BBM401-Lecture 11: Pushdown Automata

Lecturer: Lale Özkahya

Resources for the presentation: https://courses.engr.illinois.edu/cs373/fa2010/

Computing Using a Stack Definition Examples of Pushdown Automata

Image: Image:

⊸∢ ≣⇒

æ

Restricted Infinite Memory: The Stack

Agha-Viswanathan CS373

Computing Using a Stack Definition Examples of Pushdown Automata

Restricted Infinite Memory: The Stack

 So far we considered automata with finite memory or machines with infinite memory

- So far we considered automata with finite memory or machines with infinite memory
- Today: automata with access to an infinite stack infinite memory but restricted access

- So far we considered automata with finite memory or machines with infinite memory
- Today: automata with access to an infinite stack infinite memory but restricted access
- The stack can contain an unlimited number of characters.

- So far we considered automata with finite memory or machines with infinite memory
- Today: automata with access to an infinite stack infinite memory but restricted access
- The stack can contain an unlimited number of characters. But
 - can read/erase only the top of the stack: pop

- So far we considered automata with finite memory or machines with infinite memory
- Today: automata with access to an infinite stack infinite memory but restricted access
- The stack can contain an unlimited number of characters. But
 - $\bullet\,$ can read/erase only the top of the stack: pop
 - $\bullet\,$ can add to only the top of the stack: push

- So far we considered automata with finite memory or machines with infinite memory
- Today: automata with access to an infinite stack infinite memory but restricted access
- The stack can contain an unlimited number of characters. But
 - can read/erase only the top of the stack: pop
 - can add to only the top of the stack: push
- On longer inputs, automaton may have more items in the stack

Computing Using a Stack Definition Examples of Pushdown Automata

Keeping Count Using the Stack

• An automaton can use the stack to recognize $\{0^n 1^n\}$

Computing Using a Stack Definition Examples of Pushdown Automata

Keeping Count Using the Stack

• An automaton can use the stack to recognize $\{0^n1^n\}$

• On reading a 0, push it onto the stack

Computing Using a Stack Definition Examples of Pushdown Automata

- An automaton can use the stack to recognize $\{0^n1^n\}$
 - On reading a 0, push it onto the stack
 - After the 0s, on reading each 1, pop a 0

Computing Using a Stack Definition Examples of Pushdown Automata

- An automaton can use the stack to recognize $\{0^n1^n\}$
 - On reading a 0, push it onto the stack
 - After the 0s, on reading each 1, pop a 0
 - (If a 0 comes after a 1, reject)

Computing Using a Stack Definition Examples of Pushdown Automata

- An automaton can use the stack to recognize $\{0^n1^n\}$
 - On reading a 0, push it onto the stack
 - After the 0s, on reading each 1, pop a 0
 - (If a 0 comes after a 1, reject)
 - If attempt to pop an empty stack, reject

Computing Using a Stack Definition Examples of Pushdown Automata

- An automaton can use the stack to recognize $\{0^n1^n\}$
 - On reading a 0, push it onto the stack
 - After the 0s, on reading each 1, pop a 0
 - (If a 0 comes after a 1, reject)
 - If attempt to pop an empty stack, reject
 - If stack not empty at the end, reject

Computing Using a Stack Definition Examples of Pushdown Automata

- An automaton can use the stack to recognize $\{0^n1^n\}$
 - On reading a 0, push it onto the stack
 - After the 0s, on reading each 1, pop a 0
 - (If a 0 comes after a 1, reject)
 - If attempt to pop an empty stack, reject
 - If stack not empty at the end, reject
 - Else accept

Computing Using a Stack Definition Examples of Pushdown Automata

Matching Parenthesis Using the Stack

• An automaton can use the stack to recognize balanced parenthesis

Computing Using a Stack Definition Examples of Pushdown Automata

- An automaton can use the stack to recognize balanced parenthesis
- e.g. (())() is balanced, but ())() and (() are not

Computing Using a Stack Definition Examples of Pushdown Automata

- An automaton can use the stack to recognize balanced parenthesis
- e.g. (())() is balanced, but ())() and (() are not
 - On seeing a (push it on the stack

- An automaton can use the stack to recognize balanced parenthesis
- e.g. (())() is balanced, but ())() and (() are not
 - On seeing a (push it on the stack
 - On seeing a) pop a (from the stack

- An automaton can use the stack to recognize balanced parenthesis
- e.g. (())() is balanced, but ())() and (() are not
 - On seeing a (push it on the stack
 - On seeing a) pop a (from the stack
 - If attempt to pop an empty stack, reject

- An automaton can use the stack to recognize balanced parenthesis
- e.g. (())() is balanced, but ())() and (() are not
 - On seeing a (push it on the stack
 - On seeing a) pop a (from the stack
 - If attempt to pop an empty stack, reject
 - If stack not empty at the end, reject

