M
∑

k=1

(αk(t) − βk(t))
2

(27)

The reason why we check this quantity is to figure out the

observer’s performance. The smaller the squared norm the

closer the states of the observer to the equivalent process

states.

The signals shown in the figure have been perturbed addi-

tively by zero mean Gaussian noise sequences having noise

power 0.002 and the observer receives the noisy information

from the process. This scenario is implemented to assess

the performance of the observer under realistic operating

conditions.
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Fig. 1. The evolution of the variables in time domain

In Fig. 1, the response of the observer, which is the set of

M×1-dimensional state vector, and the corresponding quan-

tities computed by the inner product 〈u(x, y, t), Φi(x, y)〉Ω,

i = 1, 2, 3, 4 are illustrated. The observer gain K is selected

as 1 and a very good reconstruction performance is observed.

As the value of K is increased, quicker convergence can

be observed, alternatively, smaller values lead to slower

convergence speed. The value here was chosen by trial and
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Fig. 2. The evolution of the observer errors
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Fig. 3. Convergence in the initial transient and dependence of performance
on the spectral content

error. As seen from Fig. 1, the initial state of the observer,

β(0) = (10, − 7, 3, − 1)T is driven towards its desired

value very quickly. The two curves in each subplot are almost

indistinguishable and this is a good indicator of performance.

Fig. 2 illustrates the difference between the states con-

structed by the LD SMO and the desired values. The tem-

poral evolution is close to zero in all four states. Another

observation in this figure is the evolution of the error in terms

of the spectral content of the boundary excitation. Clearly

the external excitation given by (26) has relatively higher

frequencies at times close to zero and T , and the errors seen

in Fig. 2 have a tendency to increase when the boundary

excitation has components at higher frequencies, which is

particularly visible in the top left subplot of Fig. 2. This will

be explored further in the below discussion.

In Fig. 3, the convergent nature of the initial behavior as

well as the above emphasized issue of spectral dependence is

seen compactly for all four error terms. The quantity plotted

y
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Fig. 4. The system output (left), noisy output as an input to the observer
(middle) and the output reconstructed via states provided by the sliding
mode observer

in this figure is defined in (27). Clearly the observer functions

well when the excitation signal changes slowly.

Fig. 4 depicts some snapshots from the noiseless process

output, noisy process output, which is an input to the

observer, and the response of the observer with the available

eigenbasis are shown at period of 100msec. The results

emphasize that the observer functions well in removing

the spurious content caused by the noise components and

provides a useful state information in finite dimensions.

The last issue in this section is the study of determining

the performance of the observer when the spectral qualities

of the input signal changes. We test the performance of the

observer with γ(t) = sin(2πfct) and consider 1Hz, 2Hz,

5Hz, 10Hz, 20Hz, 50Hz and 100Hz as fc. Furthermore,

we explore the performance with varying powers of noise

sequences corrupting the process output and the observer

input. For these experiments, we consider the noise powers

pni
= pno

∈ 0.002, 0.02, 0.2, 2. In Fig. 5, a bar chart is

given to summarize the obtained results. The height of each

bar is the supremum value of the quantity in (27) measured

after the end of the initial transient regime, approximately

after the first 100 msec.

The results seen in the figure stipulate that for low

noise powers and for excitation signals having small fc, the

presented SMO displays outstanding performance. As the
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Fig. 5. The dependence of the observer performance on the noise level
and the excitation frequency

frequency increases, the performance decreases gradually.

Except those obtained with pni
= pno

= 2, all results up

to fc = 50Hz are quite promising. If one draws the Fast

Fourier Transform (FFT) plot of the signal used during the

model derivation (see (26)), it is seen that the signal has its

dominant components mostly below 50Hz. This empirical

result emphasizes the usefulness of the LD SMO for ex-

citations that have dominant spectral content approximately

below 50Hz.

V. CONCLUSIONS

This paper focuses on the design of a low dimensional

(LD) sliding mode observer. First a LD model of the process

under investigation is obtained and it is assumed that the

LD model matches the process response precisely. The

boundary term is separated in the autonomous LD model

such that the LD model has an external input explicitly. This

procedure yields a set of basis functions, called eigenbasis,

and a finite dimensional ODE synthesizing the temporal

content. An infinite dimensional (PDE) observer is proposed

afterwards and utilizing the constructed eigenbasis, a LD

counterpart of the SMO is obtained. Utilizing the Lyapunov

stability conclusions, the paper demonstrates the stability and

equivalence issues under the fundamental assumption.

The first important issue regarding the entire design ef-

fort is the role of the fundamental assumption, which is

the underlying fact in most POD based modeling studies.

This assumption emphasizes that the flow is dominated by

coherent modes typically satisfied in the heat flow problems.

The latter part is further crucial as it states that the results ob-

tained from the numerical solver are admissibly descriptive.

from a practical point of view, the assumption makes the LD

model achievable yet with some uncertainties depending on

the chosen number of modes (M ).

The second important conclusion is the dependence of the

SMO’s performance on the operating conditions. It is seen

in the simulations that the observer performance degrades

if the boundary excitation has high frequency components.

This particularly stems form the fact that the LD observer is

generated from the LD model of the process, which depends

upon the selection of boundary excitations. If the excitations

leading to the LD model are spectrally rich, then the obtained

LD model performs well for the excitations that fall within

the spectral coverage of the signal used during the derivation

of the LD model.

Lastly, the choice of the number of modes (M ) deserves

some attention. Increasing the number of modes in POD

method may contribute to the performance of the LD SMO,

however, as the mode number increases, the contribution of

the newly added state is expected to be much smaller than

the smallest of the available ones. This because of the typical

logarithmic decay of the eigenvalues of the correlation matrix

L. Besides, the addition of new states to the LD model

or SMO will contribute to the computational complexity

inevitably.

Overall, the paper introduces a LD SMO performing well

with slowly changing excitations. The LD SMO has four

states, which emphasizes the simplicity.

Acknowledgments

This work was supported in part Turkish Scientific Council
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