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Resources for the presentation:
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Normal Forms for Grammars

It is typically easier to work with a context free language if given a
CFG in a normal form.

Normal Forms

A grammar is in a normal form if its production rules have a
special structure:

Chomsky Normal Form: Productions are of the form A→ BC
or A→ a

Greibach Normal Form Productions are of the form A→ aα,
where α ∈ V ∗

If ε is in the language, we allow the rule S → ε. We will require
that S does not appear on the right hand side of any rules.
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

In this lecture. . .

How to convert any context-free grammar to an equivalent
grammar in the Chomsky Normal Form

We will start with a series of simplifications...
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions

Often would like to ensure that the length of the intermediate
strings in a derivation are not longer than the final string
derived

But a long intermediate string can lead to a short final string
if there are ε-productions (rules of the form A→ ε).

Can we rewrite the grammar not to have ε-productions?
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
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Eliminating ε-production
The Problem

Given a grammar G produce an equivalent grammar G ′ (i.e.,
L(G ) = L(G ′)) such that G ′ has no rules of the form A→ ε,
except possibly S → ε, and S does not appear on the right hand
side of any rule.

Note: If S can appear on the RHS of a rule, say S → SS , then
when there is the rule S → ε, we can again have long intermediate
strings yielding short final strings.
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Nullable Variables

Definition

A variable A (of grammar G ) is nullable if A
∗⇒ ε.

How do you determine if a variable is nullable?

If A→ ε is a production in G then A is nullable

If A→ B1B2 · · ·Bk is a production and each Bi is nullable,
then A is nullable.

Fixed point algorithm: Propagate the label of nullable until there is
no change.
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Using nullable variables
Initial Ideas

Intuition: For every variable A in G have a variable A in G ′ such
that A

∗⇒G ′ w iff A
∗⇒G w and w 6= ε.

For every rule B → CAD in
G , where A is nullable, add two rules in G ′: B → CD and
B → CAD.
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

G ′ has same variables, except for a new start symbol S ′.

For each rule A→ X1X2 · · ·Xk in G , create rules
A→ α1α2 · · ·αk where

αi =

{
Xi if Xi is a non-nullable variable/terminal in G

Xi or ε if Xi is nullable in G

and not all αi are ε

Add rule S ′ → S . If S nullable in G , add S ′ → ε also.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

G ′ has same variables, except for a new start symbol S ′.

For each rule A→ X1X2 · · ·Xk in G , create rules
A→ α1α2 · · ·αk where

αi =

{
Xi if Xi is a non-nullable variable/terminal in G

Xi or ε if Xi is nullable in G

and not all αi are ε

Add rule S ′ → S . If S nullable in G , add S ′ → ε also.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

G ′ has same variables, except for a new start symbol S ′.

For each rule A→ X1X2 · · ·Xk in G , create rules
A→ α1α2 · · ·αk where

αi =

{
Xi if Xi is a non-nullable variable/terminal in G

Xi or ε if Xi is nullable in G

and not all αi are ε

Add rule S ′ → S . If S nullable in G , add S ′ → ε also.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Algorithm

G ′ has same variables, except for a new start symbol S ′.

For each rule A→ X1X2 · · ·Xk in G , create rules
A→ α1α2 · · ·αk where

αi =

{
Xi if Xi is a non-nullable variable/terminal in G

Xi or ε if Xi is nullable in G

and not all αi are ε

Add rule S ′ → S . If S nullable in G , add S ′ → ε also.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Correctness of the Algorithm

By construction, there are no rules of the form A→ ε in G ′

(except possibly S ′ → ε), and S ′ does not appear in the RHS
of any rule.

L(G ) = L(G ′)

L(G ′) ⊆ L(G ): For every rule A→ w in G ′, we have A
∗⇒G w

(by expanding zero or more nullable variables in w to ε)

L(G ) ⊆ L(G ′): If ε ∈ L(G ), then ε ∈ L(G ′). If A
∗⇒G w ∈ Σ+,

then by induction on the number of steps in the derivation,
A
∗⇒G ′ w . Base case: if A→ w ∈ Σ+, then A→ w .

