
BBM401-Lecture 10: Normal Forms and Grammars

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs373/fa2010/



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a
CFG in a normal form.

Normal Forms

A grammar is in a normal form if its production rules have a
special structure:

Chomsky Normal Form: Productions are of the form A→ BC
or A→ a

Greibach Normal Form Productions are of the form A→ aα,
where α ∈ V ∗

If ε is in the language, we allow the rule S → ε. We will require
that S does not appear on the right hand side of any rules.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a
CFG in a normal form.

Normal Forms

A grammar is in a normal form if its production rules have a
special structure:

Chomsky Normal Form: Productions are of the form A→ BC
or A→ a

Greibach Normal Form Productions are of the form A→ aα,
where α ∈ V ∗

If ε is in the language, we allow the rule S → ε. We will require
that S does not appear on the right hand side of any rules.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a
CFG in a normal form.

Normal Forms

A grammar is in a normal form if its production rules have a
special structure:

Chomsky Normal Form: Productions are of the form A→ BC
or A→ a

Greibach Normal Form Productions are of the form A→ aα,
where α ∈ V ∗

If ε is in the language, we allow the rule S → ε. We will require
that S does not appear on the right hand side of any rules.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a
CFG in a normal form.

Normal Forms

A grammar is in a normal form if its production rules have a
special structure:

Chomsky Normal Form: Productions are of the form A→ BC
or A→ a

Greibach Normal Form Productions are of the form A→ aα,
where α ∈ V ∗

If ε is in the language, we allow the rule S → ε. We will require
that S does not appear on the right hand side of any rules.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a
CFG in a normal form.

Normal Forms

A grammar is in a normal form if its production rules have a
special structure:

Chomsky Normal Form: Productions are of the form A→ BC
or A→ a

Greibach Normal Form Productions are of the form A→ aα,
where α ∈ V ∗

If ε is in the language, we allow the rule S → ε. We will require
that S does not appear on the right hand side of any rules.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a
CFG in a normal form.

Normal Forms

A grammar is in a normal form if its production rules have a
special structure:

Chomsky Normal Form: Productions are of the form A→ BC
or A→ a

Greibach Normal Form Productions are of the form A→ aα,
where α ∈ V ∗

If ε is in the language, we allow the rule S → ε. We will require
that S does not appear on the right hand side of any rules.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

In this lecture. . .

How to convert any context-free grammar to an equivalent
grammar in the Chomsky Normal Form

We will start with a series of simplifications...

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

In this lecture. . .

How to convert any context-free grammar to an equivalent
grammar in the Chomsky Normal Form

We will start with a series of simplifications...

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions

Often would like to ensure that the length of the intermediate
strings in a derivation are not longer than the final string
derived

But a long intermediate string can lead to a short final string
if there are ε-productions (rules of the form A→ ε).

Can we rewrite the grammar not to have ε-productions?

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions

Often would like to ensure that the length of the intermediate
strings in a derivation are not longer than the final string
derived

But a long intermediate string can lead to a short final string
if there are ε-productions (rules of the form A→ ε).

Can we rewrite the grammar not to have ε-productions?

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions

Often would like to ensure that the length of the intermediate
strings in a derivation are not longer than the final string
derived

But a long intermediate string can lead to a short final string
if there are ε-productions (rules of the form A→ ε).

Can we rewrite the grammar not to have ε-productions?

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-production
The Problem

Given a grammar G produce an equivalent grammar G ′ (i.e.,
L(G ) = L(G ′)) such that G ′ has no rules of the form A→ ε,
except possibly S → ε, and S does not appear on the right hand
side of any rule.

Note: If S can appear on the RHS of a rule, say S → SS , then
when there is the rule S → ε, we can again have long intermediate
strings yielding short final strings.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-production
The Problem

Given a grammar G produce an equivalent grammar G ′ (i.e.,
L(G ) = L(G ′)) such that G ′ has no rules of the form A→ ε,
except possibly S → ε, and S does not appear on the right hand
side of any rule.

Note: If S can appear on the RHS of a rule, say S → SS , then
when there is the rule S → ε, we can again have long intermediate
strings yielding short final strings.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Nullable Variables

Definition

A variable A (of grammar G ) is nullable if A
∗⇒ ε.

How do you determine if a variable is nullable?

If A→ ε is a production in G then A is nullable

If A→ B1B2 · · ·Bk is a production and each Bi is nullable,
then A is nullable.

Fixed point algorithm: Propagate the label of nullable until there is
no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Nullable Variables

Definition

A variable A (of grammar G ) is nullable if A
∗⇒ ε.

How do you determine if a variable is nullable?

If A→ ε is a production in G then A is nullable

If A→ B1B2 · · ·Bk is a production and each Bi is nullable,
then A is nullable.

Fixed point algorithm: Propagate the label of nullable until there is
no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Nullable Variables

Definition

A variable A (of grammar G ) is nullable if A
∗⇒ ε.

How do you determine if a variable is nullable?

If A→ ε is a production in G then A is nullable

If A→ B1B2 · · ·Bk is a production and each Bi is nullable,
then A is nullable.

Fixed point algorithm: Propagate the label of nullable until there is
no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Nullable Variables

Definition

A variable A (of grammar G ) is nullable if A
∗⇒ ε.

How do you determine if a variable is nullable?

If A→ ε is a production in G then A is nullable

If A→ B1B2 · · ·Bk is a production and each Bi is nullable,
then A is nullable.

Fixed point algorithm: Propagate the label of nullable until there is
no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Nullable Variables

Definition

A variable A (of grammar G ) is nullable if A
∗⇒ ε.

How do you determine if a variable is nullable?

If A→ ε is a production in G then A is nullable

If A→ B1B2 · · ·Bk is a production and each Bi is nullable,
then A is nullable.

Fixed point algorithm: Propagate the label of nullable until there is
no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Using nullable variables
Initial Ideas

Intuition: For every variable A in G have a variable A in G ′ such
that A

∗⇒G ′ w iff A
∗⇒G w and w 6= ε.

For every rule B → CAD in
G , where A is nullable, add two rules in G ′: B → CD and
B → CAD.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Using nullable variables
Initial Ideas

Intuition: For every variable A in G have a variable A in G ′ such
that A

∗⇒G ′ w iff A
∗⇒G w and w 6= ε. For every rule B → CAD in

G , where A is nullable, add two rules in G ′:

B → CD and
B → CAD.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Using nullable variables
Initial Ideas

Intuition: For every variable A in G have a variable A in G ′ such
that A

∗⇒G ′ w iff A
∗⇒G w and w 6= ε. For every rule B → CAD in

G , where A is nullable, add two rules in G ′: B → CD and
B → CAD.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

G ′ has same variables, except for a new start symbol S ′.

For each rule A→ X1X2 · · ·Xk in G , create rules
A→ α1α2 · · ·αk where

αi =

{
Xi if Xi is a non-nullable variable/terminal in G

Xi or ε if Xi is nullable in G

and not all αi are ε

Add rule S ′ → S . If S nullable in G , add S ′ → ε also.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

G ′ has same variables, except for a new start symbol S ′.

For each rule A→ X1X2 · · ·Xk in G , create rules
A→ α1α2 · · ·αk where

αi =

{
Xi if Xi is a non-nullable variable/terminal in G

Xi or ε if Xi is nullable in G

and not all αi are ε

Add rule S ′ → S . If S nullable in G , add S ′ → ε also.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

G ′ has same variables, except for a new start symbol S ′.

