
BBM401-Lecture 7:

Decidable Languages and the Halting Problem

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs373/fa2010/lectures



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M).

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there
exists a TM M which recognizes L. L is said to be Turing-decidable
(or simply decidable) if there exists a TM M which decides L.

Every finite language is decidable: For e.g., by a TM that has
all the strings in the language “hard-coded” into it

We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there
exists a TM M which recognizes L. L is said to be Turing-decidable
(or simply decidable) if there exists a TM M which decides L.

Every finite language is decidable: For e.g., by a TM that has
all the strings in the language “hard-coded” into it

We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there
exists a TM M which recognizes L.

L is said to be Turing-decidable
(or simply decidable) if there exists a TM M which decides L.

Every finite language is decidable: For e.g., by a TM that has
all the strings in the language “hard-coded” into it

We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there
exists a TM M which recognizes L. L is said to be Turing-decidable
(or simply decidable) if there exists a TM M which decides L.

Every finite language is decidable: For e.g., by a TM that has
all the strings in the language “hard-coded” into it

We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there
exists a TM M which recognizes L. L is said to be Turing-decidable
(or simply decidable) if there exists a TM M which decides L.

Every finite language is decidable

: For e.g., by a TM that has
all the strings in the language “hard-coded” into it

We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there
exists a TM M which recognizes L. L is said to be Turing-decidable
(or simply decidable) if there exists a TM M which decides L.

Every finite language is decidable: For e.g., by a TM that has
all the strings in the language “hard-coded” into it

We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there
exists a TM M which recognizes L. L is said to be Turing-decidable
(or simply decidable) if there exists a TM M which decides L.

Every finite language is decidable: For e.g., by a TM that has
all the strings in the language “hard-coded” into it

We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject).

i.e., They decide the corresponding languages.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

Recall: Definition

A Turing machine M is said to recognize a language L if L = L(M).
A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input.

L is said to be Turing-recognizable (or simply recognizable) if there
exists a TM M which recognizes L. L is said to be Turing-decidable
(or simply decidable) if there exists a TM M which decides L.

Every finite language is decidable: For e.g., by a TM that has
all the strings in the language “hard-coded” into it

We just saw some example algorithms all of which terminate
in a finite number of steps, and output yes or no (accept or
reject). i.e., They decide the corresponding languages.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

But not all languages are decidable!

In the next class we will
see an example:

Atm = {〈M,w〉 |M is a TM and M accepts w} is undecidable

However Atm is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

But not all languages are decidable! In the next class we will
see an example:

Atm = {〈M,w〉 |M is a TM and M accepts w} is undecidable

However Atm is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

But not all languages are decidable! In the next class we will
see an example:

Atm = {〈M,w〉 |M is a TM and M accepts w} is undecidable

However Atm is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Decidable and Recognizable Languages

But not all languages are decidable! In the next class we will
see an example:

Atm = {〈M,w〉 |M is a TM and M accepts w} is undecidable

However Atm is Turing-recognizable!

Proposition

There are languages which are recognizable, but not decidable

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting. Indeed (as we shall see) no TM
decides Atm.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting. Indeed (as we shall see) no TM
decides Atm.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm

: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting. Indeed (as we shall see) no TM
decides Atm.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting.

Indeed (as we shall see) no TM
decides Atm.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Recognizing Atm

Program U for recognizing Atm:

On input 〈M,w〉
simulate M on w
if simulated M accepts w, then accept

else reject (by moving to qrej)

U (the Universal TM) accepts 〈M,w〉 iff M accepts w . i.e.,

L(U) = Atm

But U does not decide Atm: If M rejects w by not halting, U
rejects 〈M,w〉 by not halting. Indeed (as we shall see) no TM
decides Atm.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.

Program P for deciding L, given programs PL and PL for
recognizing L and L:

On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

Which one to simulate first? Either could go on forever.

On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.

Program P for deciding L, given programs PL and PL for
recognizing L and L:

On input x , simulate PL and PL on input x .

Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

Which one to simulate first? Either could go on forever.

On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.

Program P for deciding L, given programs PL and PL for
recognizing L and L:

On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

Which one to simulate first?

Either could go on forever.

On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.

Program P for deciding L, given programs PL and PL for
recognizing L and L:

On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

Which one to simulate first? Either could go on forever.

On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.

Program P for deciding L, given programs PL and PL for
recognizing L and L:

On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

Which one to simulate first? Either could go on forever.

On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

Proposition

If L and L are recognizable, then L is decidable

Proof.

Program P for deciding L, given programs PL and PL for
recognizing L and L:

On input x , simulate PL and PL on input x . Whether x ∈ L or
x 6∈ L, one of PL and PL will halt in finite number of steps.

Which one to simulate first? Either could go on forever.

