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Abstract— Process engineering is an interesting field for con-
trol researchers as the problems are based on the physics and
chemistry of continuously operating and nonlinear phenomena.
Oftentimes the models of processes are nonlinear and are
composed of few differential equations displaying a rich set
of responses. This paper considers the sliding mode control
of a biochemical process within the context of model reference
control. The considered process was introduced as a benchmark
process displaying several challenges making it an interesting
test bed. The cell mass of the process is desired to follow the
output of a first order reference model, and a sliding mode

controller is designed to observe the model following property.
The results demonstrate that the system responds quickly and
converges accurately towards what is prescribed.

I. INTRODUCTION

The desire of obtaining a good closed loop response in

chemical process engineering is a core issue entailing a thor-

ough investigation of the process to be controlled. In many

instances, the process dynamics is described by few ordinary

differential equations yet the presence of limit cycles and

the inextricably intertwined nature of the process variables

make it difficult. One alternative is to linearize the system

dynamics then to utilize the tools of classical control theory,

however, the performance obtained through linear control

actions is typically limited and sometimes unsatisfactory.

Nonlinear control methods can provide better closed loop

responses and this aspect of chemical processes make them

good test beds for benchmarking. A review of nonlinear

control techniques on chemical processes is presented in [1],

where the feasibility and efficacy of nonlinear control laws

are discussed with an emphasis on relevant control challenges

displayed by chemical processes.

In [2], Ungar defines a Bioreactor Benchmark Problem

that excellently fits in the context. The state of the process

is described by two dimensionless variables named the cell

mass denoted by c1 and the amount of nutrients denoted

by c2, (See [2], [3] and [4], [5]). The goal is to maintain

the cell mass at desired levels by altering the inflow rate

at a rate equal to outflow rate keeping the reaction volume

constant. The challenges associated with the control of this

process are the nonlinearity enabling the emergence of a rich

set of dynamical regimes, instabilities caused even by tiny

variations in the process variables and the presence of a long

control sampling interval in the feedback loop.

In the past, this process was used several times for

feedback control purposes. [4] consider this problem for de-
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veloping a nonlinear control law forcing the process states to

those of a first order linear one. Feedforward neural networks

are used to build the nonlinear function in the control law and

the plant is forced to follow a reference model. Feldkamp et

al, [3], study this problem in the context of demonstrating the

efficacy of a neural network learning algorithm and consider

the control problem about a setpoint in the stable region, an-

other setpoint in the unstable region and a transition between

these regions. The controller proposed in our study forces the

system toward the stable region as will be discussed in the

sequel. Brengel et al, [6], propose a multi step nonlinear

controller based on predictive control theory and validate

the performance of the closed loop control system on a

variant of the model considered here. The authors emphasize

the preferability of operating at highest possible cell mass

solutions, which are desired to be reasonably away from the

region of periodic oscillations. In [7], it is emphasized that

the controller design for the bioreactor benchmark problem

addressed here is a challenge due to the nonlinearity and the

a set of complicated regimes that arise due to it. Clearly,

the works mentioned above motivate us to position the merit

and effectiveness of sliding mode control techniques in the

control of continuously stirred tank reactors. In this paper,

we consider the problem of model following in the cell mass

and we analyze the limitations of the design carried out with

a thorough discussion.

Sliding Mode Control (SMC), also known as Variable

Structure Control, is a well established approach ensuring

some degrees of robustness against uncertainties in the

feedback loop. The underlying idea is to create a sliding

subspace, which is an attractor due to the philosophy of the

design, [8], [9]. SMC technique, which has many successful

applications in motion control systems, is also applied for

feedback control of chemical processes. See for example

[10], where the process is modeled by a partial differential

equation, [11], where the design is based on a first order

model including dead time, and [12], where a second order

sliding mode control is performed after feedback lineariza-

tion. One fact in all these studies needs emphasis: The

sliding mode controller drives the system toward the sliding

manifold and maintains the evolution on that loci, which

is stable by the design and the error converges the origin

of the phase space. Once the trajectories are confined to the

sliding manifold, the control system displays some degrees of

robustness against disturbances and parameter variations in

system dynamics. This response is called invariance property

of sliding mode control, [8], [13]. The underlying idea in this

paper is to implement a robust model reference controller
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Fig. 1. Reaction tank with equal inflow and outflow rates

for the bioreactor benchmark problem. The reaching law

approach in [8] is followed in postulating the control law.