For each rule A→ X1X2 · · ·Xk in G , create rules
A→ α1α2 · · ·αk where

αi =

{
Xi if Xi is a non-nullable variable/terminal in G

Xi or ε if Xi is nullable in G

and not all αi are ε

Add rule S ′ → S . If S nullable in G , add S ′ → ε also.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

G ′ has same variables, except for a new start symbol S ′.

For each rule A→ X1X2 · · ·Xk in G , create rules
A→ α1α2 · · ·αk where

αi =

{
Xi if Xi is a non-nullable variable/terminal in G

Xi or ε if Xi is nullable in G

and not all αi are ε

Add rule S ′ → S . If S nullable in G , add S ′ → ε also.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness of the Algorithm

By construction, there are no rules of the form A→ ε in G ′

(except possibly S ′ → ε), and S ′ does not appear in the RHS
of any rule.

L(G ) = L(G ′)

L(G ′) ⊆ L(G ): For every rule A→ w in G ′, we have A
∗⇒G w

(by expanding zero or more nullable variables in w to ε)

L(G ) ⊆ L(G ′): If ε ∈ L(G ), then ε ∈ L(G ′). If A
∗⇒G w ∈ Σ+,

then by induction on the number of steps in the derivation,
A
∗⇒G ′ w . Base case: if A→ w ∈ Σ+, then A→ w .

(Proof details skipped.)

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness of the Algorithm

By construction, there are no rules of the form A→ ε in G ′

(except possibly S ′ → ε), and S ′ does not appear in the RHS
of any rule.

L(G ) = L(G ′)

L(G ′) ⊆ L(G ): For every rule A→ w in G ′, we have A
∗⇒G w

(by expanding zero or more nullable variables in w to ε)

L(G ) ⊆ L(G ′): If ε ∈ L(G ), then ε ∈ L(G ′). If A
∗⇒G w ∈ Σ+,

then by induction on the number of steps in the derivation,
A
∗⇒G ′ w . Base case: if A→ w ∈ Σ+, then A→ w .

(Proof details skipped.)

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness of the Algorithm

By construction, there are no rules of the form A→ ε in G ′

(except possibly S ′ → ε), and S ′ does not appear in the RHS
of any rule.

L(G ) = L(G ′)

L(G ′) ⊆ L(G ): For every rule A→ w in G ′, we have A
∗⇒G w

(by expanding zero or more nullable variables in w to ε)

L(G ) ⊆ L(G ′): If ε ∈ L(G ), then ε ∈ L(G ′). If A
∗⇒G w ∈ Σ+,

then by induction on the number of steps in the derivation,
A
∗⇒G ′ w . Base case: if A→ w ∈ Σ+, then A→ w .

(Proof details skipped.)

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness of the Algorithm

By construction, there are no rules of the form A→ ε in G ′

(except possibly S ′ → ε), and S ′ does not appear in the RHS
of any rule.

L(G ) = L(G ′)

L(G ′) ⊆ L(G ): For every rule A→ w in G ′, we have A
∗⇒G w

(by expanding zero or more nullable variables in w to ε)

L(G ) ⊆ L(G ′): If ε ∈ L(G ), then ε ∈ L(G ′). If A
∗⇒G w ∈ Σ+,

then by induction on the number of steps in the derivation,
A
∗⇒G ′ w . Base case: if A→ w ∈ Σ+, then A→ w .

(Proof details skipped.)

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness of the Algorithm

By construction, there are no rules of the form A→ ε in G ′

(except possibly S ′ → ε), and S ′ does not appear in the RHS
of any rule.

L(G ) = L(G ′)

L(G ′) ⊆ L(G ): For every rule A→ w in G ′, we have A
∗⇒G w

(by expanding zero or more nullable variables in w to ε)

L(G ) ⊆ L(G ′): If ε ∈ L(G ), then ε ∈ L(G ′).

If A
∗⇒G w ∈ Σ+,

then by induction on the number of steps in the derivation,
A
∗⇒G ′ w . Base case: if A→ w ∈ Σ+, then A→ w .

(Proof details skipped.)

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness of the Algorithm

By construction, there are no rules of the form A→ ε in G ′

(except possibly S ′ → ε), and S ′ does not appear in the RHS
of any rule.

L(G ) = L(G ′)

L(G ′) ⊆ L(G ): For every rule A→ w in G ′, we have A
∗⇒G w

(by expanding zero or more nullable variables in w to ε)

L(G ) ⊆ L(G ′): If ε ∈ L(G ), then ε ∈ L(G ′). If A
∗⇒G w ∈ Σ+,

then by induction on the number of steps in the derivation,
A
∗⇒G ′ w . Base case: if A→ w ∈ Σ+, then A→ w .

(Proof details skipped.)

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions
An Example

Example

Rules of grammar G be S → AB; A→ AaA|ε; and B → BbB|ε.
Nullables in G are

A,B and S

Rules for grammar G ′:
S → AB|A|B
A→ AaA|aA|Aa|a
B → BbB|bB|Bb|b
S ′ → S |ε

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions
An Example

Example

Rules of grammar G be S → AB; A→ AaA|ε; and B → BbB|ε.
Nullables in G are A,B and S

Rules for grammar G ′:
S →

AB|A|B
A→ AaA|aA|Aa|a
B → BbB|bB|Bb|b
S ′ → S |ε

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions
An Example

Example

Rules of grammar G be S → AB; A→ AaA|ε; and B → BbB|ε.
Nullables in G are A,B and S

Rules for grammar G ′:
S → AB|A|B

A→ AaA|aA|Aa|a
B → BbB|bB|Bb|b
S ′ → S |ε

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions
An Example

Example

Rules of grammar G be S → AB; A→ AaA|ε; and B → BbB|ε.
Nullables in G are A,B and S

Rules for grammar G ′:
S → AB|A|B
A→

AaA|aA|Aa|a
B → BbB|bB|Bb|b
S ′ → S |ε

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions
An Example

Example

Rules of grammar G be S → AB; A→ AaA|ε; and B → BbB|ε.
Nullables in G are A,B and S

Rules for grammar G ′:
S → AB|A|B
A→ AaA|aA|Aa|a

B → BbB|bB|Bb|b
S ′ → S |ε

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions
An Example

Example

Rules of grammar G be S → AB; A→ AaA|ε; and B → BbB|ε.
Nullables in G are A,B and S

Rules for grammar G ′:
S → AB|A|B
A→ AaA|aA|Aa|a
B →

BbB|bB|Bb|b
S ′ → S |ε

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions
An Example

Example

Rules of grammar G be S → AB; A→ AaA|ε; and B → BbB|ε.
Nullables in G are A,B and S

Rules for grammar G ′:
S → AB|A|B
A→ AaA|aA|Aa|a
B → BbB|bB|Bb|b

S ′ → S |ε

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions
An Example

Example

Rules of grammar G be S → AB; A→ AaA|ε; and B → BbB|ε.
Nullables in G are A,B and S

Rules for grammar G ′:
S → AB|A|B
A→ AaA|aA|Aa|a
B → BbB|bB|Bb|b
S ′ →

S |ε

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions
An Example

Example

Rules of grammar G be S → AB; A→ AaA|ε; and B → BbB|ε.
Nullables in G are A,B and S

Rules for grammar G ′:
S → AB|A|B
A→ AaA|aA|Aa|a
B → BbB|bB|Bb|b
S ′ → S |ε

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating Unit Productions

Often would like to ensure that the number of steps in a
derivation are not much more than the length of the string
derived

But can have a long chain of derivation steps that make little
or no “progress,” if the grammar has unit productions (rules
of the form A→ B, where B is a non-terminal).