On input x , simulate in parallel PL and PL on input x until
either PL or PL accepts

If PL accepts, accept x and halt. If PL accepts, reject x and
halt. ··→

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

Proof (contd).

In more detail, P works as follows:

On input x

for i = 1, 2, 3, . . .
simulate PL on input x for i steps

simulate PL on input x for i steps

if either simulation accepts, break

if PL accepted, accept x (and halt)

if PL accepted, reject x (and halt)

(Alternately, maintain configurations of PL and PL, and in each
iteration of the loop advance both their simulations by one
step.) �

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

Proof (contd).

In more detail, P works as follows:

On input x

for i = 1, 2, 3, . . .
simulate PL on input x for i steps

simulate PL on input x for i steps

if either simulation accepts, break

if PL accepted, accept x (and halt)

if PL accepted, reject x (and halt)

(Alternately, maintain configurations of PL and PL, and in each
iteration of the loop advance both their simulations by one
step.) �

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

So far:

Atm is undecidable (next lecture)

But it is recognizable

Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.

If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �
Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

So far:

Atm is undecidable (next lecture)

But it is recognizable

Is every language recognizable?

No!

Proposition

Atm is unrecognizable

Proof.

If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �
Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

So far:

Atm is undecidable (next lecture)

But it is recognizable

Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.

If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �
Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

So far:

Atm is undecidable (next lecture)

But it is recognizable

Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.

If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �
Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

So far:

Atm is undecidable (next lecture)

But it is recognizable

Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.

If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �

Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Agha-Viswanathan CS373



High-Level Descriptions of Computation
Deciding vs. Recognizing
Recursive Enumeration

An Undecidable but Recognizable Language
Complementation

Deciding vs. Recognizing

So far:

Atm is undecidable (next lecture)

But it is recognizable

Is every language recognizable? No!

Proposition

Atm is unrecognizable

Proof.

If Atm is recognizable, since Atm is recognizable, the two languages
will be decidable too! �
Note: Decidable languages are closed under complementation, but
recognizable languages are not.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Decision Problems and Languages

A decision problem requires checking if an input (string) has
some property.

Thus, a decision problem is a function from
strings to boolean.

A decision problem is represented as a formal language
consisting of those strings (inputs) on which the answer is
“yes”.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Decision Problems and Languages

A decision problem requires checking if an input (string) has
some property. Thus, a decision problem is a function from
strings to boolean.

A decision problem is represented as a formal language
consisting of those strings (inputs) on which the answer is
“yes”.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Decision Problems and Languages

A decision problem requires checking if an input (string) has
some property. Thus, a decision problem is a function from
strings to boolean.

A decision problem is represented as a formal language
consisting of those strings (inputs) on which the answer is
“yes”.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Recursive Enumerability

A Turing Machine on an input w either (halts and) accepts,
or (halts and) rejects, or never halts.

The language of a Turing Machine M, denoted as L(M), is
the set of all strings w on which M accepts.

A language L is recursively enumerable/Turing recognizable if
there is a Turing Machine M such that L(M) = L.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Recursive Enumerability

A Turing Machine on an input w either (halts and) accepts,
or (halts and) rejects, or never halts.

The language of a Turing Machine M, denoted as L(M), is
the set of all strings w on which M accepts.

A language L is recursively enumerable/Turing recognizable if
there is a Turing Machine M such that L(M) = L.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Recursive Enumerability

A Turing Machine on an input w either (halts and) accepts,
or (halts and) rejects, or never halts.

The language of a Turing Machine M, denoted as L(M), is
the set of all strings w on which M accepts.

A language L is recursively enumerable/Turing recognizable if
there is a Turing Machine M such that L(M) = L.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Decidability

A language L is decidable if there is a Turing machine M such
that L(M) = L and M halts on every input.

Thus, if L is decidable then L is recursively enumerable.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Decidability

A language L is decidable if there is a Turing machine M such
that L(M) = L and M halts on every input.

Thus, if L is decidable then L is recursively enumerable.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Undecidability

Definition

A language L is undecidable if L is not decidable.

Thus, there is no
Turing machine M that halts on every input and L(M) = L.

This means that either L is not recursively enumerable. That
is there is no turing machine M such that L(M) = L, or

L is recursively enumerable but not decidable. That is, any
Turing machine M such that L(M) = L, M does not halt on
some inputs.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Undecidability

Definition

A language L is undecidable if L is not decidable. Thus, there is no
Turing machine M that halts on every input and L(M) = L.

This means that either L is not recursively enumerable. That
is there is no turing machine M such that L(M) = L, or

L is recursively enumerable but not decidable. That is, any
Turing machine M such that L(M) = L, M does not halt on
some inputs.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Undecidability

Definition

A language L is undecidable if L is not decidable. Thus, there is no
Turing machine M that halts on every input and L(M) = L.