This paper is organized as follows: The second section

introduces the bioreactor benchmark problem and analyzes

its behavior. Next we present the design of the model

reference sliding mode control. The fourth section is devoted

to the operating conditions, simulation results and their

interpretation. The concluding remarks are given at the end

of the paper.

II. BIOREACTOR BENCHMARK PROBLEM

The bioreactor is a tank in which the biological cells are

mixed with nutrients and water as shown in Fig. 1. The cells

and nutrients are in a dynamical interaction modeled by (1)

and (2), where c1 denotes the cell mass while c2 stands

for the nutrient amount. The process is continuously fed by

pure water and the variable characterizing the inflow rate

is denoted by w. In order to maintain the reaction volume

constant, the contents of the tank is removed at a rate equal

to the inflow rate, z, which is composed of a mixture of

cells, nutrients and water. The goal of the control problem

is to achieve the tracking of a desired temporal evolution

in cell mass. The state variables of the process and limited

numerical information about the nonlinearities seen below

are assumed to be available for constructing the controller.

ċ1 = −c1w + c1 (1 − c2) e
c2

γ (1)

ċ2 = −c2w + c1 (1 − c2) e
c2

γ

1 + β

1 + β − c2
(2)

where the state variables are constrained by Ω := 0 ≤

c1, c2 ≤ 1. In the nominal plant model given above, the

growth rate is characterized by the parameter β = 0.02 and

the nutrient inhibition parameter is given by γ = 0.48.

In Fig. 2, several trajectories are shown for a set of initial

conditions denoted by a circle. Each subplot depicts the

evolution of the system at a constant inflow rate indicated

on the top. Depending on the value of the inflow rate, the

attractors change their locations and new attractors emerge

as well. One visible one is a limit cycle which becomes

apparent when w = 0.75. When w = 0.8290, the system

changes its qualitative behavior radically. Computing the

equilibrium values corresponding to this inflow rate, one

obtains c1 = 0.1331 and c2 = 0.8626. The eigenvalues

of the linearized system of equations at this point stipulate

that in the increasing direction of c2, the system undergoes

Hopf bifurcation at this operating point and turns into an

unstable one displaying spontaneous oscillations due to the

limit cycle. In this regime, cell mass varies in between

0.1219 and 0.1466 while the nutrient amount fluctuates in

between 0.8243 and 0.8996. At the points of crossing the

imaginary axis, the eigenvalues of the linearized model are

approximately equal to 0 ± j1.7543, from which we infer

that the self sustained oscillations are quite fast.

In Fig. 3, the limit cycle and the convergence of the

neighboring trajectories are illustrated for w = 1.2. In fact,

limit cycles can occur for all values of admissible inflow

rates, i.e. 0 ≤ w ≤ 2. According to Bendixson theorem (See

[14], [15]), since the quantity

H :=
∂

∂c1

(

−c1w + c1(1 − c2)e
c2

γ

)

+

∂

∂c2

(

−c2w + c1(1 − c2)e
c2

γ

1 + β

1 + β − c2

)

= −2w + h(c1, c2) (3)

does not vanish and does not change sign in Λ ⊆ Ω, no

limit cycles can exist entirely in Λ. For a given constant

w, the curve of sign change for H is moved to the curve

described by h(c1, c2) = 2w. Therefore one should run the

quantity 2w from 0 to 4 and determine where the sign change

occurs. In Fig. 4, the regions where the limit cycles cannot

lie entirely within are depicted as white regions, termed Λ
above, and the value of 2w is contoured for 2w equals to

0, 2, 3 and 4. According to this result, we figure out that

it is possible to have other limit cycle trajectories in the

system dynamics and Λ is a significantly wide subspace of Ω.