Note: A→ a is not a unit production

Can we rewrite the grammar not to have unit-productions?

Eliminating unit-productions

Given a grammar G produce an equivalent grammar G ′ (i.e.,
L(G ) = L(G ′)) such that G ′ has no rules of the form A→ B where
B ∈ V ′.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating Unit Productions

Often would like to ensure that the number of steps in a
derivation are not much more than the length of the string
derived

But can have a long chain of derivation steps that make little
or no “progress,” if the grammar has unit productions (rules
of the form A→ B, where B is a non-terminal).

Note: A→ a is not a unit production

Can we rewrite the grammar not to have unit-productions?

Eliminating unit-productions

Given a grammar G produce an equivalent grammar G ′ (i.e.,
L(G ) = L(G ′)) such that G ′ has no rules of the form A→ B where
B ∈ V ′.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating Unit Productions

Often would like to ensure that the number of steps in a
derivation are not much more than the length of the string
derived

But can have a long chain of derivation steps that make little
or no “progress,” if the grammar has unit productions (rules
of the form A→ B, where B is a non-terminal).

Note: A→ a is not a unit production

Can we rewrite the grammar not to have unit-productions?

Eliminating unit-productions

Given a grammar G produce an equivalent grammar G ′ (i.e.,
L(G ) = L(G ′)) such that G ′ has no rules of the form A→ B where
B ∈ V ′.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating Unit Productions

Often would like to ensure that the number of steps in a
derivation are not much more than the length of the string
derived

But can have a long chain of derivation steps that make little
or no “progress,” if the grammar has unit productions (rules
of the form A→ B, where B is a non-terminal).

Note: A→ a is not a unit production

Can we rewrite the grammar not to have unit-productions?

Eliminating unit-productions

Given a grammar G produce an equivalent grammar G ′ (i.e.,
L(G ) = L(G ′)) such that G ′ has no rules of the form A→ B where
B ∈ V ′.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Role of Unit Productions

Unit productions can play an important role in designing grammars:

While eliminating ε-productions we added a rule S ′ → S . This
is a unit production.

We have used unit productions in building an unambiguous
grammar:

I → a | b | Ia | Ib T → F | T ∗ F
N → 0 | 1 | N0 | N1 E → T | E + T
F → I | N | − N | (E )

But as we shall see now, they can be (safely) eliminated

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Role of Unit Productions

Unit productions can play an important role in designing grammars:

While eliminating ε-productions we added a rule S ′ → S . This
is a unit production.

We have used unit productions in building an unambiguous
grammar:

I → a | b | Ia | Ib T → F | T ∗ F
N → 0 | 1 | N0 | N1 E → T | E + T
F → I | N | − N | (E )

But as we shall see now, they can be (safely) eliminated

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Role of Unit Productions

Unit productions can play an important role in designing grammars:

While eliminating ε-productions we added a rule S ′ → S . This
is a unit production.

We have used unit productions in building an unambiguous
grammar:

I → a | b | Ia | Ib T → F | T ∗ F
N → 0 | 1 | N0 | N1 E → T | E + T
F → I | N | − N | (E )

But as we shall see now, they can be (safely) eliminated

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Role of Unit Productions

Unit productions can play an important role in designing grammars:

While eliminating ε-productions we added a rule S ′ → S . This
is a unit production.

We have used unit productions in building an unambiguous
grammar:

I → a | b | Ia | Ib T → F | T ∗ F
N → 0 | 1 | N0 | N1 E → T | E + T
F → I | N | − N | (E )

But as we shall see now, they can be (safely) eliminated

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Basic Idea

Introduce new “look-ahead” productions to replace unit
productions: look ahead to see where the unit production (or a
chain of unit productions) leads to and add a rule to directly go
there.

Example

E → T → F → I → a|b|Ia|Ib. So introduce new rules
E → a|b|Ia|Ib

But what if the grammar has cycles of unit productions? For
example, A→ B|a, B → C |b and C → A|c . You cannot use the
“look-ahead” approach, because then you will get into an infinite
loop.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Basic Idea

Introduce new “look-ahead” productions to replace unit
productions: look ahead to see where the unit production (or a
chain of unit productions) leads to and add a rule to directly go
there.

Example

E → T → F → I → a|b|Ia|Ib.

So introduce new rules
E → a|b|Ia|Ib

But what if the grammar has cycles of unit productions? For
example, A→ B|a, B → C |b and C → A|c . You cannot use the
“look-ahead” approach, because then you will get into an infinite
loop.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Basic Idea

Introduce new “look-ahead” productions to replace unit
productions: look ahead to see where the unit production (or a
chain of unit productions) leads to and add a rule to directly go
there.

Example

E → T → F → I → a|b|Ia|Ib. So introduce new rules
E → a|b|Ia|Ib

But what if the grammar has cycles of unit productions? For
example, A→ B|a, B → C |b and C → A|c . You cannot use the
“look-ahead” approach, because then you will get into an infinite
loop.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Basic Idea

Introduce new “look-ahead” productions to replace unit
productions: look ahead to see where the unit production (or a
chain of unit productions) leads to and add a rule to directly go
there.

Example

E → T → F → I → a|b|Ia|Ib. So introduce new rules
E → a|b|Ia|Ib

But what if the grammar has cycles of unit productions?

For
example, A→ B|a, B → C |b and C → A|c . You cannot use the
“look-ahead” approach, because then you will get into an infinite
loop.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Basic Idea

Introduce new “look-ahead” productions to replace unit
productions: look ahead to see where the unit production (or a
chain of unit productions) leads to and add a rule to directly go
there.

Example

E → T → F → I → a|b|Ia|Ib. So introduce new rules
E → a|b|Ia|Ib

But what if the grammar has cycles of unit productions? For
example, A→ B|a, B → C |b and C → A|c . You cannot use the
“look-ahead” approach, because then you will get into an infinite
loop.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

1 Determine pairs 〈A,B〉 such that A
∗⇒u B, i.e., A derives B

using only unit rules. Such pairs are called unit pairs.

Easy to determine unit pairs: Make a directed graph with
vertices = V , and edges = unit productions. 〈A,B〉 is a unit
pair, if there is a directed path from A to B in the graph.

2 If 〈A,B〉 is a unit pair, then add production rules
A→ β1|β2| · · ·βk , where B → β1|β2| · · · |βk are all the
non-unit production rules of B

3 Remove all unit production rules.

Let G ′ be the grammar obtained from G using this algorithm.
Then L(G ′) = L(G )

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

1 Determine pairs 〈A,B〉 such that A
∗⇒u B, i.e., A derives B

using only unit rules. Such pairs are called unit pairs.

Easy to determine unit pairs: Make a directed graph with
vertices = V , and edges = unit productions. 〈A,B〉 is a unit
pair, if there is a directed path from A to B in the graph.