This means that either L is not recursively enumerable. That
is there is no turing machine M such that L(M) = L, or

L is recursively enumerable but not decidable. That is, any
Turing machine M such that L(M) = L, M does not halt on
some inputs.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Undecidability

Definition

A language L is undecidable if L is not decidable. Thus, there is no
Turing machine M that halts on every input and L(M) = L.

This means that either L is not recursively enumerable. That
is there is no turing machine M such that L(M) = L, or

L is recursively enumerable but not decidable. That is, any
Turing machine M such that L(M) = L, M does not halt on
some inputs.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Big Picture

Regular

L0n1n

Decidable

Recursively Enumerable

Languages

Relationship between classes of Languages

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Machines as Strings

For the rest of this lecture, let us fix the input alphabet to be
{0, 1}

; a string over any alphabet can be encoded in binary.

Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Machines as Strings

For the rest of this lecture, let us fix the input alphabet to be
{0, 1}; a string over any alphabet can be encoded in binary.

Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Machines as Strings

For the rest of this lecture, let us fix the input alphabet to be
{0, 1}; a string over any alphabet can be encoded in binary.

Any Turing Machine/program M can itself be encoded as a
binary string.

Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Machines as Strings

For the rest of this lecture, let us fix the input alphabet to be
{0, 1}; a string over any alphabet can be encoded in binary.

Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program.

(If not the correct format,
considered to be the encoding of a default TM.)

We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Machines as Strings

For the rest of this lecture, let us fix the input alphabet to be
{0, 1}; a string over any alphabet can be encoded in binary.

Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Machines as Strings

For the rest of this lecture, let us fix the input alphabet to be
{0, 1}; a string over any alphabet can be encoded in binary.

Any Turing Machine/program M can itself be encoded as a
binary string. Moreover every binary string can be thought of
as encoding a TM/program. (If not the correct format,
considered to be the encoding of a default TM.)

We will consider decision problems (language) whose inputs
are Turing Machine (encoded as a binary string)

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

The Diagonal Language

Definition

Define Ld = {M |M 6∈ L(M)}.

Thus, Ld is the collection of Turing
machines (programs) M such that M does not halt and accept
when given itself as input.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

The Diagonal Language

Definition

Define Ld = {M |M 6∈ L(M)}. Thus, Ld is the collection of Turing
machines (programs) M such that M does not halt and accept
when given itself as input.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.

Recall that,

Inputs are strings over {0, 1}
Every Turing Machine can be described by a binary string and
every binary string can be viewed as Turing Machine

In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.

Recall that,

Inputs are strings over {0, 1}
Every Turing Machine can be described by a binary string and
every binary string can be viewed as Turing Machine

In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.

Recall that,

Inputs are strings over {0, 1}

Every Turing Machine can be described by a binary string and
every binary string can be viewed as Turing Machine

In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.

Recall that,

Inputs are strings over {0, 1}
Every Turing Machine can be described by a binary string and
every binary string can be viewed as Turing Machine

In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.

Recall that,

Inputs are strings over {0, 1}
Every Turing Machine can be described by a binary string and
every binary string can be viewed as Turing Machine

In what follows, we will denote the ith binary string (in
lexicographic order) as the number i .

Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

A non-Recursively Enumerable Language

Proposition

Ld is not recursively enumerable.

Proof.

Recall that,

Inputs are strings over {0, 1}
Every Turing Machine can be described by a binary string and
every binary string can be viewed as Turing Machine

In what follows, we will denote the ith binary string (in
lexicographic order) as the number i . Thus, we can say
j ∈ L(i), which means that the Turing machine corresponding
to ith binary string accepts the jth binary string. ··→

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Completing the proof
Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix,
where the (i , j)th entry is Y if and only if j ∈ L(i).

Inputs −→
1 2 3 4 5 6 7 · · ·

TMs 1 N N N N N N N
↓ 2 N N N N N N N

3 Y N Y N Y Y Y
4 N Y N Y Y N N
5 N Y N Y Y N N
6 N N Y N Y N Y

Suppose Ld is recognized by a Turing machine, which is the jth
binary string. i.e., Ld = L(j). But j ∈ Ld iff j 6∈ L(j)! �

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Completing the proof
Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix,
where the (i , j)th entry is Y if and only if j ∈ L(i).

Inputs −→
1 2 3 4 5 6 7 · · ·

TMs 1 N N N N N N N
↓ 2 N N N N N N N

3 Y N Y N Y Y Y
4 N Y N Y Y N N
5 N Y N Y Y N N
6 N N Y N Y N Y

Suppose Ld is recognized by a Turing machine, which is the jth
binary string. i.e., Ld = L(j).

But j ∈ Ld iff j 6∈ L(j)! �

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Completing the proof
Diagonalization: Cantor

Proof (contd).

