BBM401-Lecture 1: Strings, Languages, and Regular Expressions

Lecturer: Lale Özkahya

Resources for the presentation: https://courses.engr.illinois.edu/cs498374/lectures.html

Definitions for strings

- Σ = finite alphabet of symbols Σ = {0,1}, or Σ ={a,b,c,...,z}, or Σ =all ascii characters
- *string* or *word* = **finite** sequence of symbols of Σ
- length of a string w is denoted |w|. |cat|=3
- the *empty string* is denoted " ϵ ". $|\epsilon| = 0$.

Conventions

a, b, c, ... denote strings of length 1; elements of Σ w, x, y, z, ... denote strings of length 0 or more A, B, C, ... denote sets of strings

Much ado about nothing

- ε is a string containing no symbols. It is not a set.
- {ε} is a *set* containing one string: the empty string ε. It is a *set*, not a string.
- Ø is the *empty set*. It contains no strings.
- {Ø} is a set containing one element, which itself is a set with no elements.

Concatenation & its properties

- If x and y are strings, xy denotes the concatenation
- associative: (uv)w = u(vw) and we write uvw.
- NOT commutative: ab ≠ ba
- identity element ε : $\varepsilon w = w \varepsilon = w$
- length (can be defined inductively)
 |ε| = 0

$$|a| = 1$$

Substrings, prefix, suffix, exponents

- v is a <u>substring</u> of w iff there exist strings x, y, such that w=xvy.
 - If $x=\varepsilon$ then v is a prefix of w.
 - If $y=\varepsilon$ then v is a suffix of w.
- If w is a string, then w^i is defined inductively by:

$$w^{i} = \varepsilon \text{ if } i=0$$

 $w^{i} = ww^{i-1} \text{ if } i > 0.$

e.g. $(blah)^4 = blahblahblah$

Set Concatenation

 If X and Y are sets of strings, then $XY = \{xy \mid x \text{ in } X \text{ and } y \text{ in } Y\}$

e.g. $X = \{fido, rover, spot\}, Y = \{fluffy, tabby\}$

then XY ={fidofluffy, fidotabby, roverfluffy, ...}

Σ^n , Σ^* , and Σ^+

• Σ^n defined as all strings over Σ of length n inductively:

$$\Sigma^{0} = \{\varepsilon\}$$

$$\Sigma^{n} = \Sigma \Sigma^{n-1} \text{ if } n > 0$$

• Σ^* is the set of all finite length strings:

$$\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$$

• Σ is the set of all nonempty finite length strings:

$$\Sigma^+ = \bigcup \Sigma^n = \Sigma \Sigma^*$$

Σ^n , Σ^* , and Σ^+

Examples

- $\Sigma = \{0,1\}$. Then $\Sigma^2 = \{00,01,10,11\}$. $\Sigma^0 = \{\epsilon\}$
- $\Sigma = \{a, b, c, ...z, A, ..., Z, ,-,+,... < other symbols>\}.$
- $-U_{n<100} \Sigma^n$ contains all English words (and more)
- $-\Sigma^*$ contains all books sold by Amazon (and more)
- $\Sigma = \emptyset$. Then $\Sigma^1 = \Sigma^2 = ... = \Sigma^{100} = \emptyset$

$$\Sigma^0 = \{\varepsilon\}$$

$$\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$$

• What is the cardinality of Σ^n ?

$$|\Sigma^n| = |\Sigma|^n$$

• What is the cardinality of Σ^* ?

$$|\Sigma^*| = \aleph_0 = |N|$$
 (provided that Σ is nonempty)

- What is the length of the longest element of Σ^* ?
- Are there any infinitely long strings in Σ^* ?