2 If 〈A,B〉 is a unit pair, then add production rules
A→ β1|β2| · · ·βk , where B → β1|β2| · · · |βk are all the
non-unit production rules of B

3 Remove all unit production rules.

Let G ′ be the grammar obtained from G using this algorithm.
Then L(G ′) = L(G )

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

1 Determine pairs 〈A,B〉 such that A
∗⇒u B, i.e., A derives B

using only unit rules. Such pairs are called unit pairs.

Easy to determine unit pairs:

Make a directed graph with
vertices = V , and edges = unit productions. 〈A,B〉 is a unit
pair, if there is a directed path from A to B in the graph.

2 If 〈A,B〉 is a unit pair, then add production rules
A→ β1|β2| · · ·βk , where B → β1|β2| · · · |βk are all the
non-unit production rules of B

3 Remove all unit production rules.

Let G ′ be the grammar obtained from G using this algorithm.
Then L(G ′) = L(G )

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

1 Determine pairs 〈A,B〉 such that A
∗⇒u B, i.e., A derives B

using only unit rules. Such pairs are called unit pairs.

Easy to determine unit pairs: Make a directed graph with
vertices = V , and edges = unit productions. 〈A,B〉 is a unit
pair, if there is a directed path from A to B in the graph.

2 If 〈A,B〉 is a unit pair, then add production rules
A→ β1|β2| · · ·βk , where B → β1|β2| · · · |βk are all the
non-unit production rules of B

3 Remove all unit production rules.

Let G ′ be the grammar obtained from G using this algorithm.
Then L(G ′) = L(G )

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

1 Determine pairs 〈A,B〉 such that A
∗⇒u B, i.e., A derives B

using only unit rules. Such pairs are called unit pairs.

Easy to determine unit pairs: Make a directed graph with
vertices = V , and edges = unit productions. 〈A,B〉 is a unit
pair, if there is a directed path from A to B in the graph.

2 If 〈A,B〉 is a unit pair, then add production rules
A→ β1|β2| · · ·βk , where B → β1|β2| · · · |βk are all the
non-unit production rules of B

3 Remove all unit production rules.

Let G ′ be the grammar obtained from G using this algorithm.
Then L(G ′) = L(G )

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

1 Determine pairs 〈A,B〉 such that A
∗⇒u B, i.e., A derives B

using only unit rules. Such pairs are called unit pairs.

Easy to determine unit pairs: Make a directed graph with
vertices = V , and edges = unit productions. 〈A,B〉 is a unit
pair, if there is a directed path from A to B in the graph.

2 If 〈A,B〉 is a unit pair, then add production rules
A→ β1|β2| · · ·βk , where B → β1|β2| · · · |βk are all the
non-unit production rules of B

3 Remove all unit production rules.

Let G ′ be the grammar obtained from G using this algorithm.
Then L(G ′) = L(G )

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness Proof
L(G ′) ⊆ L(G)

Proof.

For every rule A→ w in G ′, we have A
∗⇒G w (by a sequence of

zero or more unit productions followed by a nonunit production of
G ) �

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness Proof
L(G ′) ⊆ L(G)

Proof.

For every rule A→ w in G ′, we have A
∗⇒G w (by a sequence of

zero or more unit productions followed by a nonunit production of
G ) �

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness Proof
L(G) ⊆ L(G ′)

Proof.

For w ∈ L(G ) consider a leftmost derivation S
∗⇒lm w in G .

All these derivation steps are possible in G ′ also, except the
ones using the unit productions of G .

Suppose S
∗⇒ xAα⇒1 xBα⇒2 · · · , where ⇒1 corresponds

to a unit rule. Then (in a leftmost derivation) ⇒2 must
correspond to using a rule for B.

So a leftmost derivation of w in G can be broken up into
“big-steps” each consisting of zero or more unit productions
on the leftmost variable, followed by a non-unit production.

For each such “big-step” there is a single production rule in
G ′ that yields the same result. �

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness Proof
L(G) ⊆ L(G ′)

Proof.

For w ∈ L(G ) consider a leftmost derivation S
∗⇒lm w in G .

All these derivation steps are possible in G ′ also, except the
ones using the unit productions of G .

Suppose S
∗⇒ xAα⇒1 xBα⇒2 · · · , where ⇒1 corresponds

to a unit rule. Then (in a leftmost derivation) ⇒2 must
correspond to using a rule for B.

So a leftmost derivation of w in G can be broken up into
“big-steps” each consisting of zero or more unit productions
on the leftmost variable, followed by a non-unit production.

For each such “big-step” there is a single production rule in
G ′ that yields the same result. �

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness Proof
L(G) ⊆ L(G ′)

Proof.

For w ∈ L(G ) consider a leftmost derivation S
∗⇒lm w in G .

All these derivation steps are possible in G ′ also, except the
ones using the unit productions of G .

Suppose S
∗⇒ xAα⇒1 xBα⇒2 · · · , where ⇒1 corresponds

to a unit rule. Then (in a leftmost derivation) ⇒2 must
correspond to using a rule for B.

So a leftmost derivation of w in G can be broken up into
“big-steps” each consisting of zero or more unit productions
on the leftmost variable, followed by a non-unit production.

For each such “big-step” there is a single production rule in
G ′ that yields the same result. �

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness Proof
L(G) ⊆ L(G ′)

Proof.

For w ∈ L(G ) consider a leftmost derivation S
∗⇒lm w in G .

All these derivation steps are possible in G ′ also, except the
ones using the unit productions of G .

Suppose S
∗⇒ xAα⇒1 xBα⇒2 · · · , where ⇒1 corresponds

to a unit rule.

Then (in a leftmost derivation) ⇒2 must
correspond to using a rule for B.

So a leftmost derivation of w in G can be broken up into
“big-steps” each consisting of zero or more unit productions
on the leftmost variable, followed by a non-unit production.

For each such “big-step” there is a single production rule in
G ′ that yields the same result. �

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness Proof
L(G) ⊆ L(G ′)

Proof.

For w ∈ L(G ) consider a leftmost derivation S
∗⇒lm w in G .

All these derivation steps are possible in G ′ also, except the
ones using the unit productions of G .

Suppose S
∗⇒ xAα⇒1 xBα⇒2 · · · , where ⇒1 corresponds

to a unit rule. Then (in a leftmost derivation) ⇒2 must
correspond to using a rule for B.

So a leftmost derivation of w in G can be broken up into
“big-steps” each consisting of zero or more unit productions
on the leftmost variable, followed by a non-unit production.

For each such “big-step” there is a single production rule in
G ′ that yields the same result. �

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness Proof
L(G) ⊆ L(G ′)

Proof.

For w ∈ L(G ) consider a leftmost derivation S
∗⇒lm w in G .

All these derivation steps are possible in G ′ also, except the
ones using the unit productions of G .

Suppose S
∗⇒ xAα⇒1 xBα⇒2 · · · , where ⇒1 corresponds

to a unit rule. Then (in a leftmost derivation) ⇒2 must
correspond to using a rule for B.

So a leftmost derivation of w in G can be broken up into
“big-steps” each consisting of zero or more unit productions
on the leftmost variable, followed by a non-unit production.

For each such “big-step” there is a single production rule in
G ′ that yields the same result. �

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness Proof
L(G) ⊆ L(G ′)

Proof.

For w ∈ L(G ) consider a leftmost derivation S
∗⇒lm w in G .