(Proof details skipped.)
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Eliminating ε-productions
An Example

Example

Rules of grammar G be S → AB; A→ AaA|ε; and B → BbB|ε.
Nullables in G are

A,B and S

Rules for grammar G ′:
S → AB|A|B
A→ AaA|aA|Aa|a
B → BbB|bB|Bb|b
S ′ → S |ε
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
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Eliminating Unit Productions

Often would like to ensure that the number of steps in a
derivation are not much more than the length of the string
derived

But can have a long chain of derivation steps that make little
or no “progress,” if the grammar has unit productions (rules
of the form A→ B, where B is a non-terminal).

Note: A→ a is not a unit production

Can we rewrite the grammar not to have unit-productions?

Eliminating unit-productions

Given a grammar G produce an equivalent grammar G ′ (i.e.,
L(G ) = L(G ′)) such that G ′ has no rules of the form A→ B where
B ∈ V ′.
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or no “progress,” if the grammar has unit productions (rules
of the form A→ B, where B is a non-terminal).

Note: A→ a is not a unit production

Can we rewrite the grammar not to have unit-productions?

Eliminating unit-productions

Given a grammar G produce an equivalent grammar G ′ (i.e.,
L(G ) = L(G ′)) such that G ′ has no rules of the form A→ B where
B ∈ V ′.
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Role of Unit Productions

Unit productions can play an important role in designing grammars:

While eliminating ε-productions we added a rule S ′ → S . This
is a unit production.

We have used unit productions in building an unambiguous
grammar:

I → a | b | Ia | Ib T → F | T ∗ F
N → 0 | 1 | N0 | N1 E → T | E + T
F → I | N | − N | (E )

But as we shall see now, they can be (safely) eliminated
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

Basic Idea

Introduce new “look-ahead” productions to replace unit
productions: look ahead to see where the unit production (or a
chain of unit productions) leads to and add a rule to directly go
there.

Example

E → T → F → I → a|b|Ia|Ib. So introduce new rules
E → a|b|Ia|Ib

But what if the grammar has cycles of unit productions? For
example, A→ B|a, B → C |b and C → A|c . You cannot use the
“look-ahead” approach, because then you will get into an infinite
loop.
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
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The Algorithm

1 Determine pairs 〈A,B〉 such that A
∗⇒u B, i.e., A derives B

using only unit rules. Such pairs are called unit pairs.

Easy to determine unit pairs: Make a directed graph with
vertices = V , and edges = unit productions. 〈A,B〉 is a unit
pair, if there is a directed path from A to B in the graph.

2 If 〈A,B〉 is a unit pair, then add production rules
A→ β1|β2| · · ·βk , where B → β1|β2| · · · |βk are all the
non-unit production rules of B

3 Remove all unit production rules.

Let G ′ be the grammar obtained from G using this algorithm.
Then L(G ′) = L(G )
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Correctness Proof
L(G ′) ⊆ L(G)

Proof.

For every rule A→ w in G ′, we have A
∗⇒G w (by a sequence of

zero or more unit productions followed by a nonunit production of
G ) �
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Correctness Proof
L(G) ⊆ L(G ′)

Proof.

For w ∈ L(G ) consider a leftmost derivation S
∗⇒lm w in G .

All these derivation steps are possible in G ′ also, except the
ones using the unit productions of G .

Suppose S
∗⇒ xAα⇒1 xBα⇒2 · · · , where ⇒1 corresponds

to a unit rule. Then (in a leftmost derivation) ⇒2 must
correspond to using a rule for B.

So a leftmost derivation of w in G can be broken up into
“big-steps” each consisting of zero or more unit productions
on the leftmost variable, followed by a non-unit production.

