BBM401-Lecture 2: DFA's and Closure Properties

Lecturer: Lale Ozkahya

Resources for the presentation:
http://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-045j-automata-computability-and-

complexity-spring-2011/Syllabus/
https://courses.engr.illinois.edu/cs498374 /lectures.html



/ DFAS (also called FSMs)

* Asimple(st?) model of what a computer is

* Vending machines

* Elevators

* Digital watch logic

* Calculators

* Lexical analysis part of program compilation

o

~

* Many devices modeled, programmed as DFAs

* Very limited, but observable universe is finite...

/




/ Typical DFA \

[cTTTe el [-I] 1

\\\/

* Start state g,
» Start at left, scan symbol, change state, move right.

* Rules of form “if in state g scanning symbol s then go to
state p and move right.”

* Some states (circled) are accepting.

* M accepts the input string if a circled state is reached after
scanning the last symbol.




/ Graphical Representation \

1

Directed graph with edges labeled with chars in X

For each state (vertex) g and symbol g in X there is
exactly one edge leaving g labeled with a. g5p

* Accepting state(s) are double-circled
* Initial state has pointer, or is obviously labeled (O,/

QO’ “start”...)




/ Graphical Representation

1

* Where does 001 lead? 100107
* Which strings end up in accepting state?
* Proveit

 Every string has one path that it follows

qi>p versus qAVK»p




/ Graphical Representation \

1

Definition
* A DFA M accepts a string w iff the unique path starting at the
initial state and spelling out w ends at an accepting state.

* The language accepted (or “recognized”) by a DFA M is
denoted L(M) and defined by

K L(M) ={w | M accepts w} /




/ Warning \

* “M accepts language L” does not mean simply
that M accepts each string in L.

* “M accepts language L” means

M accepts each string in L and no others!

* M “recognizes” L is a better term, but “accepts”

Qwidely accepted (and recognized). /




/ Examples: What is L(M)p \

0220 \1

) ﬂ
o

Reject state




/ State = Memory \

* The state of a DFA is its entire memory of what
has come before

* The state must capture enough information to
complete the computation on the suffix to come

* When designing a DFA, think “what do | need to
know at this moment?” That is your state.

o /




/ Construction Challenge \

* [(M)={w | wcontains 001 or 010}

NER (P
AN /

©

o /




/ Construction Challenge

ends w
* L(M)={w | ween%a—nsOOl or 010}

NERE O

Ny

©

o

/




/ Construction Challenge \

ends w
* L(M)={w | ween%a—nsOOl or 010}

o \__/ o

N

©

o /

RO ORI 0N0




/ Construction Challenge \

ends w
* L(M)={w | ween%a—nsOOl or 010}

o \__/ o

AN

©

o /

NL) )
6//\3 (1) ><§>1 ‘




/ Construction Challenge \

ends with
* [(M)={w | weentains 001 or 010}

N ) )

O—0

o /




/ Construction Challenge

ends with
* [(M)={w | weentains 001 or 010}

NAL) )

AN

O—C

o

~

/




/ Construction Challenge

ends with
* [(M)={w | weentains 001 or 010}

NAL) )

N Y

O-—C)

o

~

/




/ Construction Challenge

ends
* L(M)={w | ween%amsOOl or 010}

\ 1

\g@ ¥z

o

~

/




/ Construction Challenge

ends
* L(M)={w | ween%amsOOl or 010}

1
1

\ 0

N

o

~

/




/ Binary #s congruent to 0 mod 5\

(assume no leading 0s)

Key Idea

If wmod 5 =a, then:
* w0 mod5=2amod5
e wl mod5= 2a+1mod5

Test: 1101011 = 107=2mod 5

o /




/ Formal (tuple) Representation \

Sometimes, it is easier to specify the DFA using this formalism, instead of drawing a graph