All these derivation steps are possible in G ′ also, except the
ones using the unit productions of G .

Suppose S
∗⇒ xAα⇒1 xBα⇒2 · · · , where ⇒1 corresponds

to a unit rule. Then (in a leftmost derivation) ⇒2 must
correspond to using a rule for B.

So a leftmost derivation of w in G can be broken up into
“big-steps” each consisting of zero or more unit productions
on the leftmost variable, followed by a non-unit production.

For each such “big-step” there is a single production rule in
G ′ that yields the same result. �

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating Useless Symbols

Ideally one would like to use a compact grammar, with the
fewest possible variables

But a grammar may have “useless” variables which do not
appear in any valid derivation

Can we identify all the useless variables and remove them
from the grammar? (Note: there may still be other
redundancies in the grammar.)

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating Useless Symbols

Ideally one would like to use a compact grammar, with the
fewest possible variables

But a grammar may have “useless” variables which do not
appear in any valid derivation

Can we identify all the useless variables and remove them
from the grammar? (Note: there may still be other
redundancies in the grammar.)

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating Useless Symbols

Ideally one would like to use a compact grammar, with the
fewest possible variables

But a grammar may have “useless” variables which do not
appear in any valid derivation

Can we identify all the useless variables and remove them
from the grammar? (Note: there may still be other
redundancies in the grammar.)

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating Useless Symbols

Ideally one would like to use a compact grammar, with the
fewest possible variables

But a grammar may have “useless” variables which do not
appear in any valid derivation

Can we identify all the useless variables and remove them
from the grammar? (Note: there may still be other
redundancies in the grammar.)

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Useless Symbols

Definition

A symbol X ∈ V ∪ Σ is useless in a grammar G = (V ,Σ, S ,P) if

there is no derivation of the form S
∗⇒ αXβ

∗⇒ w where w ∈ Σ∗

and α, β ∈ (V ∪ Σ)∗.

Removing useless symbols (and rules involving them) from a
grammar does not change the language of the grammar

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Useless Symbols

Definition

A symbol X ∈ V ∪ Σ is useless in a grammar G = (V ,Σ, S ,P) if

there is no derivation of the form S
∗⇒ αXβ

∗⇒ w where w ∈ Σ∗

and α, β ∈ (V ∪ Σ)∗.

Removing useless symbols (and rules involving them) from a
grammar does not change the language of the grammar

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Revisiting Useless Symbols

Recall, X is useless if there is no derivation of the form
S
∗⇒ αXβ

∗⇒ w where w ∈ Σ∗ and α, β ∈ (V ∪ Σ)∗.

i.e., X is useless iff either

Type 1: X is not “reachable” from S (i.e., no α, β such that

S
∗⇒ αXβ), or

Type 2: for all α, β such that S
∗⇒ αXβ, either α, X or β

cannot yield a string in Σ∗. i.e., either

Type 2a: X is not “generating” (i.e., no w ∈ Σ∗

such that X
∗⇒ w), or

Type 2b: α or β contains a non-generating
symbol

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Revisiting Useless Symbols

Recall, X is useless if there is no derivation of the form
S
∗⇒ αXβ

∗⇒ w where w ∈ Σ∗ and α, β ∈ (V ∪ Σ)∗.

i.e., X is useless iff either

Type 1: X is not “reachable” from S (i.e., no α, β such that

S
∗⇒ αXβ), or

Type 2: for all α, β such that S
∗⇒ αXβ, either α, X or β

cannot yield a string in Σ∗. i.e., either

Type 2a: X is not “generating” (i.e., no w ∈ Σ∗

such that X
∗⇒ w), or

Type 2b: α or β contains a non-generating
symbol

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Revisiting Useless Symbols

Recall, X is useless if there is no derivation of the form
S
∗⇒ αXβ

∗⇒ w where w ∈ Σ∗ and α, β ∈ (V ∪ Σ)∗.

i.e., X is useless iff either

Type 1: X is not “reachable” from S (i.e., no α, β such that

S
∗⇒ αXβ),

or

Type 2: for all α, β such that S
∗⇒ αXβ, either α, X or β

cannot yield a string in Σ∗. i.e., either

Type 2a: X is not “generating” (i.e., no w ∈ Σ∗

such that X
∗⇒ w), or

Type 2b: α or β contains a non-generating
symbol

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Revisiting Useless Symbols

Recall, X is useless if there is no derivation of the form
S
∗⇒ αXβ

∗⇒ w where w ∈ Σ∗ and α, β ∈ (V ∪ Σ)∗.

i.e., X is useless iff either

Type 1: X is not “reachable” from S (i.e., no α, β such that

S
∗⇒ αXβ), or

Type 2: for all α, β such that S
∗⇒ αXβ, either α, X or β

cannot yield a string in Σ∗.

i.e., either

Type 2a: X is not “generating” (i.e., no w ∈ Σ∗

such that X
∗⇒ w), or

Type 2b: α or β contains a non-generating
symbol

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Revisiting Useless Symbols

Recall, X is useless if there is no derivation of the form
S
∗⇒ αXβ

∗⇒ w where w ∈ Σ∗ and α, β ∈ (V ∪ Σ)∗.

i.e., X is useless iff either

Type 1: X is not “reachable” from S (i.e., no α, β such that

S
∗⇒ αXβ), or

Type 2: for all α, β such that S
∗⇒ αXβ, either α, X or β

cannot yield a string in Σ∗. i.e., either

Type 2a: X is not “generating” (i.e., no w ∈ Σ∗

such that X
∗⇒ w),

or
Type 2b: α or β contains a non-generating

symbol

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Revisiting Useless Symbols

Recall, X is useless if there is no derivation of the form
S
∗⇒ αXβ

∗⇒ w where w ∈ Σ∗ and α, β ∈ (V ∪ Σ)∗.

i.e., X is useless iff either

Type 1: X is not “reachable” from S (i.e., no α, β such that

S
∗⇒ αXβ), or

Type 2: for all α, β such that S
∗⇒ αXβ, either α, X or β

cannot yield a string in Σ∗. i.e., either

Type 2a: X is not “generating” (i.e., no w ∈ Σ∗

such that X
∗⇒ w), or

Type 2b: α or β contains a non-generating
symbol

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,

1 First remove all symbols that are not generating (Type 2a)
If X was useless, but reachable and generating (i.e., Type 2b)
then X becomes unreachable after this step

Type 2b: for all α, β such that S
∗⇒ αXβ, α or β contains a

non-generating symbol. Then in the new grammar all such
derivations disappear (because some variable in α or β is
removed).

2 Next remove all unreachable symbols in the new grammar.

Removes Type 1 (originally unreachable) and Type 2b useless
symbols now

Doesn’t remove any useful symbol in either step (Why?)
Only remains to show how to do the two steps in this algorithm

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,
1 First remove all symbols that are not generating (Type 2a)

If X was useless, but reachable and generating (i.e., Type 2b)
then X becomes unreachable after this step

Type 2b: for all α, β such that S
∗⇒ αXβ, α or β contains a

non-generating symbol. Then in the new grammar all such
derivations disappear (because some variable in α or β is
removed).

