BBM401-Lecture 2: DFA's and Closure Properties

Lecturer: Lale Özkahya

Resources for the presentation: http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-045j-automata-computability-and-complexity-spring-2011/Syllabus/https://courses.engr.illinois.edu/cs498374/lectures.html

DFAS (also called FSMs)

- A simple(st?) model of what a computer is
- Many devices modeled, programmed as DFAs
 - Vending machines
 - Elevators
 - · Digital watch logic
 - Calculators
 - · Lexical analysis part of program compilation
- Very limited, but observable universe is finite...

Typical DFA

- Start state q₀
- Start at left, scan symbol, change state, move right.
- Rules of form "if in state q scanning symbol s then go to state p and move right."
- Some states (circled) are accepting.
- *M accepts* the input string if a circled state is reached after scanning the last symbol.

Graphical Representation

- Directed graph with edges labeled with chars in Σ
- For each state (vertex) q and symbol a in Σ there is exactly one edge leaving q labeled with a. $q \xrightarrow{a} p$
- Accepting state(s) are double-circled
- Initial state has pointer, or is obviously labeled (0, q_O, "start"...)

Graphical Representation

- Where does 001 lead? 10010?
- Which strings end up in accepting state?
- Prove it
- Every string has one path that it follows

$$q \xrightarrow{a} p$$
 versus $q \xrightarrow{w} p$

Graphical Representation

Definition

- A DFA M accepts a string w iff the unique path starting at the initial state and spelling out w ends at an accepting state.
- The language accepted (or "recognized") by a DFA M is denoted L(M) and defined by

$$L(M) = \{ w \mid M \text{ accepts } w \}$$

Warning

 "M accepts language L" does not mean simply that M accepts each string in L.

"M accepts language L" means
 M accepts each string in L and no others!

 M "recognizes" L is a better term, but "accepts" is widely accepted (and recognized).

State = Memory

- The state of a DFA is its entire memory of what has come before
- The state must capture enough information to complete the computation on the suffix to come
- When designing a DFA, think "what do I need to know at this moment?" That is your state.

• *L(M)* = {*w* | *w* ends with contains 001 or 010}

• *L(M)* = {*w* | *w* ends with contains 001 or 010}

• *L(M)* = {*w* | w contains 001 or 010}

• *L(M)* = {*w* | *w* contains 001 or 010}

Binary #s congruent to 0 mod 5

Key Idea

If $w \mod 5 = a$, then:

- w0 mod 5 = 2a mod 5
- $w1 \mod 5 = 2a+1 \mod 5$

Test: $1101011 = 107 = 2 \mod 5$

Formal (tuple) Representation

Sometimes, it is easier to specify the DFA using this formalism, instead of drawing a graph

A DFA is a quintuple $M=(Q,\Sigma,\delta,q_{o},F)$, where:

- Q is a finite set of states
- Σ is a finite alphabet of symbols
- δ : Q x $\Sigma \rightarrow$ Q is a transition function
- q_0 is the *initial state*
- $F \subseteq Q$ is the set of accepting states

•
$$Q = \{0,1,2,3\}$$

• $\Sigma = \{a,b\}$

• δ specified at right

•
$$q_0 = 0$$

• F = {3}

input	а	b
0	1	0
1	2	0
2	3	0
3	3	0

Extending δ

- $\delta(q,a) = p$ means in graph that $q \stackrel{a}{\rightarrow} p$
- But how can we define $\delta(q, w)$ to express $q \stackrel{w}{\leadsto} p$
- Must extend $\delta: Q \times \Sigma^* \to Q$
 - $-\delta(q,\varepsilon) = q$ for every q; $\delta(q,a)$ already defined
 - $-\delta(q, au) = \delta(\delta(q, a), u)$ for $|u| \ge 1$, all q, a

take first step according to
$$\delta$$
 take rest of steps inductively according to δ

 $\delta(q, w) = p$ corresponds to $q \stackrel{w}{\leadsto} p$

Formal definition of L(M)

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA

Then $L(M) = \{ w \mid \delta(q_{o}, w) \in F \}$

We will show later that:

Theorem

L is regular if and only if L = L(M) for some DFA M

Example use

$$L(M) = \{w \mid w \text{ in base } b \text{ is congruent to } k \text{ mod } m$$

