
BBM401-Lecture 4: Regular expressions equivalence

with NFAs, DFAs, closure properties of regular

languages

Lecturer: Lale Özkahya

Resources for the presentation:
http://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-045j-automata-computability-and-

complexity-spring-2011/Syllabus/

Closure under union

•	 Theorem: FA-recognizable languages are closed

under union.
•	 Old Proof:

–	 Start with DFAs M1 and M2 for the same alphabet Σ.
–	 Get another DFA, M3, with L(M3) = L(M1) ∪ L(M2).
– Idea: Run M1 and M2 “in parallel” on the same input. If

either reaches an accepting state, accept.

Closure under union
• Example:

0
M1: Substring 01

1

M2: Odd number of 1s

a b c

1 0 0,1

1
d e

1

0 0

M3:
� 1 1

11
1

1
0

0

0

ad bd cd

ae be ce

0
0

0

Closure under union, general rule
•	 Assume:

– M1 = (Q1, Σ, δ1, q01, F1)
– M2 = (Q2, Σ, δ2, q02, F2)

•	 Define M3 = (Q3, Σ, δ3, q03, F3), where
– Q3 = Q1 × Q2

• Cartesian product, {(q1,q2) | q1∈Q1 and q2∈Q2 }
– δ3 ((q1,q2), a) = (δ1(q1, a), δ2(q2, a))
– q03 = (q01, q02)

– F3 = { (q1,q2) | q1 ∈ F1 or q2 ∈ F2 }

Closure under union

•	 Theorem: FA-recognizable languages are closed

under union.
•	 New Proof:

–	 Start with NFAs M1 and M2.

–	 Get another NFA, M3, with L(M3) = L(M1) ∪ L(M2).

M1

Use final statesε
from M1 and M2.

M2
Add new ε

start state

Closure under union

•	 Theorem: FA-recognizable languages are
closed under union.

•	 New Proof: Simpler!

•	 Intersection:
– NFAs don’t seem to help.

•	 Concatenation, star:
– Now try NFA-based constructions.

Closure under concatenation

• L1 ◦ L2 = { x y | x ∈ L1 and y ∈ L2 }
•	 Theorem: FA-recognizable languages are closed

under concatenation.
• Proof:

–	 Start with NFAs M1 and M2.

–	 Get another NFA, M3, with L(M3) = L(M1) ◦ L(M2).

M1 M2
ε

ε

These are no longer
final states.

These are still

final states.

Closure under concatenation

• Example:
– Σ = { 0, 1}, L1 = Σ*, L2 = {0} {0}*.

– L1 L2 = strings that end with a block of at least

one 0

– M1:

– M2:

– Now combine:

0,1

0
0

NFAs

0,1
0

0
ε

Closure under star

• 	L* = { x | x = y1 y2 … yk for some k ≥ 0, every y in L }

= L0 ∪ L1 ∪ L2 ∪ …
•	 Theorem: FA-recognizable languages are closed under

star.
• Proof:

–	 Start with FA M1.

–	 Get an NFA, M2, with L(M2) = L(M1)*.

Use final states
from M1 and M2.

M1
ε

Add new start
state; it’s also

ε

ε

a final state,
since ε is in
L(M1)*.

Closure under star

• Example:

– Σ = { 0, 1}, L1 = { 01, 10 }

– (L1)* = even-length strings where each pair

consists of a 0 and a 1.
– M1: ε

0 1

ε
1 0

– Construct M2:
ε

ε

ε

0 1

1 0

ε

ε

Languages denoted by regular

expressions

•	 The languages denoted by regular expressions
are exactly the regular (FA-recognizable)
languages.

•	 Theorem 1: If R is a regular expression, then L(R)
is a regular language (recognized by a FA).

• Proof: Easy.
•	 Theorem 2: If L is a regular language, then there

is a regular expression R with L = L(R).
• Proof: Harder, more technical.

Theorem 1

•	 Theorem 1: If R is a regular expression, then L(R)

is a regular language (recognized by a FA).
• Proof:

–	 For each R, define an NFA M with L(M) = L(R).
–	 Proceed by induction on the structure of R:

•	 Show for the three base cases.
•	 Show how to construct NFAs for more complex expressions

from NFAs for their subexpressions.