2 Next remove all unreachable symbols in the new grammar.

Removes Type 1 (originally unreachable) and Type 2b useless
symbols now

Doesn’t remove any useful symbol in either step (Why?)
Only remains to show how to do the two steps in this algorithm

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,
1 First remove all symbols that are not generating (Type 2a)

If X was useless, but reachable and generating (i.e., Type 2b)
then X becomes unreachable after this step

Type 2b: for all α, β such that S
∗⇒ αXβ, α or β contains a

non-generating symbol. Then in the new grammar all such
derivations disappear (because some variable in α or β is
removed).

2 Next remove all unreachable symbols in the new grammar.

Removes Type 1 (originally unreachable) and Type 2b useless
symbols now

Doesn’t remove any useful symbol in either step (Why?)
Only remains to show how to do the two steps in this algorithm

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,
1 First remove all symbols that are not generating (Type 2a)

If X was useless, but reachable and generating (i.e., Type 2b)
then X becomes unreachable after this step

Type 2b: for all α, β such that S
∗⇒ αXβ, α or β contains a

non-generating symbol.

Then in the new grammar all such
derivations disappear (because some variable in α or β is
removed).

2 Next remove all unreachable symbols in the new grammar.

Removes Type 1 (originally unreachable) and Type 2b useless
symbols now

Doesn’t remove any useful symbol in either step (Why?)
Only remains to show how to do the two steps in this algorithm

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,
1 First remove all symbols that are not generating (Type 2a)

If X was useless, but reachable and generating (i.e., Type 2b)
then X becomes unreachable after this step

Type 2b: for all α, β such that S
∗⇒ αXβ, α or β contains a

non-generating symbol. Then in the new grammar all such
derivations disappear (because some variable in α or β is
removed).

2 Next remove all unreachable symbols in the new grammar.

Removes Type 1 (originally unreachable) and Type 2b useless
symbols now

Doesn’t remove any useful symbol in either step (Why?)
Only remains to show how to do the two steps in this algorithm

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,
1 First remove all symbols that are not generating (Type 2a)

If X was useless, but reachable and generating (i.e., Type 2b)
then X becomes unreachable after this step

Type 2b: for all α, β such that S
∗⇒ αXβ, α or β contains a

non-generating symbol. Then in the new grammar all such
derivations disappear (because some variable in α or β is
removed).

2 Next remove all unreachable symbols in the new grammar.

Removes Type 1 (originally unreachable) and Type 2b useless
symbols now

Doesn’t remove any useful symbol in either step (Why?)
Only remains to show how to do the two steps in this algorithm

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,
1 First remove all symbols that are not generating (Type 2a)

If X was useless, but reachable and generating (i.e., Type 2b)
then X becomes unreachable after this step

Type 2b: for all α, β such that S
∗⇒ αXβ, α or β contains a

non-generating symbol. Then in the new grammar all such
derivations disappear (because some variable in α or β is
removed).

2 Next remove all unreachable symbols in the new grammar.

Removes Type 1 (originally unreachable) and Type 2b useless
symbols now

Doesn’t remove any useful symbol in either step (Why?)
Only remains to show how to do the two steps in this algorithm

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,
1 First remove all symbols that are not generating (Type 2a)

If X was useless, but reachable and generating (i.e., Type 2b)
then X becomes unreachable after this step

Type 2b: for all α, β such that S
∗⇒ αXβ, α or β contains a

non-generating symbol. Then in the new grammar all such
derivations disappear (because some variable in α or β is
removed).

2 Next remove all unreachable symbols in the new grammar.

Removes Type 1 (originally unreachable) and Type 2b useless
symbols now

Doesn’t remove any useful symbol in either step (Why?)

Only remains to show how to do the two steps in this algorithm

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,
1 First remove all symbols that are not generating (Type 2a)

If X was useless, but reachable and generating (i.e., Type 2b)
then X becomes unreachable after this step

Type 2b: for all α, β such that S
∗⇒ αXβ, α or β contains a

non-generating symbol. Then in the new grammar all such
derivations disappear (because some variable in α or β is
removed).

2 Next remove all unreachable symbols in the new grammar.

Removes Type 1 (originally unreachable) and Type 2b useless
symbols now

Doesn’t remove any useful symbol in either step (Why?)
Only remains to show how to do the two steps in this algorithm

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Generating and Reachable Symbols

Generating symbols

If A→ x , where x ∈ Σ∗, is a production then A is generating

If A→ γ is a production and all variables in γ are generating,
then A is generating.

Reachable symbols

S is reachable

If A is reachable and A→ αBβ is a production, then B is
reachable

Fixed point algorithm: Propagate the label (generating or
reachable) until no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Generating and Reachable Symbols

Generating symbols

If A→ x , where x ∈ Σ∗, is a production then A is generating

If A→ γ is a production and all variables in γ are generating,
then A is generating.

Reachable symbols

S is reachable

If A is reachable and A→ αBβ is a production, then B is
reachable

Fixed point algorithm: Propagate the label (generating or
reachable) until no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Generating and Reachable Symbols

Generating symbols

If A→ x , where x ∈ Σ∗, is a production then A is generating

If A→ γ is a production and all variables in γ are generating,
then A is generating.

Reachable symbols

S is reachable

If A is reachable and A→ αBβ is a production, then B is
reachable

Fixed point algorithm: Propagate the label (generating or
reachable) until no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Generating and Reachable Symbols

Generating symbols

If A→ x , where x ∈ Σ∗, is a production then A is generating

If A→ γ is a production and all variables in γ are generating,
then A is generating.

Reachable symbols

S is reachable

If A is reachable and A→ αBβ is a production, then B is
reachable

Fixed point algorithm: Propagate the label (generating or
reachable) until no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Generating and Reachable Symbols

Generating symbols

If A→ x , where x ∈ Σ∗, is a production then A is generating

If A→ γ is a production and all variables in γ are generating,
then A is generating.

Reachable symbols

S is reachable

If A is reachable and A→ αBβ is a production, then B is
reachable

Fixed point algorithm: Propagate the label (generating or
reachable) until no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Generating and Reachable Symbols

Generating symbols

If A→ x , where x ∈ Σ∗, is a production then A is generating

If A→ γ is a production and all variables in γ are generating,
then A is generating.

Reachable symbols

S is reachable

If A is reachable and A→ αBβ is a production, then B is
reachable

Fixed point algorithm: Propagate the label (generating or
reachable) until no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Generating and Reachable Symbols

Generating symbols

If A→ x , where x ∈ Σ∗, is a production then A is generating

If A→ γ is a production and all variables in γ are generating,
then A is generating.

Reachable symbols

S is reachable

If A is reachable and A→ αBβ is a production, then B is
reachable

Fixed point algorithm: Propagate the label (generating or
reachable) until no change.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Three Simplifications, Together

Given a grammar G , such that L(G ) 6= ∅, we can find a grammar
G ′ such that L(G ′) = L(G ) and G ′ has no ε-productions (except
possibly S → ε), unit productions, or useless symbols, and S does
not appear in the RHS of any rule.

Proof.

Apply the following 3 steps in order:

1 Eliminate ε-productions

2 Eliminate unit productions

3 Eliminate useless symbols. �

Note: Applying the steps in a different order may result in a
grammar not having all the desired properties.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Three Simplifications, Together

Given a grammar G , such that L(G ) 6= ∅, we can find a grammar
G ′ such that L(G ′) = L(G ) and G ′ has no ε-productions (except
possibly S → ε), unit productions, or useless symbols, and S does
not appear in the RHS of any rule.

Proof.