A DFA is a quintuple M=(Q,3,6,q,,F), where:
* Qs a finite set of states

2 is a finite alphabet of symbols

6: QxZ > Q isa transition function

q, is the initial state

F C Q isthe set of accepting states

o /




/ Example

* 2={a,b} 0
* 0 specified at right 1
° qo =0 )
+ F={3) 5

w w N
o O O o




/ Extending 6 \

* 5(g,a) = p means in graph that g>p
* But how can we define 8(g,w) to express g~ p
* Mustextend 6: Qx3 > Q
—06(qg,e) = q for every g; 6(g,a) already defined
—0&(qg,au) = 6(8(qg,a),u) for |u|=1,allg, a
\_Y_/

take first step according to &

\_Y_}

take rest of steps inductively according to &

Ké(q,w) = p corresponds to g~ p /




/ Formal definition of L(M) \

Let M =(Q, %, §, q,, F) be a DFA
Then L(M) ={w | 6(g,w) € F}

We will show later that:

Theorem
L is regular if and only if L = L(M) for some DFA M

o 54




/ Example use \

L(M) ={w | win base b is congruent to k mod m
* Q={0,1,...m-1}

- >={0,1,...,b-1}

* go=0

* 6 (n,a) = bn+a mod m

- F={K

o /




/ M simulating both M, and M, \

—_—>
— M, accepts #0 = odd
0

@ 0
_—
—

0

0
—
—

0

M, accepts #1 = odd

K Cross-product machine /

=

0




/ M accepting L(M,) N L(M,) \

Q= lecz2
= (Ggr d2)

F- FixF, ={(q,,9,) | q;in F; and g, in F,}
Transition function:

6((qy a2), a) = (8,(qy a), 6,(q, a))

(95, 9,) == (py, p,) if and only if
*q;-%p; inM,

K * 45 P; ian

/




/ Proof that simulation is correct\

* |Induction on what? that what?

* Will need to prove that action of machine is
correct starting from any states.

* We know that: Show that:
(91, g,) = (py, p,) iff | | (g4 g5) 5 (py, py,) iff
°*q, %p, inM, * g~ p; inM,
* 4, -5p, inM, * Gy~,p, inM,

By definition Just like definition of 6,
but with w instead of a




DEF for M: w
a (q1/ qz) ’w(pp pz)
(@ 62> (p,, p2) BY INDUCTION iff
means w w
q a on |w| RIS d g
9:—xp; and q,—p, 1 , Py an e 1]
w
9, 9o (s p5)

(ry,r5)

pull apart the computation

u
(qll qz)—a> (rll rz) (ry rz) . (py pz)

apply definition apply inductive hypothesis since |u| < |w|

paste the computations back together o ’ P;




s

* We proved:

iff (g5}’

Finishing up...

w
(q1/ qz) p (p1/ pz)
iff

w w
4~ p; and ™3P,

By definition, w accepted by M
)-> (fy, f5)inF, xF,

iff q(l) z f;inF, AND qo’v»fz inF,

K iff winL(M,;) AND win L(M,)




Grmal proof that simulation is correh

* We know by definition that:
—forall g, in Q, forall g,in Q,
— for all characters a

8( (g5, a,), a) =(64(q,,0),6,(q,0))

* We prove by induction on |w/| that:
—forall g, in Q, forall g,in Q,
— for all strings w

6( (g4 a,), w) =(8,(g,w),8,(q,w))

K Looks just like definition of 6, but with w instead of a /




/ To prove: lldy ;) wl = (61<q1,w),62(az,w)m

Induction on |w|
* BaseCase: |w|=0,sow=¢.

* 6((q4 a,), au)
=6(6((q, g,),a),u)
= 6( (61(q1;a);62(Q2/a)); U)
=08((r,,rs), u)
= (8,(r;,u), 6,(r,u))

= (61(Q1rau)' 62(572;0“))
= (al(qllw)l 62((]2, W))

6((as g,), €) = (a3, a,) = (6,(q,,€),6,(q,€))
* Assume true for strings u of length < n.
* Let w = au be an arbitrary string of length n.

defn of 6 extension
by defn of §

define r's to simplify
by induction (|u| < n)

= (51(61(q1,a),u), 62(62(q2,a),U))) get rid of r’s

unsplitting




/ Properties of Regular /anguages\

We’ve shown how to accept intersection of
two regular languages

What about union?