For each such “big-step” there is a single production rule in
G ′ that yields the same result. �
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Eliminating Useless Symbols

Ideally one would like to use a compact grammar, with the
fewest possible variables

But a grammar may have “useless” variables which do not
appear in any valid derivation

Can we identify all the useless variables and remove them
from the grammar? (Note: there may still be other
redundancies in the grammar.)
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Useless Symbols

Definition

A symbol X ∈ V ∪ Σ is useless in a grammar G = (V ,Σ, S ,P) if

there is no derivation of the form S
∗⇒ αXβ

∗⇒ w where w ∈ Σ∗

and α, β ∈ (V ∪ Σ)∗.

Removing useless symbols (and rules involving them) from a
grammar does not change the language of the grammar
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Revisiting Useless Symbols

Recall, X is useless if there is no derivation of the form
S
∗⇒ αXβ

∗⇒ w where w ∈ Σ∗ and α, β ∈ (V ∪ Σ)∗.

i.e., X is useless iff either

Type 1: X is not “reachable” from S (i.e., no α, β such that

S
∗⇒ αXβ), or

Type 2: for all α, β such that S
∗⇒ αXβ, either α, X or β

cannot yield a string in Σ∗. i.e., either

Type 2a: X is not “generating” (i.e., no w ∈ Σ∗

such that X
∗⇒ w), or

Type 2b: α or β contains a non-generating
symbol
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Algorithm to Remove Useless Symbols

Algorithm

So, in order to remove useless symbols,

1 First remove all symbols that are not generating (Type 2a)
If X was useless, but reachable and generating (i.e., Type 2b)
then X becomes unreachable after this step

Type 2b: for all α, β such that S
∗⇒ αXβ, α or β contains a

non-generating symbol. Then in the new grammar all such
derivations disappear (because some variable in α or β is
removed).

2 Next remove all unreachable symbols in the new grammar.

Removes Type 1 (originally unreachable) and Type 2b useless
symbols now

Doesn’t remove any useful symbol in either step (Why?)
Only remains to show how to do the two steps in this algorithm
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Three Simplifications

Chomsky Normal Form
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Generating and Reachable Symbols

Generating symbols

If A→ x , where x ∈ Σ∗, is a production then A is generating

If A→ γ is a production and all variables in γ are generating,
then A is generating.

Reachable symbols

S is reachable

If A is reachable and A→ αBβ is a production, then B is
reachable

Fixed point algorithm: Propagate the label (generating or
reachable) until no change.
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Three Simplifications, Together

Given a grammar G , such that L(G ) 6= ∅, we can find a grammar
G ′ such that L(G ′) = L(G ) and G ′ has no ε-productions (except
possibly S → ε), unit productions, or useless symbols, and S does
not appear in the RHS of any rule.

Proof.

Apply the following 3 steps in order:

1 Eliminate ε-productions

2 Eliminate unit productions

3 Eliminate useless symbols. �

Note: Applying the steps in a different order may result in a
grammar not having all the desired properties.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Three Simplifications, Together

Given a grammar G , such that L(G ) 6= ∅, we can find a grammar
G ′ such that L(G ′) = L(G ) and G ′ has no ε-productions (except
possibly S → ε), unit productions, or useless symbols, and S does
not appear in the RHS of any rule.

Proof.

Apply the following 3 steps in order:

1 Eliminate ε-productions

2 Eliminate unit productions

3 Eliminate useless symbols. �

Note: Applying the steps in a different order may result in a
grammar not having all the desired properties.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Three Simplifications, Together

Given a grammar G , such that L(G ) 6= ∅, we can find a grammar
G ′ such that L(G ′) = L(G ) and G ′ has no ε-productions (except
possibly S → ε), unit productions, or useless symbols, and S does
not appear in the RHS of any rule.

Proof.