–	 Case 1: R = a
•	 L(R) = { a } Accepts only a.

a

–	 Case 2: R = ε
• L(R) = { ε } ε.

Accepts only

Theorem 1

•	 Theorem 1: If R is a regular expression, then L(R)

is a regular language (recognized by a FA).
• Proof:

–	 Case 3: R = ∅

• L(R) = ∅ Accepts nothing.

–	 Case 4: R = R1 ∪ R2
• M1 recognizes L(R1), 	 M1

• M2 recognizes L(R2). ε

•	 Same construction

we used to show

regular languages
 M2

are closed under ε

union.

Theorem 1

•	 Theorem 1: If R is a regular expression, then L(R)

is a regular language (recognized by a FA).
• 	Proof:

–	 Case 5: R = R1 ° R2
• M1 recognizes L(R1),
• M2 recognizes L(R2).

•	 Same construction we used to show regular languages are
closed under concatenation.

M1 M2
ε

ε

ε

ε

Theorem 1

•	 Theorem 1: If R is a regular expression, then L(R)

is a regular language (recognized by a FA).
• 	Proof:

–	 Case 6: R = (R1)*
• M1 recognizes L(R1),

•	 Same construction we used to show regular languages are
closed under star.

M1
ε

Example for Theorem 1
• L = ab ∪ a*
• Construct machines recursively:
• a: a b: b

• ab: a bε

ε

ε a
• a*:

a ε b

ε

ε

a• ab ∪ a*: ε ε

Theorem 2

•	 Theorem 2: If L is a regular language, then there

is a regular expression R with L = L(R).
• Proof:

– For each NFA M, define a regular expression R with

L(R) = L(M).

–	 Show with an example:

b
x y z

b a a

a	 b

– Convert to a special form with only one final state, no
incoming arrows to start state, no outgoing arrows from
final state.

b
x y z qfq0

b a a
ε a b ε

Theorem 2

b
xq0 y z qf

b a a
ε a b ε

•	 Now remove states one at a time (any order), replacing
labels of edges with more complicated regular expressions.

•	 First remove z:

b
x y qfq0

b a
ε a b a*

•	 New label b a* describes all strings that can move the
machine from state y to state qf, visiting (just) z any
number of times.

Theorem 2

b
x yq0 qf

b a
ε a b a*

•	 Then remove x: a ∪ bb* a
b a*b*a

yq0 qf

•	 New label b*a describes all strings that can move the
machine from q0 to y, visiting (just) x any number of times.

• New label a ∪ bb* a describes all strings that can move the

machine from y to y, visiting (just) x any number of times.

Theorem 2

yq0 qf

a ∪ bb* a
b*a b a*

•	 Finally, remove y:

b*a (a ∪ bb* a)* b a*
q0 qf

•	 New label describes all strings that can move the machine
from q0 to qf, visiting (just) y any number of times.

•	 This final label is the needed regular expression.

Theorem 2

•	 Define a generalized NFA (gNFA).

–	 Same as NFA, but:
•	 Only one accept state, ≠ start state.
•	 Start state has no incoming arrows, accept state no outgoing arrows.
•	 Arrows are labeled with regular expressions.

–	 How it computes: Follow an arrow labeled with a regular

expression R while consuming a block of input that is a word in the
language L(R).

•	 Convert the original NFA M to a gNFA.
•	 Successively transform the gNFA to equivalent gNFAs

(recognize same language), each time removing one state.
•	 When we have 2 states and one arrow, the regular

expression R on the arrow is the final answer:

R

q0 qf

we get:

Theorem 2

•	 To remove a state x, consider every pair of other states, y

and z, including y = z.
•	 New label for edge (y, z) is the union of two expressions:

–	 What was there before, and
–	 One for paths through (just) x.

y	

x

z

y x

R
R ∪ SU*T• If y ≠ z:
 we get:
 y z

S T

U

R U R ∪ SU*T
S •	 If y = z: y

T