- An automaton can use the stack to recognize balanced parenthesis
- e.g. (())() is balanced, but ())() and (() are not
 - On seeing a (push it on the stack
 - On seeing a) pop a (from the stack
 - If attempt to pop an empty stack, reject
 - If stack not empty at the end, reject
 - Else accept

Computing Using a Stack Definition Examples of Pushdown Automata

э

æ

Pushdown Automata (PDA)

A Pushdown Automaton

Computing Using a Stack Definition Examples of Pushdown Automata

Pushdown Automata (PDA)

A Pushdown Automaton

• Like an NFA with ϵ -transitions, but with a stack

Computing Using a Stack Definition Examples of Pushdown Automata

Pushdown Automata (PDA)

A Pushdown Automaton

- Like an NFA with ϵ -transitions, but with a stack
 - Stack depth unlimited: not a finite-state machine

Pushdown Automata

Definition

Pushdown Automata (PDA)

A Pushdown Automaton

- Like an NFA with ϵ -transitions, but with a stack
 - Stack depth unlimited: not a finite-state machine
 - Non-deterministic: accepts if any thread of execution accepts

Computing Using a Stack Definition Examples of Pushdown Automata

▶ < ≣ ▶

_ 17 ▶

æ

Pushdown Automata (PDA)

• Has a non-deterministic finite-state control

Computing Using a Stack Definition Examples of Pushdown Automata

- Has a non-deterministic finite-state control
- At every step:

Computing Using a Stack Definition Examples of Pushdown Automata

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none)

Computing Using a Stack Definition Examples of Pushdown Automata

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)

Computing Using a Stack Definition Examples of Pushdown Automata

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):

Computing Using a Stack Definition Examples of Pushdown Automata

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 - push a symbol onto stack (or push none)

Computing Using a Stack Definition Examples of Pushdown Automata

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 - push a symbol onto stack (or push none)
 - 2 change to a new state

Computing Using a Stack Definition Examples of Pushdown Automata

Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 - push a symbol onto stack (or push none)
 - Change to a new state

If at q_1 , with next input symbol *a* and top of stack *x*, then can consume *a*, pop *x*, push *y* onto stack and move to q_2

Definition

Pushdown Automata (PDA)

- Has a non-deterministic finite-state control
- At every step:
 - Consume next input symbol (or none) and pop the top symbol on stack (or none)
 - Based on current state, consumed input symbol and popped stack symbol, do (non-deterministically):
 - 1 push a symbol onto stack (or push none)
 - Change to a new state

If at q_1 , with next input symbol a and top of stack x, then can consume a, pop x, push y onto stack and move to q_2 (any of a, x, y may be ϵ)

Computing Using a Stack Definition Examples of Pushdown Automata

Pushdown Automata (PDA): Formal Definition

A PDA
$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$
 where

- Q = Finite set of states
- $\Sigma = Finite input alphabet$
- $\Gamma = Finite stack alphabet$
- $q_0 = \text{Start state}$
- $F \subseteq Q = Accepting/final states$
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times (\Gamma \cup \{\epsilon\}) \to \mathcal{P}(Q \times (\Gamma \cup \{\epsilon\}))$

Computing Using a Stack Definition Examples of Pushdown Automata

Matching Parenthesis: PDA construction

Computing Using a Stack Definition Examples of Pushdown Automata

Matching Parenthesis: PDA construction

• First push a "bottom-of-the-stack" symbol \$ and move to q

Computing Using a Stack Definition Examples of Pushdown Automata

Matching Parenthesis: PDA construction

• First push a "bottom-of-the-stack" symbol \$ and move to q

• On seeing a (push it onto the stack

Computing Using a Stack Definition Examples of Pushdown Automata

Matching Parenthesis: PDA construction

- First push a "bottom-of-the-stack" symbol \$ and move to q
- On seeing a (push it onto the stack
- On seeing a) pop if a (is in the stack

Computing Using a Stack Definition Examples of Pushdown Automata

Matching Parenthesis: PDA construction

- First push a "bottom-of-the-stack" symbol \$ and move to q
- On seeing a (push it onto the stack
- On seeing a) pop if a (is in the stack
- Pop \$ and move to final state q_F

Computing Using a Stack Definition Examples of Pushdown Automata

Computing Using a Stack Definition Examples of Pushdown Automata

Computing Using a Stack Definition Examples of Pushdown Automata

Computing Using a Stack Definition Examples of Pushdown Automata

Computing Using a Stack Definition Examples of Pushdown Automata

Computing Using a Stack Definition Examples of Pushdown Automata

Computing Using a Stack Definition Examples of Pushdown Automata

Computing Using a Stack Definition Examples of Pushdown Automata

▲ 同 → - ▲ 三

▶ < ≣ ▶

э

Computing Using a Stack Definition Examples of Pushdown Automata

Palindrome: PDA construction

 First push a "bottom-of-the-stack" symbol \$ and move to a pushing state

Computing Using a Stack Definition Examples of Pushdown Automata

- First push a "bottom-of-the-stack" symbol \$ and move to a pushing state
- Push input symbols onto the stack