NO! Σ* has strings of arbitrary size, but no single unbounded (infinite) string

Canonical Order

• Enumerate Σ^* in order of increasing length strings and for strings of same length, in dictionary order

```
e.g. \{0,1\}^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, ...\}
\{a,b\}^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, ...\}
```

Inductive Definitions

 Often strings and functions on strings are defined inductively.

and then $w^R = u^R a$

• Example: w^R , the reverse of word w is defined:

if
$$|w| = 0$$
, then $w = \varepsilon$, and $w^R = \varepsilon$

if
$$|w| > 0$$
, then $w = au$ for some a in Σ and u in Σ^*

with
$$|u| < |w|$$

$$(abc)^R = (bc)^R a = (c^R b)a = ((c\varepsilon)^R b)a = ((\varepsilon^R c)b)a = cba$$

$$=((\varepsilon^{n}c)b)a=cba$$

Inductive proofs follow inductive defs

Theorem: For any strings u and v, $(uv)^R = v^R u^R$ e.g. $(dogcat)^R = (cat)^R (dog)^R = tacgod$

```
Proof: by induction.

On what??

|uv| = |u| + |v| ?

|u| ?

|v| ?

|u| and in induction, do an inner induction on |v| ?
```

Induction on |u|

Proof: by induction on |u| is most natural

Base case: If
$$|u| = 0$$
, then $u = \varepsilon$, and for any v , $(uv)^R = (\varepsilon v)^R = v^R = v^R \varepsilon = v^R \varepsilon^R = v^R u^R$

Inductive Step

• Assume for any u of length < n that: for all v, $(uv)^R = v^R u^R$

• Let *u* be an arbitrary string of length *n*.

Then u = ay for some a in Σ and |y| < n

$$(uv)^R = ((ay)v)^R$$
 because $u = ay$
 $= (a(yv))^R$ because concatenation is associative
 $= (yv)^R a$ by inductive definition of reverse
 $= (v^R y^R) a$ applying inductive hypothesis $(|y| < n)$
 $= v^R (y^R a)$ because concatenation is associative
 $= v^R (ay)^R$ by inductive definition of reverse
 $= v^R u^R$ because $u = ay$

Induction on |v|

- Base cases need |v| = 0 or 1.
- Assume for any v of length < n that: for all v, $(uv)^R = v^R u^R$
- Let v be an arbitrary string of length n > 1. Then v = ax for some a in Σ and |x| < n

Then
$$(uv)^R = (u(ax))^R$$
 because $v = ax$
 $= ((ua)x)^R$ because concatenation is associative
 $= x^R(ua)^R$ applying inductive hypothesis $(|x| < n)$
 $= x^R(a^Ru^R)$ applying inductive hypothesis $(|a| < n)$
 $= x^R(au^R)$ $(a=a^R)$ via definition of reverse)
 $= (x^Ra)u^R$ because concatenation is associative
 $= (ax)^Ru^R$ by inductive definition of reverse
 $= v^Ru^R$ because $v = ax$

Languages

- If Σ is a (finite) alphabet, then a language is any subset of Σ* [often, Σ is clear from context]
- Thus, a language is just a set of strings (words)
 Examples
 - {ε}
 - $-\{w: |w| > 5\}$
 - {w: w is a syntactically correct Python program}
 - {w: w is the text of a book in the Library of Congress}
 - Ø

- The *complement* of a language *L* is $\overline{L} = \Sigma^* L$ (where A B is set subtraction)
- L^n , L^* , and L^+ defined as were Σ^n , Σ^* , and Σ^+ note that a word in L^n is the concatenation of *n* possibly different words in *L*.

Boundary conditions: what is $\{\epsilon\}^*$? what is \emptyset^* ?

The Study of Languages is Important

- A fundamental computing problem:
 - Given (some description of) L, and w, is w in L?
- Examples
 - H = {<G> | <G> encodes a graph that contains a Hamiltonian cycle}
 - $-G = \{n \mid n \text{ is even and is the sum of two primes}\}\$ Goldbach's conjecture: $G = \{all \text{ even numbers } > 2\}$
 - $-P = \{p \mid p \text{ is a Python program that for any input will terminate properly}\}$

Regular Expressions

- a way to denote the regular languages
- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep)
 - compilers: lexical analysis
 - compact way of representing sets of strings
- dates back to 50's: Stephen Kleene, who has a star named after him*

^{*} The star named after him is the Kleene star "*"

Inductive Definition

A regular expression r over alphabet Σ is one of the following:

Base cases

$$\emptyset$$
 denotes the language $L(\emptyset) = \emptyset = \{\}$

$$ε$$
 denotes the language $L(ε) = {ε}$

$$a$$
 for a in Σ, denotes the language $L(a) = \{a\}$

Inductive Definition

A regular expression ${\bf r}$ over alphabet Σ is one of the following:

Inductively defined cases

 $(r_1)^*$

If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 , then

$$(r_1 + r_2)$$
 is a regular expression denoting $R_1 \cup R_2$
 (r_1r_2) is a regular expression denoting R_1R_2

is a regular expression denoting $(R_1)^*$

Compare with regular languages

REGULAR LANGUAGES

- Ø regular
- {ε} regular
- {a} regular for a in Σ
- $R_1 \cup R_2$ regular if both are
- R_1R_2 is regular if both are
- R* is regular if R is.