- $Q = \{0,1,...,m-1\}$
- $\Sigma = \{0,1,...,b-1\}$
- $q_0 = 0$ • $\delta(n, q) = hn + q \mod m$
- δ (n,a) = bn+a mod m
 F = {k}

M simulating both M_1 and M_2 M_1 accepts #0 = odd M_2 M_2 accepts #0 = odd

Cross-product machine

 M_2 accepts #1 = odd

M accepting $L(M_1) \cap L(M_2)$

$$Q = Q_1 \times Q_2$$

$$q_0 = (q_0^{(1)}, q_0^{(2)})$$

 $F = F_1 \times F_2 = \{ (q_1, q_2) \mid q_1 \text{ in } F_1 \text{ and } q_2 \text{ in } F_2 \}$

Transition function:

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

$$(q_1, q_2) \xrightarrow{a} (p_1, p_2)$$
 if and only if
• $q_1 \xrightarrow{a} p_1$ in M_1

•
$$q_2 \xrightarrow{a} p_2$$
 in M_2

Proof that simulation is correct

- Induction on what? that what?
- Will need to prove that action of machine is correct starting from any states.
- We know that:

$$(q_1, q_2) \xrightarrow{a} (p_1, p_2)$$
 iff
• $q_1 \xrightarrow{a} p_1$ in M_1
• $q_2 \xrightarrow{a} p_2$ in M_2

Show that:

Just like definition of δ , but with w instead of a

Finishing up...

• We proved:

$$(q_{1}, q_{2}) \xrightarrow{W} (p_{1}, p_{2})$$
iff
$$q_{1} \xrightarrow{W}_{1} p_{1} \text{ and } q_{2} \xrightarrow{W}_{2} p_{2}$$

By definition, w accepted by M

iff
$$(q_0^{(1)}q_0^{(2)}) \stackrel{w}{\longrightarrow} (f_1, f_2)$$
 in $F_1 \times F_2$
iff $q_0^{(1)} \stackrel{w}{\longrightarrow} f_1$ in F_1 AND $q_0^{(2)} \stackrel{w}{\longrightarrow} f_2$ in F_2
iff w in $L(M_1)$ AND w in $L(M_2)$

Formal proof that simulation is correct

- We know by definition that:
 - for all q_1 in Q_2 , for all q_2 in Q_2
 - for all characters a

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

- We prove by induction on |w| that:
 - for all q_1 in Q_1 , for all q_2 in Q_2
 - for all strings w

$$\delta((q_1, q_2), w) = (\delta_1(q_1, w), \delta_2(q_2, w))$$

Looks just like definition of δ , but with w instead of a

To prove:
$$\delta((q_1, q_2), w) = (\delta_1(q_1, w), \delta_2(q_2, w))$$

Induction on
$$|w|$$

• Base Case: $|w| = 0$, so $w = \varepsilon$.

 $\delta((q_1, q_2), \varepsilon) = (q_1, q_2) = (\delta_1(q_1, \varepsilon), \delta_2(q_2, \varepsilon))$ • Assume true for strings u of length < n.

• Let
$$w = au$$
 be an arbitrary string of length u

• Let
$$w = au$$
 be an arbitrary string of length n .

•
$$\delta((q_1, q_2), au)$$

$$= \delta(\delta((q_1, q_2), a), u)$$
 defin of δ extension

$$= \delta(\delta((q_1, q_2), a), u)$$
 defin of δ extension

$$= \delta((\delta_1(q_1, a), \delta_2(q_2, a)), u)$$
 by defin of δ

$$= \delta(((q_1, q_2), u), u)$$

$$= \delta((\delta_1(q_1, a), \delta_2(q_2, a)), u)$$

$$= \delta((r_1, r_2), u)$$

$$= (\delta_1(r_1, u), \delta_2(r_2, u))$$

$$= (\delta_1(\delta_1(q_1, a), u), \delta_2(\delta_2(q_2, a), u)))$$
get rid of r 's

$$= (\delta_1(\delta_1(q_1, a), u), \delta_2(\delta_2(q_2, a), u))) \text{ get rid of } r'$$

$$= (\delta_1(q_1, au), \delta_2(q_2, au)) \text{ unsplitting}$$

$$= (\delta_1(q_1, w), \delta_2(q_2, w))$$

Properties of Regular languages

- We've shown how to accept intersection of two regular languages
- What about union?
- If L is accepted by a DFA, what about \overline{L} ?
- What about concatenation, and Kleene * ?
- Is there a DFA for $L_1 L_2$ given M_1 and M_2 ?

