BBM401-Lecture 4: Regular expressions equivalence

with NFAs, DFAs, closure properties of regular
languages

Lecturer: Lale Ozkahya

Resources for the presentation:
http://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-045j-automata-computability-and-

complexity-spring-2011/Syllabus/

Closure under union

 Theorem: FA-recognizable languages are closed
under union.

» Old Proof:
— Start with DFAs M; and M, for the same alphabet X.
— Get another DFA, M, with L(M3) = L(M,) U L(M,).

— ldea: Run M, and M, “in parallel” on the same input. If
either reaches an accepting state, accept.

Closure under union
» Example: R
M;: Substring 01

O
M,: Odd number of 1s 0 !
©

Closure under union, general rule

* Assume:
—M; =(Qq, %, 81, Gg1, Fy)
—M; =(Qy, %, 85, Qnp, F3)
» Define My = (Qg, %, 83, Qos, F3), Where
—Q3=Q;x Q,
* Cartesian product, {(q,,9,) | 9,€Q; and g,€Q, }
—83((A1,02), @) = (81(q1, @), 85(0,, &)
— 0oz = (do1s do2)
-F;={(0,,90) g, e Fyorg, e F, }

Closure under union

 Theorem: FA-recognizable languages are closed

under union.

 New Proof:

— Start with NFAs M; and M,.

— Get another NFA, M, with L(M3) = L(M,) U L(M,).

Add new
start state

" -0

Use final states
from M, and M,

o
QL

i

Closure under union

Theorem: FA-recognizable languages are
closed under union.

New Proof: Simpler!

Intersection:

— NFAs don’'t seem to help.
Concatenation, star:

— Now try NFA-based constructions.

Closure under concatenation

e L, L,={xy|xelLjandy e L,}
 Theorem: FA-recognizable languages are closed
under concatenation.

* Proof:
— Start with NFAs M, and M.,.
— Get another NFA, M, with L(M3) = L(M,) ° L(M,).

_ " O " ~Q
@ S e
[T

These are no longer These are still
final states. final states.

Closure under concatenation

* Example:
->={0, 1}, L, = =% L, = {0} {0}~
— L, L, = strings that end with a block of at least
one 0

0

— Now combine; % ~ 6
- 8 O
/ O

NFAs

Closure under star

L*={x|x=y;Y, ...y forsome k>0, everyyinL}
=0ullul? u...

Theorem: FA-recognizable languages are closed under
star.

Proof:

— Start with FA M,.

— Get an NFA, M,, with L(M,) = L(M,)*.

M .
e ! _.@\ ¢ | Use final states
) C)i: \ from M, and M,

®)

N *@\2\
Add new start €
state; it's also K J

a final state,

since gisin
L(M)*.

Closure under star

* Example:
-x={0,1},L,={01,10}
— (Ly)* = even-length strings where each pair
consists of a0 and a 1.

— Construct M,;:
A ~ OO0,

O g

N RO CE N

Languages denoted by regular
expressions

The languages denoted by regular expressions
are exactly the regular (FA-recognizable)
languages.

Theorem 1: If R is a regular expression, then L(R)
Is a regular language (recognized by a FA).

Proof: Easy.

Theorem 2: If L is a regular language, then there
is a regular expression R with L = L(R).

Proof: Harder, more technical.

Theorem 1

e Theorem 1: If R is a regular expression, then L(R)
Is a regular language (recognized by a FA).

e Proof:

— For each R, define an NFA M with L(M) = L(R).

— Proceed by induction on the structure of R:
» Show for the three base cases.

« Show how to construct NFAs for more complex expressions
from NFAs for their subexpressions.

— Casel: R=a a
* L(R)={a} —’O—’© Accepts only a.

—Case2: R=c¢
* L(R)={e} “@

Accepts only

Theorem 1

e Theorem 1: If R is a regular expression, then L(R)
Is a regular language (recognized by a FA).

Proof:

—~Case3: R=Q _,Q
cLR) =2

— Case4: R=R;UR,
M, recognizes L(R,),
* M, recognizes L(R,).

* Same construction
we used to show
regular languages
are closed under
union.

Accepts nothing.

Q.
QL

Theorem 1

e Theorem 1: If R is a regular expression, then L(R)
Is a regular language (recognized by a FA).
 Proof:
—Case 5 R=R;°R,
* M, recognizes L(R,),
* M, recognizes L(R,).

» Same construction we used to show regular languages are
closed under concatenation.

_ O " ~Q
'CD:: _,O,/‘CI @

Theorem 1

e Theorem 1: If R is a regular expression, then L(R)
Is a regular language (recognized by a FA).

e Proof:
— Case 6: R=(R))*
* M, recognizes L(R,),

» Same construction we used to show regular languages are
closed under star.

D

Example for Theorem 1

e L=abua*
» Construct machines recursively:

Theorem 2

e Theorem 2: If L is a regular language, then there
Is a regular expression R with L = L(R).

* Proof:
— For each NFA M, define a regular expression R with

L(R) = L(M).
— Show with an example: o) a() a()

@500

— Convert to a special form with only one final state, no
incoming arrows to start state, no outgoing arrows from
final state.

o() o) a()

Theorem 2

o oQ Q)
€ a b €
Now remove states one at a time (any order), replacing
labels of edges with more complicated regular expressions.

First remove z:

o) a() *

New label b a* describes all strings that can move the
machine from state y to state q;, visiting (just) z any
number of times.

Theorem 2

bO aO
b *
Then remove X: aU bb* a

@ b*a @ b a* @

New label b*a describes all strings that can move the
machine from g, to y, visiting (just) x any number of times.

New label a U bb* a describes all strings that can move the
machine from y to y, visiting (just) x any number of times.

Theorem 2

aubb*ao
b* b a*

* Finally, removey:

~w @

* New label describes all strings that can move the machine
from g, to g, visiting (just) y any number of times.

» This final label is the needed regular expression.

b*a (a u bb* a)* b a*

Theorem 2

Define a generalized NFA (gNFA).

— Same as NFA, but:
» Only one accept state, = start state.
« Start state has no incoming arrows, accept state no outgoing arrows.
« Arrows are labeled with regular expressions.

— How it computes: Follow an arrow labeled with a regular
expression R while consuming a block of input that is a word in the
language L(R).

Convert the original NFA M to a gNFA.

Successively transform the gNFA to equivalent gNFAs
(recognize same language), each time removing one state.

When we have 2 states and one arrow, the regular
expression R on the arrow is the final answer:

R

Theorem 2

To remove a state x, consider every pair of other states, y
and z, including y = z.
New label for edge (y, z) is the union of two expressions:
— What was there before, and
— One for paths through (just) x.

R

Ify = z: we get: @%

U
R U R U SU*T
S
Ify=z: @
T