From the control engineering point of view, this practically

tells us that during the controlled operation of the process,

many attractors and/or repellers can be created or destroyed

depending on the value of w and the controller must be

overcoming the dynamical influence of such difficulties

while meeting the performance specifications and revealing

disturbance rejection.

Consider the process at the steady state, i.e. ċ1 = 0
and ċ2 = 0. This yields the steady state control action

wss = (1 − c2)e
c2

γ and with this control signal ċ2 =

(1 − c2)e
c2

γ (−c2 + c1g), i.e. when the steady state is

reached c2 is either 1 or a value that satisfies g = c2/c1

where g(c2) := 1+β
1+β−c2

. In the top subplot of Fig. 5, the

parabolic (lower) curve depicts the solution obtained from

−c2 + c1g = 0. The same subplot also depicts the value

of steady state control action wss. This figure stipulates that

when the steady state is reached, the cell mass cannot assume

values larger than 1+β
4 = 0.255. This practical constraint

was also highlighted in [3] and [4]. The bottom subplot

of Fig. 5 depicts how an arbitrary value of (c1(t0), c2(t0))
moves under the control action wss. Few comments can be

made for the motion for t > t0 with wss. If c1(t0) > 1+β
4

then the final value of the state vector is (c1(∞), c2(∞)) =
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Fig. 2. The evolution of the process state for different initial conditions
and at different inflow rates. The trajectories are for 20 seconds time.

(c1(t0), 1). If c1(t0) < 1+β
4 , then any initial condition that

is below the curve defined by −c2 + c1g = 0 moves in the

horizontal direction and stops on the left segment of the curve

−c2+c1g = 0, which is shown in the bottom subplot of Fig.

5. Alternatively, the initial conditions that are above the curve

defined by −c2 + c1g = 0 move right until an equilibrium is

reached, i.e. those satisfying c2(t0) < 1+β
2 converge the left

segment of the curve −c2 + c1g = 0, however those with

c2(t0) > 1+β
2 stop at (c1(∞), c2(∞)) = (c1(t0), 1). At the

point (c1(t0), c2(t0)) =
(

1+β
4 , 1+β

2

)

, the eigenvalues of the

linearized system are both equal to zero. According to the

behavior indicated by the vector field (flow), we conclude

that this point is a half stable point, i.e. the trajectories close

to this point but below −c2 + c1g = 0 behave different from

those above −c2 + c1g = 0. This discussion with the flow

illustrated in Fig. 5 clarifies the stability of the equilibrium

states thoroughly.

A last point that should be emphasized is the effect of

sampling in the control loop. In [2], the equation system in

(1) is discretized by Euler method and a step size ∆ = 0.01
sec. is used. The sampling period for the control signal,

called macro time steps ([3]) is equal to 50∆ sec., which is

long enough for the bioreactor process to develop deviations

and spontaneous oscillations from a desired setpoint or a

trajectory. In this paper, we test the performance of the

proposed controller by operating it at the same rates too.

In [2], Ungar points out that although this system is
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not a completely realistic model of any bioreactor, as seen

from the presented discussion, the system considered in this

paper displays several challenges highlighted also by [7]

with a similar motivation. Due to the presented properties

of the system, the model constitutes a good candidate for

scrutinizing the merits and effectiveness of nonlinear control

laws.

III. SLIDING MODE CONTROL OF THE PROCESS

Let f := c1(1 − c2)e
c2

γ and g := 1+β
1+β−c2

. Let

ċ1m = −λ(c1m − r), λ > 0 (4)

be the reference model and denote the command signal by r.