We can organize all programs and inputs as a (infinite) matrix,
where the (i , j)th entry is Y if and only if j ∈ L(i).

Inputs −→
1 2 3 4 5 6 7 · · ·

TMs 1 N N N N N N N
↓ 2 N N N N N N N

3 Y N Y N Y Y Y
4 N Y N Y Y N N
5 N Y N Y Y N N
6 N N Y N Y N Y

Suppose Ld is recognized by a Turing machine, which is the jth
binary string. i.e., Ld = L(j). But j ∈ Ld iff j 6∈ L(j)! �

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Acceptor for Ld?

Consider the following program

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Does the above program recognize Ld? No, because it may never
output “yes” if i does not halt on i .

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Acceptor for Ld?

Consider the following program

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Does the above program recognize Ld?

No, because it may never
output “yes” if i does not halt on i .

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Acceptor for Ld?

Consider the following program

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Does the above program recognize Ld? No, because it may never
output “yes” if i does not halt on i .

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Models for Decidable Languages

Question

Is there a machine model such that

all programs in the model halt on all inputs, and

for each problem decidable by a TM, there is a program in the
model that decides it?

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Models for Decidable Languages

Answer

There is no such model!

Suppose there is a programming language
in which all programs always halt. Programs in this language can
be described by binary strings, and can be simulated by TMs.
Consider the Turing Machine Md

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Md always halts and solves a problem not solved by any program
in our language! Inability to halt is essential to capture all
computation.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Models for Decidable Languages

Answer

There is no such model! Suppose there is a programming language
in which all programs always halt.

Programs in this language can
be described by binary strings, and can be simulated by TMs.
Consider the Turing Machine Md

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Md always halts and solves a problem not solved by any program
in our language! Inability to halt is essential to capture all
computation.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Models for Decidable Languages

Answer

There is no such model! Suppose there is a programming language
in which all programs always halt. Programs in this language can
be described by binary strings, and can be simulated by TMs.

Consider the Turing Machine Md

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Md always halts and solves a problem not solved by any program
in our language! Inability to halt is essential to capture all
computation.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Models for Decidable Languages

Answer

There is no such model! Suppose there is a programming language
in which all programs always halt. Programs in this language can
be described by binary strings, and can be simulated by TMs.
Consider the Turing Machine Md

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Md always halts and solves a problem not solved by any program
in our language! Inability to halt is essential to capture all
computation.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Models for Decidable Languages

Answer

There is no such model! Suppose there is a programming language
in which all programs always halt. Programs in this language can
be described by binary strings, and can be simulated by TMs.
Consider the Turing Machine Md

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Md always halts and solves a problem not solved by any program
in our language!

Inability to halt is essential to capture all
computation.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Models for Decidable Languages

Answer

There is no such model! Suppose there is a programming language
in which all programs always halt. Programs in this language can
be described by binary strings, and can be simulated by TMs.
Consider the Turing Machine Md

On input i
Run program i on i
Output ‘‘yes’’ if i does not accept i
Output ‘‘no’’ if i accepts i

Md always halts and solves a problem not solved by any program
in our language! Inability to halt is essential to capture all
computation.

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Recursively Enumerable but not Decidable

Ld not recursively enumerable, and therefore not decidable.

Are there languages that are recursively enumerable but not
decidable?

Yes, Atm = {〈M,w〉 |M is a TM and M accepts w}

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Recursively Enumerable but not Decidable

Ld not recursively enumerable, and therefore not decidable.
Are there languages that are recursively enumerable but not
decidable?

Yes, Atm = {〈M,w〉 |M is a TM and M accepts w}

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

Recursively Enumerable but not Decidable

Ld not recursively enumerable, and therefore not decidable.
Are there languages that are recursively enumerable but not
decidable?

Yes, Atm = {〈M,w〉 |M is a TM and M accepts w}

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.

We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.

We have already seen that Atm is r.e.

Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.

We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm.

Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.

We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.

We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld !

But, Ld is not r.e. which gives us the
contradiction. �

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

The Universal Language

Proposition

Atm is r.e. but not decidable.

Proof.

We have already seen that Atm is r.e. Suppose (for contradiction)
Atm is decidable. Then there is a TM M that always halts and
L(M) = Atm. Consider a TM D as follows:

On input i
Run M on input 〈i , i〉
Output ‘‘yes’’ if i rejects i
Output ‘‘no’’ if i accepts i

Observe that L(D) = Ld ! But, Ld is not r.e. which gives us the
contradiction. �

Agha-Viswanathan CS373



Undecidability
Reductions

Recap
Diagonalization
The Universal Language

A more complete Big Picture

Regular

L0n1n

Decidable

Recursively Enumerable

Languages
Ld , Atm

Atm

Agha-Viswanathan CS373