The answer to all of these questions, and more, is "Yes."

An FA diagram, machine M

Conventions:

Accept state

Transition from a to b on input symbol 1.
Allow self-loops

- Example computation:
 - Input word w: 1 0 1 1 0 1 1 0
 - States: a b a b c a b c d d
- We say that M accepts w, since w leads to d, an accepting state.

- What is L(M) for Example 1?
- { w ∈ { 0,1 }* | w contains 111 as a substring }
- Note: Substring refers to consecutive symbols.

- What is the 5-tuple (Q, Σ , δ , q₀, F)?
- Q = { a, b, c, d }
- $\Sigma = \{ 0, 1 \}$
- δ is given by the state diagram, or alternatively, by a table:
- $q_0 = a$
- F = { d }

Design an FA M with L(M) = { w ∈ { 0,1 }* | w contains 101 as a substring }.

 Failure from state b causes the machine to remain in state b.

• $L = \{ w \in \{ 0,1 \}^* \mid w \text{ doesn't contain either } 00 \text{ or } 11 \text{ as a substring } \}.$

- State d is a trap state = a nonaccepting state that you can't leave.
- Sometimes we'll omit some arrows; by convention, they go to a trap state.

- L = { w | all nonempty blocks of 1s in w have odd length }.
- E.g., ε, or 100111000011111, or any number of 0s.
- Initial 0s don't matter, so start with:

 Then 1 also leads to an accepting state, but it should be a different one, to "remember" that the string ends in one 1.

• L = { w | all nonempty blocks of 1s in w have odd length }.

From b:

– 0 can return to a, which can represent either ϵ , or any string that is OK so far and ends with 0.

 1 should go to a new nonaccepting state, meaning "the string ends with two 1s".

Note: c isn't a trap state---we can accept some extensions.

• L = { w | all nonempty blocks of 1s in w have odd length }.

- From c:
 - 1 can lead back to b, since future acceptance decisions are the same if the string so far ends with any odd number of 1s.
 - Reinterpret b as meaning "ends with an odd number of 1s".
 - Reinterpret c as "ends with an even number of 1s".
 - 0 means we must reject the current string and all extensions.

L = { w | all nonempty blocks of 1s in w have odd length }.

- Meanings of states (more precisely):
 - a: Either ε , or contains no bad block (even block of 1s followed by 0) so far and ends with 0.
 - b: No bad block so far, and ends with odd number of 1s.
 - c: No bad block so far, and ends with even number of 1s.
 - d: Contains a bad block.

- L = EQ = { w | w contains an equal number of 0s and 1s }.
- No FA recognizes this language.
- Idea (not a proof):
 - Machine must "remember" how many 0s and 1s it has seen, or at least the difference between these numbers.
 - Since these numbers (and the difference) could be anything, there can't be enough states to keep track.
 - So the machine will sometimes get confused and give a wrong answer.
- We'll turn this into an actual proof next week.

Closure under operations

- The set of FA-recognizable languages is closed under all six operations (union, intersection, complement, set difference, concatenation, star).
- This means: If we start with FA-recognizable languages and apply any of these operations, we get another FArecognizable language (for a different FA).
- Theorem 1: FA-recognizable languages are closed under complement.
- Proof:
 - Start with a language L_1 over alphabet Σ , recognized by some FA, M_1 .
 - Produce another FA, M_2 , with $L(M_2) = \Sigma^* L(M_1)$.
 - Just interchange accepting and non-accepting states.

Closure under complement

- Theorem 1: FA-recognizable languages are closed under complement.
- Proof: Interchange accepting and non-accepting states.
- Example: FA for { w | w does not contain 111 }
 - Start with FA for { w | w contains 111 }:

Closure under complement

- Theorem 1: FA-recognizable languages are closed under complement.
- Proof: Interchange accepting and non-accepting states.
- Example: FA for { w | w does not contain 111 }
 - Interchange accepting and non-accepting states:

Closure under intersection

 Theorem 2: FA-recognizable languages are closed under intersection.