If L is accepted by a DFA, what about L ?
What about concatenation, and Kleene * ?
Is there a DFA for L, — L, given M; and M, ?

KThe answer to all of these questions, and more, is “Yes.” /




Example 1

* An FA diagram, machine M

e Conventions:
O
@ Transition from ato b on

Start state Accept state input symbol 1.
Allow self-loops



Example 1

» Example computation:
—Inputwordw: 1 0 1 1 01 110
— States: ababcabcdd

» We say that M accepts w, since w leads to d, an
accepting state.



Example 1

 Whatis L( M) for Example 17?
e {we{0,1}]|wcontains 111 as a substring }
* Note: Substring refers to consecutive symbols.



Example 1

What is the 5-tuple (Q, %, 3, q,, F)?
Q={a,b,c,d}

>={0,1}

0 is given by the state diagram, or

alternatively, by a table: 0O 1
gJo=a ala b
F={d} bla c
cla d
dj{d d




Example 2

 Designan FAMwithL(M)={we{0,1}|w
contains 101 as a substring }.

e Failure from state b causes the machine to remain
in state b.



Example 3

e L={we{0,1}|wdoesn’t contain either 00 or
11 as a substring }.

» State d is a trap state = a nonaccepting state that
you can'’t leave.

* Sometimes we’ll omit some arrows; by convention,
they go to a trap state.



Example 4

L = { w | all nonempty blocks of 1s in w have odd length }.
E.g., ¢, 0r 100111000011111, or any number of 0s. |

Initial Os don’t matter, so start with:

Then 1 also leads to an accepting state, but it should be a
different one, to “remember” that the string ends in one 1.
0

(OO



Example 4

¢ L ={w|] all nonempty blocks of 1s in w have odd length }.
0
» From b:
— 0 can return to a, which can
represent either g, or any string that 1
is OK so far and ends with 0. @ @
— 1 should go to a new nonaccepting
state, meaning “the string ends with

two 1s”. 0(7

» Note: cisn’t a trap state---we can accept some extensions.



Example 4

* L ={w]all nonempty blocks of 1s in w have odd length }.

. Frome o

— 1 can lead back to b, since future acceptance decisions are the
same if the string so far ends with any odd number of 1s.
* Reinterpret b as meaning “ends with an odd number of 1s”.
 Reinterpret c as “ends with an even number of 1s”.

— 0 means we must reject the current string and all extensions.



Example 4

* L ={w]all nonempty blocks of 1s in w have odd length }.

» Meanings of states (more precisely):

a: Either g, or contains no bad block (even block of 1s followed by 0)
so far and ends with O.

b: No bad block so far, and ends with odd number of 1s.
¢: No bad block so far, and ends with even number of 1s.
d: Contains a bad block.



Example 5

L = EQ ={w | w contains an equal number of Os
and 1s }.

No FA recognizes this language.

Idea (not a proof):

— Machine must “remember” how many 0s and 1s it has
seen, or at least the difference between these numbers.

— Since these numbers (and the difference) could be
anything, there can’t be enough states to keep track.

— So the machine will sometimes get confused and give a
wrong answer.

We'll turn this into an actual proof next week.



Closure under operations

The set of FA-recognizable languages is closed under all
Six operations (union, intersection, complement, set
difference, concatenation, star).

This means: If we start with FA-recognizable languages

and apply any of these operations, we get another FA-
recognizable language (for a different FA).

Theorem 1: FA-recognizable languages are closed under
complement.
Proof:

— Start with a language L, over alphabet %, recognized by some FA,
M;.

— Produce another FA, M,, with L(M,) = Z* - L(M,).

— Just interchange accepting and non-accepting states.



Closure under complement

Theorem 1: FA-recognizable languages are
closed under complement.

Proof. Interchange accepting and non-accepting
states.

Example: FA for { w | w does not contain 111 }
— Start with FA for { w | w contains 111 }:




Closure under complement

 Theorem 1. FA-recognizable languages are
closed under complement.