Defining s := c1−c1m as the switching variable, the control

law given by

w =
1

c1
(f + λ(c1m − r) + ζsgn(s) + ηs) (5)
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ensures ṡ = −ζsgn(s)−ηs, which renders the system against

the attractors and repellers, if any. The control law above it

sure that the cell mass reaches the model output in finite

time satisfying th < |s(0)|
ζ

and results in

ċ2 =

(

g −
c2

c1

)

f −
c2

c1
(λ(c1m − r) + ζsgn(s) + ηs) (6)

in the closed loop. Clearly, the desired cell mass is reached

when t = th, indicating s = 0. For t ≥ th, s = 0 is

maintained, i.e. c1 = c1m and the following equalities can

be written;

ċ2 =

(

g −
c2

c1m

)

f +
c2

c1m

ċ1m (7)

or alternatively,

ċ2c1m − ċ1mc2

c2
1m

=
1

c1m

(

g −
c2

c1m

)

f (8)

d

dt

(

c2

c1m

)

=

(

g −
c2

c1m

)

(1 − c2)e
c2

γ (9)

Defining u := c2

c1m

as the ratio of nutrients per unit of

(prescribed) cell mass, the equality in (9) can be rewritten

compactly as

u̇ = (g − u)(1 − c2)e
c2

γ (10)

According to the Fig. 5, the equilibrium value of (10) is a

global attractor within Ω and a useful set of equilibria is

reached only when u = g holds true.

Recall that the expression (1 − c2)e
c2

γ was termed wss,

the steady state control action. Rewriting (10) as

u̇ = −wssu + wssg (11)

shows that u is forced to follow g as long as 0 ≤ c2 < 1
holds true. This conclusion is due to the nonnegativeness of

wss. If c2 = 1 for some time, then wss = 0 and u̇ = 0, i.e.

no change in u occurs as long as c2 = 1 is satisfied. But

any nonzero inflow rate causes 0 ≤ c2 < 1, the condition of

the theorem is satisfied, and u settles down to a steady state

value determined by u = g.

In Fig. 6, several values of u̇ are contoured over a vector

field. For every value of c2, the illustrated vector field

illustrated indicates that u tends to converge to a constant

value on the thick contour labeled 0 in the figure. This curve

describes the steady state u̇ = (g − u)(1 − c2)e
c2

γ = 0, and

is a global attractor within Ω. We visualize the behavior for

0 ≤ u ≤ 15 for better illustration. Due to the smoothness of

the involved expressions, the same behavior is seen for large

values of u too.
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Fig. 6. Qualitative behavior of u versus c2

IV. SIMULATION STUDIES

The control law in (5) is realized under the following

operating conditions.

• The observations for the state variables c1(t) and c2(t)
are noisy. The Gaussian noise sequences corrupting the

state variables lie within the interval [−0.003, 0.003]
with a probability very close to unity. The noise in the

observations is a difficulty introducing uncertainties that

364



necessitates the design and implementation of a robust

controller.

• In [2], it is emphasized that small variations in the

values of γ and β lead to significant deviations from

the target cell mass. For example, given perfect mea-

surements, 2% change in γ and 20% change in β may

cause 50% deviation in the cell mass, c1(t), (See [2],

[6]). In this paper, we consider the nominal values

of these parameters for the design of the controller

and in the justification of the proposed scheme, we

study these parameters with some variation in time. The

necessity for investigating the behavior under parameter

variations is tightly relevant to the need of exploring the

controller performance under extreme conditions. The

value of γ changes within the interval [0.4634 , 0.4966],
which means maximum 3.47% change in the nutrient

inhibition parameter. Likewise, β displays a variation

in [0.1276 , 3.5717] × 10−2 indicating a maximum of

93.62% deviation from the nominal value given by

β = 0.02. Clearly the chosen profiles for the variables

and the presence of measurement noise require certain

degrees of robustness to meet the stability and perfor-

mance requirements.

• Another difficulty is the large initial error in the cell

mass. If the initial value of e1 is large, then the

controller must force it towards zero with a sequence

of admissible inflow rates, w(t), and must maintain

the stability during the transient phase. This paper also

addresses the issue of handling the large initial errors. In

the simulations, we have chosen c1m(0) = 0, c1(0) =
0.4, c2(0) = 0.7 and r(0) = 0.0175, which perfectly

enable us to demonstrate the effect of the initial errors.

• The choice of the reference signal is another important

issue in closed loop control. The desired cell mass

(dashed curve) claims the tracking of a discontinuous

desired profile to see how the controller stabilizes the

system. The command profile studied in this paper

enables us to figure out the qualitative and quantitative

observations arise during the reaching phase especially

at different cell mass (c1(t)) levels.