Computing Using a Stack Definition Examples of Pushdown Automata

- First push a "bottom-of-the-stack" symbol \$ and move to a pushing state
- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)

Computing Using a Stack Definition Examples of Pushdown Automata

- First push a "bottom-of-the-stack" symbol \$ and move to a pushing state
- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
- If next input symbol is same as top of stack, pop

Computing Using a Stack Definition Examples of Pushdown Automata

- First push a "bottom-of-the-stack" symbol \$ and move to a pushing state
- Push input symbols onto the stack
- Non-deterministically move to a popping state (with or without consuming a single input symbol)
- If next input symbol is same as top of stack, pop
- If \$ on top of stack move to accept state

Computing Using a Stack Definition Examples of Pushdown Automata

3

→ 《문→

<ロト <回ト < 臣

Computing Using a Stack Definition Examples of Pushdown Automata

æ

⊸ ≣ ≯

< □ > < □ > < □

Computing Using a Stack Definition Examples of Pushdown Automata

æ

-≣ →

< 17 > <

Computing Using a Stack Definition Examples of Pushdown Automata

æ

< ≣⇒

< 17 > <

Palindrome: PDA execution

\$

Computing Using a Stack Definition Examples of Pushdown Automata

Palindrome: PDA execution

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

æ

< ≣⇒

Computing Using a Stack Definition Examples of Pushdown Automata

Palindrome: PDA execution

æ

-≣ →

< 17 > <

Computing Using a Stack Definition Examples of Pushdown Automata

Computation Language Recognized Expressive Power

Instantaneous Description

In order to describe a machine's execution, we need to capture a "snapshot" of the machine that completely determines future behavior

Computation Language Recognized Expressive Power

Instantaneous Description

In order to describe a machine's execution, we need to capture a "snapshot" of the machine that completely determines future behavior

• In the case of an NFA (or DFA), it is the state

Computation Language Recognized Expressive Power

Instantaneous Description

In order to describe a machine's execution, we need to capture a "snapshot" of the machine that completely determines future behavior

- In the case of an NFA (or DFA), it is the state
- In the case of a TM, it is the state, head position, and tape contents

Computation Language Recognized Expressive Power

Instantaneous Description

In order to describe a machine's execution, we need to capture a "snapshot" of the machine that completely determines future behavior

- In the case of an NFA (or DFA), it is the state
- In the case of a TM, it is the state, head position, and tape contents
- In the case of a PDA, it is the state + stack contents

Computation Language Recognized Expressive Power

Instantaneous Description

In order to describe a machine's execution, we need to capture a "snapshot" of the machine that completely determines future behavior

- In the case of an NFA (or DFA), it is the state
- In the case of a TM, it is the state, head position, and tape contents
- In the case of a PDA, it is the state + stack contents

Definition

An instantaneous description of a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is a pair $\langle q, \sigma \rangle$, where $q \in Q$ and $\sigma \in \Gamma^*$

Computation Language Recognized Expressive Power

・ 同 ト ・ ヨ ト ・ ヨ ト

Computation

Definition

For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w}_P \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instanteous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \dots \langle r_k, s_k \rangle$ and a sequence $x_1, x_2, \dots x_k$, where for each $i, x_i \in \Sigma \cup \{\epsilon\}$, such that

•
$$w = x_1 x_2 \cdots x_k$$
,

Computation Language Recognized Expressive Power

- 4 同 2 4 日 2 4 日 2 4

Computation

Definition

For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w}_P \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instanteous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \dots \langle r_k, s_k \rangle$ and a sequence $x_1, x_2, \dots x_k$, where for each $i, x_i \in \Sigma \cup \{\epsilon\}$, such that

•
$$w = x_1 x_2 \cdots x_k$$
,

•
$$r_0 = q_1$$
, and $s_0 = \sigma_1$,

Computation Language Recognized Expressive Power

・ 同 ト ・ ヨ ト ・ ヨ ト

Computation

Definition

For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w}_{P} \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instanteous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \dots \langle r_k, s_k \rangle$ and a sequence $x_1, x_2, \dots x_k$, where for each $i, x_i \in \Sigma \cup \{\epsilon\}$, such that