• Proof:

- Start with FAs M_1 and M_2 for the same alphabet Σ .
- Get another FA, M_3 , with $L(M_3) = L(M_1) \cap L(M_2)$.
- Idea: Run M₁ and M₂ "in parallel" on the same input. If both reach accepting states, accept.
- Example:
 - L(M₁): Contains substring 01.
 - L(M₂): Odd number of 1s.
 - L(M₃): Contains 01 and has an odd number of 1s.

Closure under intersection

• Example:

M₁: Substring 01

M₂: Odd number of 1s

Closure under intersection, general rule

• Assume:

$$- M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$$

- M₂ = (Q₂, \Sigma, \delta_2, q_{02}, F₂)

• Define $M_3 = (Q_3, \Sigma, \delta_3, q_{03}, F_3)$, where

$$-Q_3 = Q_1 \times Q_2$$

• Cartesian product,
$$\{(q_1,q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$$

$$-\delta_3((q_1,q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

$$-q_{03} = (q_{01}, q_{02})$$

$$- \operatorname{F}_3 = \operatorname{F}_1 \times \operatorname{F}_2 = \{ \ (\operatorname{q}_1, \operatorname{q}_2) \mid \operatorname{q}_1 \in \operatorname{F}_1 \ \text{and} \ \operatorname{q}_2 \in \operatorname{F}_2 \ \}$$

Closure under union

 Theorem 3: FA-recognizable languages are closed under union.

Proof:

- Similar to intersection.
- Start with FAs M_1 and M_2 for the same alphabet Σ .
- Get another FA, M_3 , with $L(M_3) = L(M_1) \cup L(M_2)$.
- Idea: Run M₁ and M₂ "in parallel" on the same input. If either reaches an accepting state, accept.
- Example:
 - L(M₁): Contains substring 01.
 - L(M₂): Odd number of 1s.
 - L(M₃): Contains 01 or has an odd number of 1s.

Closure under union

Closure under union, general rule

- Assume:
 - $-M_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$
 - $-M_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$
- Define $M_3 = (Q_3, \Sigma, \delta_3, q_{03}, F_3)$, where
 - $-Q_3 = Q_1 \times Q_2$
 - Cartesian product, $\{(q_1,q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$
 - $-\delta_3((q_1,q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$
 - $-q_{03} = (q_{01}, q_{02})$
 - $-F_3 = \{ (q_1,q_2) \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$

Closure under set difference

- Theorem 4: FA-recognizable languages are closed under set difference.
- Proof:
 - Similar proof to those for union and intersection.
 - Alternatively, since $L_1 L_2$ is the same as $L_1 \cap (L_2)^c$, we can just apply Theorems 2 and 3.

Closure under concatenation

 Theorem 5: FA-recognizable languages are closed under concatenation.

Proof:

- Start with FAs M_1 and M_2 for the same alphabet Σ .
- Get another FA, M_3 , with $L(M_3) = L(M_1) \circ L(M_2)$, which is $\{ x_1 x_2 \mid x_1 \in L(M_1) \text{ and } x_2 \in L(M_2) \}$
- Idea: ???
 - Attach accepting states of M₁ somehow to the start state of M₂.
 - But we have to be careful, since we don't know when we're done with the part of the string in L(M₁)---the string could go through accepting states of M₁ several times.

Closure under concatenation

- Theorem 5: FA-recognizable languages are closed under concatenation.
- Example:
 - $-\Sigma = \{0, 1\}, L_1 = \Sigma^*, L_2 = \{0\} \{0\}^* \text{ (just 0s, at least one)}.$
 - $L_1 L_2$ = strings that end with <u>a</u> block of at least one 0

- How to combine?
- We seem to need to "guess" when to shift to M₂.
- Leads to our next model, NFAs, which are FAs that can guess.

Closure under star

 Theorem 6: FA-recognizable languages are closed under star.

• Proof:

- Start with FA M₁.
- Get another FA, M_2 , with $L(M_2) = L(M_1)^*$.
- Same problems as for concatenation---need guessing.
- . . .
- We'll define NFAs next, then return to complete the proofs of Theorems 5 and 6.