• In order to avoid the undesired chattering phenomenon

arising because of the measurement of a quantity, which

is very close to zero, we use sgn(s) ≈ s
|s|+δ

, with δ =
0.05.

• Finally, the effect of actuation interval for the controller

will be emphasized. Regarding this issue, [2] defines

T = 50∆ = 0.5 sec. as the control interval. In

other words, the inflow rate maintains its value during

nT ≤ t < (n + 1)T , where n is a discrete time index.

Consequently, the computation of the control signal

applied during this interval is based on the observations

at t = nT . The practical drawback of such an actuation

scheme is the following: As discussed in the second

section and shown in Fig. 2, the system may get trapped

to a limit cycle or an attractor during this time and

this makes it necessary to implement a perfect flow rate

management strategy.

The other parameters of the controller are ζ = 0.05
and η = 0.1, which have been set after few trials. The

reference model has λ = 0.1. As shown in the top subplot

of Fig. 7, the cell mass (solid curve) closely follows the

desired cell mass profile (dashed curve). The middle subplot

depicts the discrepancy between the process response and

the model output, i.e. e1(t) = c1(t) − c1m(t), or in other

words, the value of the switching function, s(t). The results

seen emphasize that very small model following error is

maintained. The bottom subplot of the figure depicts the

evolution of nutrient amount, c2(t). The variable evolves

bounded as claimed in the derivation of the controller. The

initial transient regime in the cell mass is illustrated in a

window at the bottom of the figure, where it is convincingly

apparent that hitting occurs around th = 9.4 sec. The

theoretical value is th ≤
|s(0)|

ζ
≈ 8 sec. since s(0) = 0.4.

A substantially important measure for practical applicabil-

ity is the cost of physical realizability of the signals produced

by the controller. The time evolution of the inflow rate

corresponding to the emergence of the behavior shown in

Fig. 7 is illustrated in Fig. 8. Clearly the signal is smooth

enough to realize as shown also in the window plots. It is

worthwhile to stress that the control signal is saturated for

a very short while only when there are step changes in the

command signal. During the rest of the operation, the control

signal is smooth enough and the fluctuations are convergent.

These prominent features of the control signal demonstrate

that the controller possesses highly desirable characteristics

such as good disturbance rejection capability and guaranteed

tracking precision under the presence of uncertainties. The

use of sign function smoothing introduces a thin boundary

layer whose thickness is determined by δ, [16]. If s(t) is

within the boundary layer, then it approaches the origin

smoothly. This modification of the original control law gives

a very slight rise to the value of th, which is found to

be acceptable. From a practical point of view, smoothness

of the control signal makes it possible to implement the

control law with hardware having no or little extraordinary

properties at the cost of giving very slight concessions from

the performance.

A last quantity to monitor is given by g −
c2

c1

, which is

forced to zero. Referring to Fig. 9, we have shown that the

control law in (5) forces all trajectories shown in Fig. 6 to

the locus described by g− c2

c1

= 0, which explains the result

shown in Fig. 9. The window plot in the figure depicts the

initial transient regime, which very quickly converges to zero

and the motion thereafter takes place in the vicinity of zero,

i.e. g −
c2

c1

≈ 0 is maintained.

V. CONCLUSIONS

Model reference sliding mode control of a biochemical

process, introduced as a benchmark problem, is considered.

Limitations and the dynamical properties of the process are

studied, then a first order reference model is chosen and

the cell mass, which is one of the two state variables, is

asked to follow the output of the chosen reference model.

The discontinuous control law enforcing the sliding regime
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has been shown to result in bounded evolution in the nutrient

amount, which is the other state variable. The closed loop

control system has been tested under the presence of several

difficulties. Namely, the large initial errors, time varying

process parameters, observation noise are those deserving

emphasis. The controller is observed to be capable of driving

the cell mass to its desired value prescribed by the reference

model quickly and maintaining the model following accu-

racy.
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