•
$$w = x_1 x_2 \cdots x_k$$
,

•
$$r_0 = q_1$$
, and $s_0 = \sigma_1$,

•
$$r_k = q_2$$
, and $s_k = \sigma_2$,

Computation Language Recognized Expressive Power

イロト イポト イヨト イヨト

Computation

Definition

For a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, string $w \in \Sigma^*$, and instantaneous descriptions $\langle q_1, \sigma_1 \rangle$ and $\langle q_2, \sigma_2 \rangle$, we say $\langle q_1, \sigma_1 \rangle \xrightarrow{w}_P \langle q_2, \sigma_2 \rangle$ iff there is a sequence of instanteous descriptions $\langle r_0, s_0 \rangle, \langle r_1, s_1 \rangle, \dots, \langle r_k, s_k \rangle$ and a sequence $x_1, x_2, \dots x_k$, where for each $i, x_i \in \Sigma \cup \{\epsilon\}$, such that

•
$$w = x_1 x_2 \cdots x_k$$
,

•
$$r_0 = q_1$$
, and $s_0 = \sigma_1$,

•
$$r_k=q_2$$
, and $s_k=\sigma_2$,

• for every i, $(r_{i+1}, b) \in \delta(r_i, x_{i+1}, a)$ such that $s_i = as$ and $s_{i+1} = bs$, where $a, b \in \Gamma \cup \{\epsilon\}$ and $s \in \Gamma^*$

Computation Language Recognized Expressive Power

э

< 67 > <

Example of Computation

Example

 $\langle q_0, \epsilon \rangle \xrightarrow{(())} \langle q, ((\$) \text{ because} \rangle$

Computation Language Recognized Expressive Power

Example of Computation

Example

 $\langle q_0, \epsilon \rangle \xrightarrow{(()(} \langle q, ((\$) \text{ because})$ $\langle q_0, \epsilon \rangle \xrightarrow{x_1 = \epsilon} \langle q, \$ \rangle \xrightarrow{x_2 = (} \langle q, (\$) \xrightarrow{x_3 = (} \langle q, ((\$) \xrightarrow{x_4 =)} \langle q, (\$) \xrightarrow{x_5 = (} \langle q, ((\$) \xrightarrow{x_5 = (} \langle q, (() \xrightarrow{x_5 = (} \langle q, (() \xrightarrow{x_5 = (} \langle q, (() \xrightarrow{x_5 = (} \langle q, () \xrightarrow{x_5 = (} \land \xrightarrow{x_5 = (} \langle q, () \xrightarrow{x_5 = (} \land \xrightarrow{x_5 = (} \xrightarrow{x_5 = (} \land \xrightarrow{x_5 = (} \xrightarrow{x_5$

・ロト ・同ト ・ヨト ・ヨト

Computation Language Recognized Expressive Power

Acceptance/Recognition

Definition

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff

・ロト ・圖ト ・ 臣ト ・ 臣ト …

3

Computation Language Recognized Expressive Power

글 > - < 글 >

< 17 > <

Acceptance/Recognition

Definition

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff for some $q \in F$ and $\sigma \in \Gamma^*$, $\langle q_0, \epsilon \rangle \xrightarrow{w}_P \langle q, \sigma \rangle$

Computation Language Recognized Expressive Power

Acceptance/Recognition

Definition

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff for some $q \in F$ and $\sigma \in \Gamma^*$, $\langle q_0, \epsilon \rangle \xrightarrow{w}_P \langle q, \sigma \rangle$

Definition

The language recognized/accepted by a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is $L(P) = \{w \in \Sigma^* \mid P \text{ accepts } w\}.$

Computation Language Recognized Expressive Power

- 4 同 2 4 日 2 4 H

Acceptance/Recognition

Definition

A PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts a string $w \in \Sigma^*$ iff for some $q \in F$ and $\sigma \in \Gamma^*$, $\langle q_0, \epsilon \rangle \xrightarrow{w}_P \langle q, \sigma \rangle$

Definition

The language recognized/accepted by a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is $L(P) = \{w \in \Sigma^* | P \text{ accepts } w\}$. A language L is said to be accepted/recognized by P if L = L(P).

Computation Language Recognized Expressive Power

글 > - < 글 >

< A >

э

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally,

. . .

Computation Language Recognized Expressive Power

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally,

. . .

Theorem

For every CFG G, there is a PDA P such that L(G) = L(P). In addition, for every PDA P, there is a CFG G such that L(P) = L(G).

Computation Language Recognized Expressive Power

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally,

. . .

Theorem

For every CFG G, there is a PDA P such that L(G) = L(P). In addition, for every PDA P, there is a CFG G such that L(P) = L(G). Thus, L is context-free iff there is a PDA P such that L = L(P).

Computation Language Recognized Expressive Power

Expressive Power of CFGs and PDAs

CFGs and PDAs have equivalent expressive powers. More formally,

. . .

Theorem

For every CFG G, there is a PDA P such that L(G) = L(P). In addition, for every PDA P, there is a CFG G such that L(P) = L(G). Thus, L is context-free iff there is a PDA P such that L = L(P).

Proof.

Skipped.