* Proof: Interchange accepting and non-accepting
states.

« Example: FA for {w | w does not contain 111 }
— Interchange accepting and non-accepting states:




Closure under intersection

 Theorem 2: FA-recognizable languages are
closed under intersection.

e Proof:

— Start with FAs M; and M, for the same alphabet
>.
— Get another FA, M3, with L(M3) = L(M,;) N L(M,).
—Idea: Run M, and M, “in parallel” on the same
input. If both reach accepting states, accept.
— Example:
* L(M,): Contains substring 01.
* L(M,): Odd number of 1s.
* L(M;): Contains 01 and has an odd number of 1s.



Closure under intersection

« Example: ! R o
0
M;: Substring 01 a \b/ -




Closure under intersection,

general rule
e Assume:
—M; =(Qy Z, 83, Goa, F1)
—M;=(Qy £, 8;, Aoz, F2)
» Define My = (1 Qg3, %, 83, Qos, F3 ), Where

—Q3=Q: xQ;
* Cartesian product, {(q,,9,) | 9,€Q; and g,€Q, }

— 83 ((d;,0,), @) = (3,(qy, @), 5,(ay, @)
— o3 = (o1, do2)
—F3=F;xF,={(Q.0,) |g; e Fand g, € F, }



Closure under union

 Theorem 3: FA-recognizable languages are
closed under union.

* Proof:
— Similar to intersection.
— Start with FAs M, and M, for the same alphabet X.
— Get another FA, M, with L(M3) = L(M;) U L(M,).
— ldea: Run M, and M, “in parallel” on the same input. If
either reaches an accepting state, accept.

— Example:
* L(M,): Contains substring 01.
e L(M,): Odd number of 1s.
* L(M;): Contains 01 or has an odd number of 1s.



Closure under union

« Example: ! R o1 ()
M;: Substring 01 a — \b/ - @

of / o( /
M,: Odd number of 1s ° ! @




Closure under union, general rule

* Assume:
—M; =(Qq, %, 81, Gg1, Fy)
—M; =(Qy, %, 85, Qop, F3)
» Define My = (1 Qg3, %, 83, Qos, F3 ), Where
—Q3=Q; x Q,
* Cartesian product, {(q,,9,) | 9,€Q; and g,€Q, }
—83((A1,02), @) = (81(a1, @), 85(0,, &)
— 0oz = (do1s do2)
-F;={(0,,90) |g,e Fyorg, e F, }



Closure under set difference

* Theorem 4: FA-recognizable languages are
closed under set difference.

* Proof:
— Similar proof to those for union and intersection.

— Alternatively, since L, — L, is the same as
L, n (L,)¢, we can just apply Theorems 2 and 3.



Closure under concatenation

 Theorem 5: FA-recognizable languages are
closed under concatenation.

* Proof:
— Start with FAs M, and M, for the same alphabet X.
— Get another FA, M3, with L(M;3) = L(M;) ° L(M,), which is
{ X1 %X, | X, € L(My) and x, € L(M,) }
— ldea: ???
« Attach accepting states of M, somehow to the start state of M,.

* But we have to be careful, since we don’t know when we're
done with the part of the string in L(M,)---the string could go
through accepting states of M, several times.



Closure under concatenation

 Theorem 5: FA-recognizable languages are closed under
concatenation.
» Example:
- £2={0, 1}, L, = =% L, = {0} {O}* (just Os, at least one).
— L, L, = strings that end with a block of at least one 0O
— Ml: O, 1

0 0,1

- My 0
1
/

L

How to combine?
We seem to need to “guess” when to shift to M,.
Leads to our next model, NFAs, which are FAs that can guess.



Closure under star

* Theorem 6: FA-recognizable languages are
closed under star.

* Proof:
— Start with FA M,.
— Get another FA, M,, with L(M,) = L(M))*.

— Same problems as for concatenation---need
guessing.

— We'll define NFAs next, then return to complete
the proofs of Theorems 5 and 6.