Apply the following 3 steps in order:

1 Eliminate ε-productions

2 Eliminate unit productions

3 Eliminate useless symbols. �

Note: Applying the steps in a different order may result in a
grammar not having all the desired properties.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Three Simplifications, Together

Given a grammar G , such that L(G ) 6= ∅, we can find a grammar
G ′ such that L(G ′) = L(G ) and G ′ has no ε-productions (except
possibly S → ε), unit productions, or useless symbols, and S does
not appear in the RHS of any rule.

Proof.

Apply the following 3 steps in order:

1 Eliminate ε-productions

2 Eliminate unit productions

3 Eliminate useless symbols. �

Note: Applying the steps in a different order may result in a
grammar not having all the desired properties.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Three Simplifications, Together

Given a grammar G , such that L(G ) 6= ∅, we can find a grammar
G ′ such that L(G ′) = L(G ) and G ′ has no ε-productions (except
possibly S → ε), unit productions, or useless symbols, and S does
not appear in the RHS of any rule.

Proof.

Apply the following 3 steps in order:

1 Eliminate ε-productions

2 Eliminate unit productions

3 Eliminate useless symbols. �

Note: Applying the steps in a different order may result in a
grammar not having all the desired properties.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Chomsky Normal Form

Proposition

For any non-empty context-free language L, there is a grammar G ,
such that L(G ) = L and each rule in G is of the form

1 A→ a where a ∈ Σ, or

2 A→ BC where neither B nor C is the start symbol, or

3 S → ε where S is the start symbol (iff ε ∈ L)

Furthermore, G has no useless symbols.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Chomsky Normal Form

Proposition

For any non-empty context-free language L, there is a grammar G ,
such that L(G ) = L and each rule in G is of the form

1 A→ a where a ∈ Σ,

or

2 A→ BC where neither B nor C is the start symbol, or

3 S → ε where S is the start symbol (iff ε ∈ L)

Furthermore, G has no useless symbols.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Chomsky Normal Form

Proposition

For any non-empty context-free language L, there is a grammar G ,
such that L(G ) = L and each rule in G is of the form

1 A→ a where a ∈ Σ, or

2 A→ BC where neither B nor C is the start symbol,

or

3 S → ε where S is the start symbol (iff ε ∈ L)

Furthermore, G has no useless symbols.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Chomsky Normal Form

Proposition

For any non-empty context-free language L, there is a grammar G ,
such that L(G ) = L and each rule in G is of the form

1 A→ a where a ∈ Σ, or

2 A→ BC where neither B nor C is the start symbol, or

3 S → ε where S is the start symbol (iff ε ∈ L)

Furthermore, G has no useless symbols.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Chomsky Normal Form

Proposition

For any non-empty context-free language L, there is a grammar G ,
such that L(G ) = L and each rule in G is of the form

1 A→ a where a ∈ Σ, or

2 A→ BC where neither B nor C is the start symbol, or

3 S → ε where S is the start symbol (iff ε ∈ L)

Furthermore, G has no useless symbols.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Outline of Normalization

Given G = (V ,Σ, S ,P), convert to CNF

Let G ′ = (V ′,Σ,S ,P ′) be the grammar obtained after
eliminating ε-productions, unit productions, and useless
symbols from G .

If A→ x is a rule of G ′, where |x | = 0, then A must be S
(because G ′ has no other ε-productions). If A→ x is a rule of
G ′, where |x | = 1, then x ∈ Σ (because G ′ has no unit
productions). In either case A→ x is in a valid form.

All remaining productions are of form A→ X1X2 · · ·Xn where
Xi ∈ V ′ ∪ Σ, n ≥ 2 (and S does not occur in the RHS). We
will put these rules in the right form by applying the following
two transformations:

1 Make the RHS consist only of variables
2 Make the RHS be of length 2.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Outline of Normalization

Given G = (V ,Σ, S ,P), convert to CNF

Let G ′ = (V ′,Σ,S ,P ′) be the grammar obtained after
eliminating ε-productions, unit productions, and useless
symbols from G .

If A→ x is a rule of G ′, where |x | = 0, then A must be S
(because G ′ has no other ε-productions). If A→ x is a rule of
G ′, where |x | = 1, then x ∈ Σ (because G ′ has no unit
productions). In either case A→ x is in a valid form.

All remaining productions are of form A→ X1X2 · · ·Xn where
Xi ∈ V ′ ∪ Σ, n ≥ 2 (and S does not occur in the RHS). We
will put these rules in the right form by applying the following
two transformations:

1 Make the RHS consist only of variables
2 Make the RHS be of length 2.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Outline of Normalization

Given G = (V ,Σ, S ,P), convert to CNF

Let G ′ = (V ′,Σ,S ,P ′) be the grammar obtained after
eliminating ε-productions, unit productions, and useless
symbols from G .

If A→ x is a rule of G ′, where |x | = 0, then A must be S
(because G ′ has no other ε-productions). If A→ x is a rule of
G ′, where |x | = 1, then x ∈ Σ (because G ′ has no unit
productions). In either case A→ x is in a valid form.

All remaining productions are of form A→ X1X2 · · ·Xn where
Xi ∈ V ′ ∪ Σ, n ≥ 2 (and S does not occur in the RHS).

We
will put these rules in the right form by applying the following
two transformations:

1 Make the RHS consist only of variables
2 Make the RHS be of length 2.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Outline of Normalization

Given G = (V ,Σ, S ,P), convert to CNF

Let G ′ = (V ′,Σ,S ,P ′) be the grammar obtained after
eliminating ε-productions, unit productions, and useless
symbols from G .

If A→ x is a rule of G ′, where |x | = 0, then A must be S
(because G ′ has no other ε-productions). If A→ x is a rule of
G ′, where |x | = 1, then x ∈ Σ (because G ′ has no unit
productions). In either case A→ x is in a valid form.

All remaining productions are of form A→ X1X2 · · ·Xn where
Xi ∈ V ′ ∪ Σ, n ≥ 2 (and S does not occur in the RHS). We
will put these rules in the right form by applying the following
two transformations:

1 Make the RHS consist only of variables
2 Make the RHS be of length 2.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Make the RHS consist only of variables

Let A→ X1X2 · · ·Xn, with Xi being either a variable or a terminal.
We want rules where all the Xi are variables.

Example

Consider A→ BbCdefG . How do you remove the terminals?
For each a, b, c . . . ∈ Σ add variables Xa,Xb,Xc , . . . with
productions Xa → a, Xb → b, . . .. Then replace the production
A→ BbCdefG by A→ BXbCXdXeXf G

For every a ∈ Σ

1 Add a new variable Xa

2 In every rule, if a occurs in the RHS, replace it by Xa

3 Add a new rule Xa → a

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Make the RHS consist only of variables

Let A→ X1X2 · · ·Xn, with Xi being either a variable or a terminal.
We want rules where all the Xi are variables.

Example

Consider A→ BbCdefG . How do you remove the terminals?

For each a, b, c . . . ∈ Σ add variables Xa,Xb,Xc , . . . with
productions Xa → a, Xb → b, . . .. Then replace the production
A→ BbCdefG by A→ BXbCXdXeXf G

For every a ∈ Σ

1 Add a new variable Xa

2 In every rule, if a occurs in the RHS, replace it by Xa

3 Add a new rule Xa → a

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Make the RHS consist only of variables

Let A→ X1X2 · · ·Xn, with Xi being either a variable or a terminal.
We want rules where all the Xi are variables.

