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Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions

A reduction is a way of converting one problem into another
problem such that a solution to the second problem can be used to
solve the first problem. We say the first problem reduces to the
second problem.

Informal Examples: Measuring the area of rectangle reduces
to measuring the length of the sides

; Solving a system of
linear equations reduces to inverting a matrix

The problem Ld reduces to the problem Atm as follows: “To
see if w ∈ Ld check if 〈w ,w〉 ∈ Atm.”
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Undecidability using Reductions

Proposition

Suppose L1 reduces to L2 and L1 is undecidable. Then L2 is
undecidable.

Proof Sketch.

Suppose for contradiction L2 is decidable. Then there is a M that
always halts and decides L2. Then the following algorithm decides
L1

On input w , apply reduction to transform w into an input w ′

for problem 2

Run M on w ′, and use its answer.
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The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.

We will reduce Atm to HALT. Based on a machine M, let us
consider a new machine f (M) as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f (M) halts on input w if and only if M accepts
w ··→
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The Halting Problem
Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H
that always halts and L(H) = HALT.

Consider the following
program T

On input 〈M,w〉
Construct program f (M)
Run H on 〈f (M),w〉
Accept if H accepts and reject if H rejects

T decides Atm. But, Atm is undecidable, which gives us the
contradiction. �
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Mapping Reductions

Definition

A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.
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Convention

In this course, we will drop the adjective “mapping” or
“many-one”, and simply talk about reductions and reducibility.
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Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is recursively enumerable then A is recursively
enumerable.

Proof.

Let f be the reduction from A to B and let MB be the Turing
Machine recognizing B. Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB does and reject if MB rejects

�
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Reductions and non-r.e.

Corollary

If A ≤m B and A is not recursively enumerable then B is not
recursively enumerable.
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Reductions and Decidability

Proposition

If A ≤m B and B is decidable then A is decidable.

Proof.

Let MB be the Turing machine deciding B and let f be the
reduction. Then the algorithm deciding A, on input w , computes
f (w) and runs MB on f (w). �

Corollary

If A ≤m B and A is undecidable then B is undecidable.
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Definitions and Observations
Examples

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not r.e.

Proof.

Recall Ld = {M |M 6∈ L(M)} is not r.e.
Ld is reducible to Etm as follows. Let f (M) = N where N is a TM
that behaves as follows:

On input x
Run M on 〈M〉 for |x | steps
Accept x only if M accepts 〈M〉 within |x | steps

Observe that L(N) = ∅ if and only if M does not accept 〈M〉 if
and only if 〈M〉 ∈ Ld . �
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Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373



Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR.

Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373



Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373



Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) =

Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373



Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗.

If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373



Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) =

{0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373



Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}.

Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373



Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373



Reductions
Rice’s Theorem
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Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.

We will give a reduction f from Etm to EQtm. Let M1 be the
Turing machine that on any input, halts and rejects i.e.,
L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �
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