Apply the following 3 steps in order:

1 Eliminate ε-productions

2 Eliminate unit productions

3 Eliminate useless symbols. �

Note: Applying the steps in a different order may result in a
grammar not having all the desired properties.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Eliminating ε-productions
Eliminating Unit Productions
Eliminating Useless Symbols
Putting Together the Three Simplifications

The Three Simplifications, Together

Given a grammar G , such that L(G ) 6= ∅, we can find a grammar
G ′ such that L(G ′) = L(G ) and G ′ has no ε-productions (except
possibly S → ε), unit productions, or useless symbols, and S does
not appear in the RHS of any rule.

Proof.

Apply the following 3 steps in order:

1 Eliminate ε-productions

2 Eliminate unit productions

3 Eliminate useless symbols. �

Note: Applying the steps in a different order may result in a
grammar not having all the desired properties.

Agha-Viswanathan CS373



Normal Forms for CFG
Three Simplifications
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Chomsky Normal Form

Proposition

For any non-empty context-free language L, there is a grammar G ,
such that L(G ) = L and each rule in G is of the form

1 A→ a where a ∈ Σ, or

2 A→ BC where neither B nor C is the start symbol, or

3 S → ε where S is the start symbol (iff ε ∈ L)

Furthermore, G has no useless symbols.
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Outline of Normalization

Given G = (V ,Σ, S ,P), convert to CNF

Let G ′ = (V ′,Σ,S ,P ′) be the grammar obtained after
eliminating ε-productions, unit productions, and useless
symbols from G .

If A→ x is a rule of G ′, where |x | = 0, then A must be S
(because G ′ has no other ε-productions). If A→ x is a rule of
G ′, where |x | = 1, then x ∈ Σ (because G ′ has no unit
productions). In either case A→ x is in a valid form.

All remaining productions are of form A→ X1X2 · · ·Xn where
Xi ∈ V ′ ∪ Σ, n ≥ 2 (and S does not occur in the RHS). We
will put these rules in the right form by applying the following
two transformations:

1 Make the RHS consist only of variables
2 Make the RHS be of length 2.
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Make the RHS consist only of variables

Let A→ X1X2 · · ·Xn, with Xi being either a variable or a terminal.
We want rules where all the Xi are variables.

Example

Consider A→ BbCdefG . How do you remove the terminals?
For each a, b, c . . . ∈ Σ add variables Xa,Xb,Xc , . . . with
productions Xa → a, Xb → b, . . .. Then replace the production
A→ BbCdefG by A→ BXbCXdXeXf G

For every a ∈ Σ

1 Add a new variable Xa

2 In every rule, if a occurs in the RHS, replace it by Xa

3 Add a new rule Xa → a
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

Make the RHS be of length 2

Now all productions are of the form A→ a or
A→ B1B2 · · ·Bn, where n ≥ 2 and each Bi is a variable.

How do you eliminate rules of the form A→ B1B2 . . .Bn

where n > 2?

Replace the rule by the following set of rules

A → B1B(2,n)

B(2,n) → B2B(3,n)

B(3,n) → B3B(4,n)

...

B(n−1,n) → Bn−1Bn

where B(i ,n) are “new” variables.
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where n > 2?

Replace the rule by the following set of rules

A → B1B(2,n)

B(2,n) → B2B(3,n)

B(3,n) → B3B(4,n)

...

B(n−1,n) → Bn−1Bn

where B(i ,n) are “new” variables.
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Normal Forms for CFG
Three Simplifications

Chomsky Normal Form

An Example

Example

Convert: S → aA|bB|b, A→ Baa|ba, B → bAAb|ab, into
Chomsky Normal Form.

1 Eliminate ε-productions, unit productions, and useless
symbols. This grammar is already in the right form.

2 Remove terminals from the RHS of long rules. New grammar
is: Xa → a, Xb → b, S → XaA|XbB|b, A→ BXaXa|XbXa,
and B → XbAAXb|XaXb

3 Reduce the RHS of rules to be of length at most two. New
grammar replaces A→ BXaXa by rules A→ BXaa,
Xaa → XaXa, and B → XbAAXb by rules B → XbXAAb,
XAAb → AXAb, XAb → AXb
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