Example

Consider A→ BbCdefG . How do you remove the terminals?
For each a, b, c . . . ∈ Σ add variables Xa,Xb,Xc , . . . with
productions Xa → a, Xb → b, . . .. Then replace the production
A→ BbCdefG by A→ BXbCXdXeXf G

For every a ∈ Σ

1 Add a new variable Xa

2 In every rule, if a occurs in the RHS, replace it by Xa

3 Add a new rule Xa → a

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Make the RHS consist only of variables

Let A→ X1X2 · · ·Xn, with Xi being either a variable or a terminal.
We want rules where all the Xi are variables.

Example

Consider A→ BbCdefG . How do you remove the terminals?
For each a, b, c . . . ∈ Σ add variables Xa,Xb,Xc , . . . with
productions Xa → a, Xb → b, . . .. Then replace the production
A→ BbCdefG by A→ BXbCXdXeXf G

For every a ∈ Σ

1 Add a new variable Xa

2 In every rule, if a occurs in the RHS, replace it by Xa

3 Add a new rule Xa → a

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Make the RHS be of length 2

Now all productions are of the form A→ a or
A→ B1B2 · · ·Bn, where n ≥ 2 and each Bi is a variable.

How do you eliminate rules of the form A→ B1B2 . . .Bn

where n > 2?

Replace the rule by the following set of rules

A → B1B(2,n)

B(2,n) → B2B(3,n)

B(3,n) → B3B(4,n)

...

B(n−1,n) → Bn−1Bn

where B(i ,n) are “new” variables.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Make the RHS be of length 2

Now all productions are of the form A→ a or
A→ B1B2 · · ·Bn, where n ≥ 2 and each Bi is a variable.

How do you eliminate rules of the form A→ B1B2 . . .Bn

where n > 2?

Replace the rule by the following set of rules

A → B1B(2,n)

B(2,n) → B2B(3,n)

B(3,n) → B3B(4,n)

...

B(n−1,n) → Bn−1Bn

where B(i ,n) are “new” variables.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Make the RHS be of length 2

Now all productions are of the form A→ a or
A→ B1B2 · · ·Bn, where n ≥ 2 and each Bi is a variable.

How do you eliminate rules of the form A→ B1B2 . . .Bn

where n > 2?

Replace the rule by the following set of rules

A → B1B(2,n)

B(2,n) → B2B(3,n)

B(3,n) → B3B(4,n)

...

B(n−1,n) → Bn−1Bn

where B(i ,n) are “new” variables.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

An Example

Example

Convert: S → aA|bB|b, A→ Baa|ba, B → bAAb|ab, into
Chomsky Normal Form.

1 Eliminate ε-productions, unit productions, and useless
symbols. This grammar is already in the right form.

2 Remove terminals from the RHS of long rules. New grammar
is: Xa → a, Xb → b, S → XaA|XbB|b, A→ BXaXa|XbXa,
and B → XbAAXb|XaXb

3 Reduce the RHS of rules to be of length at most two. New
grammar replaces A→ BXaXa by rules A→ BXaa,
Xaa → XaXa, and B → XbAAXb by rules B → XbXAAb,
XAAb → AXAb, XAb → AXb

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

An Example

Example

Convert: S → aA|bB|b, A→ Baa|ba, B → bAAb|ab, into
Chomsky Normal Form.

1 Eliminate ε-productions, unit productions, and useless
symbols.

This grammar is already in the right form.

2 Remove terminals from the RHS of long rules. New grammar
is: Xa → a, Xb → b, S → XaA|XbB|b, A→ BXaXa|XbXa,
and B → XbAAXb|XaXb

3 Reduce the RHS of rules to be of length at most two. New
grammar replaces A→ BXaXa by rules A→ BXaa,
Xaa → XaXa, and B → XbAAXb by rules B → XbXAAb,
XAAb → AXAb, XAb → AXb

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

An Example

Example

Convert: S → aA|bB|b, A→ Baa|ba, B → bAAb|ab, into
Chomsky Normal Form.

1 Eliminate ε-productions, unit productions, and useless
symbols. This grammar is already in the right form.

2 Remove terminals from the RHS of long rules. New grammar
is: Xa → a, Xb → b, S → XaA|XbB|b, A→ BXaXa|XbXa,
and B → XbAAXb|XaXb

3 Reduce the RHS of rules to be of length at most two. New
grammar replaces A→ BXaXa by rules A→ BXaa,
Xaa → XaXa, and B → XbAAXb by rules B → XbXAAb,
XAAb → AXAb, XAb → AXb

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

An Example

Example

Convert: S → aA|bB|b, A→ Baa|ba, B → bAAb|ab, into
Chomsky Normal Form.

1 Eliminate ε-productions, unit productions, and useless
symbols. This grammar is already in the right form.

2 Remove terminals from the RHS of long rules.

New grammar
is: Xa → a, Xb → b, S → XaA|XbB|b, A→ BXaXa|XbXa,
and B → XbAAXb|XaXb

3 Reduce the RHS of rules to be of length at most two. New
grammar replaces A→ BXaXa by rules A→ BXaa,
Xaa → XaXa, and B → XbAAXb by rules B → XbXAAb,
XAAb → AXAb, XAb → AXb

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

An Example

Example

Convert: S → aA|bB|b, A→ Baa|ba, B → bAAb|ab, into
Chomsky Normal Form.

1 Eliminate ε-productions, unit productions, and useless
symbols. This grammar is already in the right form.

2 Remove terminals from the RHS of long rules. New grammar
is: Xa → a, Xb → b, S → XaA|XbB|b, A→ BXaXa|XbXa,
and B → XbAAXb|XaXb

3 Reduce the RHS of rules to be of length at most two. New
grammar replaces A→ BXaXa by rules A→ BXaa,
Xaa → XaXa, and B → XbAAXb by rules B → XbXAAb,
XAAb → AXAb, XAb → AXb

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

An Example

Example

Convert: S → aA|bB|b, A→ Baa|ba, B → bAAb|ab, into
Chomsky Normal Form.

1 Eliminate ε-productions, unit productions, and useless
symbols. This grammar is already in the right form.

2 Remove terminals from the RHS of long rules. New grammar
is: Xa → a, Xb → b, S → XaA|XbB|b, A→ BXaXa|XbXa,
and B → XbAAXb|XaXb

3 Reduce the RHS of rules to be of length at most two.

New
grammar replaces A→ BXaXa by rules A→ BXaa,
Xaa → XaXa, and B → XbAAXb by rules B → XbXAAb,
XAAb → AXAb, XAb → AXb

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

An Example

Example

Convert: S → aA|bB|b, A→ Baa|ba, B → bAAb|ab, into
Chomsky Normal Form.

1 Eliminate ε-productions, unit productions, and useless
symbols. This grammar is already in the right form.

2 Remove terminals from the RHS of long rules. New grammar
is: Xa → a, Xb → b, S → XaA|XbB|b, A→ BXaXa|XbXa,
and B → XbAAXb|XaXb

3 Reduce the RHS of rules to be of length at most two. New
grammar replaces A→ BXaXa by rules A→ BXaa,
Xaa → XaXa, and B → XbAAXb by rules B → XbXAAb,
XAAb → AXAb, XAb → AXb

Agha-Viswanathan CS373