REGULAR EXPRESSIONS

- Ø denotes Ø
- ε denotes {ε}
- **a** denotes {a}
- $\mathbf{r_1} + \mathbf{r_2}$ denotes $R_1 \cup R_2$
- $\mathbf{r_1}\mathbf{r_2}$ denotes R_1R_2
- **r*** denotes *R**

Regular expressions denote regular languages (they show the operations used to form the language)

Parentheses

- Omit parentheses by adopting precedence order: *, concat, +. E.g., $r^*s + t = ((r^*)s)+t$
- Omit parentheses by associativity of each of these operations. E.g., rst = (rs)t = r(st)

Superscript +

For convenience, define r⁺ = rr^{*}
 so if r denotes language R, then r⁺ denotes R⁺

Other notation

- r + s, r U s, and r s all denote the "or" or union
- rs is sometimes written res

Examples

- (0+1)*001(0+1)*
 - strings with 001 as a substring
- 0*+ (0*10*10*10*)*
 - strings with a number of 1's divisible by 3
- Ø0
 - concatenation of anything in here $\{\}$ with anything in here $\{0\}$, so = $\{\}$ = \emptyset (no strings may be so formed)
- (ε+1)(01)*(ε+0)
 - alternating 0s and 1s
- (ε+0)(1+10)*
 - strings without two consecutive 0s

Challenge: create regular expressions

• bitstrings with either the pattern 001 or the pattern 100 occurring somewhere

one answer: $(0+1)^*001(0+1)^* + (0+1)^*100(0+1)^*$

• bitstrings with an odd number of 1s

one answer: 0*10*(0*10*10*)*

Real challenge: bitstrings with an odd number of 1s AND an odd number of 0s

Regular Expression Identities

- r*r* = r*
- $(r^*)^* = r^*$
- rr* = r*r
- (rs)*r = r(sr)*
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = ...$

An inductively defined language

Define L over $\{0,1\}^*$ by:

- $-\epsilon$ is in L
- if w is in L, then 0w1 is in L

What do strings in *L* look like?
Give a characterization of *L* and prove it correct.
Can you find a regular expression for *L*?

Conjecture:
$$L = \{0^i 1^i : i \ge 0\}$$

How can we prove this is correct?

(b) $L \supseteq \{0^i 1^i : i \ge 0\}$

(a)
$$L \subseteq \{0^i 1^i : i \ge 0\}$$

$L \subseteq \{0^i 1^i : i \ge 0\}$

Show by induction on |w|, that if w is in L, then w is of the form $0^{i}1^{i}$.

Base case: |w| = 0.

Then $w = \varepsilon = 0^0 1^0$

Let n > 0, and assume for all k < n that for any w in L with |w| = k, w is of form $0^{i}1^{i}$

Inductive step

Now consider arbitrary w in L, with |w| = n.

Then w=0u1 where u in L has size n-2 < n (by definition of L)

By induction, u is of form $0^{i}1^{i}$.

Then $w = 0u1 = 00^{i}1^{i}1 = 0^{i+1}1^{i+1}$, the required form

$L \supseteq \{0^i 1^i : i \ge 0\}$

Show by induction on |w|, that if w is of the form $0^{i}1^{i}$, then w is in L.

Base case: |w| = 0.

Then $w = 0^0 1^0 = \varepsilon$, which is in L by definition

Inductive step:

Let n > 0, and assume for all k < n that $0^k 1^k$ in L $0^n 1^n = 00^{n-1} 1^{n-1} 1 = 0u 1$, with u in L by induction Since u in L, so is $0u 1 = 0^n 1^n$ by definition of L