
BBM401-Lecture 8: Reducibility

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs373/fa2010/lectures

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions

A reduction is a way of converting one problem into another
problem such that a solution to the second problem can be used to
solve the first problem. We say the first problem reduces to the
second problem.

Informal Examples: Measuring the area of rectangle reduces
to measuring the length of the sides

; Solving a system of
linear equations reduces to inverting a matrix

The problem Ld reduces to the problem Atm as follows: “To
see if w ∈ Ld check if 〈w ,w〉 ∈ Atm.”

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions

A reduction is a way of converting one problem into another
problem such that a solution to the second problem can be used to
solve the first problem. We say the first problem reduces to the
second problem.

Informal Examples: Measuring the area of rectangle reduces
to measuring the length of the sides

; Solving a system of
linear equations reduces to inverting a matrix

The problem Ld reduces to the problem Atm as follows: “To
see if w ∈ Ld check if 〈w ,w〉 ∈ Atm.”

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions

A reduction is a way of converting one problem into another
problem such that a solution to the second problem can be used to
solve the first problem. We say the first problem reduces to the
second problem.

Informal Examples: Measuring the area of rectangle reduces
to measuring the length of the sides; Solving a system of
linear equations reduces to inverting a matrix

The problem Ld reduces to the problem Atm as follows: “To
see if w ∈ Ld check if 〈w ,w〉 ∈ Atm.”

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions

A reduction is a way of converting one problem into another
problem such that a solution to the second problem can be used to
solve the first problem. We say the first problem reduces to the
second problem.

Informal Examples: Measuring the area of rectangle reduces
to measuring the length of the sides; Solving a system of
linear equations reduces to inverting a matrix

The problem Ld reduces to the problem Atm as follows: “To
see if w ∈ Ld check if 〈w ,w〉 ∈ Atm.”

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Undecidability using Reductions

Proposition

Suppose L1 reduces to L2 and L1 is undecidable. Then L2 is
undecidable.

Proof Sketch.

Suppose for contradiction L2 is decidable. Then there is a M that
always halts and decides L2. Then the following algorithm decides
L1

On input w , apply reduction to transform w into an input w ′

for problem 2

Run M on w ′, and use its answer.

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Undecidability using Reductions

Proposition

Suppose L1 reduces to L2 and L1 is undecidable. Then L2 is
undecidable.

Proof Sketch.

Suppose for contradiction L2 is decidable. Then there is a M that
always halts and decides L2. Then the following algorithm decides
L1

On input w , apply reduction to transform w into an input w ′

for problem 2

Run M on w ′, and use its answer.

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Undecidability using Reductions

Proposition

Suppose L1 reduces to L2 and L1 is undecidable. Then L2 is
undecidable.

Proof Sketch.

Suppose for contradiction L2 is decidable. Then there is a M that
always halts and decides L2. Then the following algorithm decides
L1

On input w , apply reduction to transform w into an input w ′

for problem 2

Run M on w ′, and use its answer.

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Schematic View

Algorithm for Problem 1

Reduction f
Algorithm for

Problem 2

w

f (w)
yes

no

Reductions schematically

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Schematic View

Algorithm for Problem 1

Reduction f

Algorithm for
Problem 2

w f (w)

yes

no

Reductions schematically

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Schematic View

Algorithm for Problem 1

Reduction f
Algorithm for

Problem 2

w f (w)
yes

no

Reductions schematically

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Schematic View

Algorithm for Problem 1

Reduction f
Algorithm for

Problem 2

w f (w)
yes

no

Reductions schematically

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.

We will reduce Atm to HALT. Based on a machine M, let us
consider a new machine f (M) as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f (M) halts on input w if and only if M accepts
w ··→

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.

We will reduce Atm to HALT. Based on a machine M, let us
consider a new machine f (M) as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f (M) halts on input w if and only if M accepts
w ··→

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.

We will reduce Atm to HALT. Based on a machine M, let us
consider a new machine f (M) as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f (M) halts on input w if and only if M accepts
w ··→

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.

We will reduce Atm to HALT. Based on a machine M, let us
consider a new machine f (M) as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

Observe that f (M) halts on input w if and only if M accepts
w ··→

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

The Halting Problem
Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H
that always halts and L(H) = HALT.

Consider the following
program T

On input 〈M,w〉
Construct program f (M)
Run H on 〈f (M),w〉
Accept if H accepts and reject if H rejects

T decides Atm. But, Atm is undecidable, which gives us the
contradiction. �

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

The Halting Problem
Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H
that always halts and L(H) = HALT. Consider the following
program T

On input 〈M,w〉
Construct program f (M)
Run H on 〈f (M),w〉
Accept if H accepts and reject if H rejects

T decides Atm. But, Atm is undecidable, which gives us the
contradiction. �

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

The Halting Problem
Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H
that always halts and L(H) = HALT. Consider the following
program T

On input 〈M,w〉
Construct program f (M)
Run H on 〈f (M),w〉
Accept if H accepts and reject if H rejects

T decides Atm.

But, Atm is undecidable, which gives us the
contradiction. �

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

The Halting Problem
Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H
that always halts and L(H) = HALT. Consider the following
program T

On input 〈M,w〉
Construct program f (M)
Run H on 〈f (M),w〉
Accept if H accepts and reject if H rejects

T decides Atm. But, Atm is undecidable, which gives us the
contradiction. �

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Mapping Reductions

Definition

A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Mapping Reductions

Definition

A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Mapping Reductions

Definition

A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Convention

In this course, we will drop the adjective “mapping” or
“many-one”, and simply talk about reductions and reducibility.

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is recursively enumerable then A is recursively
enumerable.

Proof.

Let f be the reduction from A to B and let MB be the Turing
Machine recognizing B. Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB does and reject if MB rejects

�

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is recursively enumerable then A is recursively
enumerable.

Proof.

Let f be the reduction from A to B and let MB be the Turing
Machine recognizing B.

Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB does and reject if MB rejects

�

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is recursively enumerable then A is recursively
enumerable.

Proof.

Let f be the reduction from A to B and let MB be the Turing
Machine recognizing B. Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB does and reject if MB rejects

�

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions and non-r.e.

Corollary

If A ≤m B and A is not recursively enumerable then B is not
recursively enumerable.

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions and Decidability

Proposition

If A ≤m B and B is decidable then A is decidable.

Proof.

Let MB be the Turing machine deciding B and let f be the
reduction. Then the algorithm deciding A, on input w , computes
f (w) and runs MB on f (w). �

Corollary

If A ≤m B and A is undecidable then B is undecidable.

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions and Decidability

Proposition

If A ≤m B and B is decidable then A is decidable.

Proof.

Let MB be the Turing machine deciding B and let f be the
reduction. Then the algorithm deciding A, on input w , computes
f (w) and runs MB on f (w). �

Corollary

If A ≤m B and A is undecidable then B is undecidable.

Agha-Viswanathan CS373

Undecidability
Reductions

Informal Overview
Definition and Properties

Reductions and Decidability

Proposition

If A ≤m B and B is decidable then A is decidable.

Proof.

Let MB be the Turing machine deciding B and let f be the
reduction. Then the algorithm deciding A, on input w , computes
f (w) and runs MB on f (w). �

Corollary

If A ≤m B and A is undecidable then B is undecidable.

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not r.e.

Proof.

Recall Ld = {M |M 6∈ L(M)} is not r.e.
Ld is reducible to Etm as follows. Let f (M) = N where N is a TM
that behaves as follows:

On input x
Run M on 〈M〉 for |x | steps
Accept x only if M accepts 〈M〉 within |x | steps

Observe that L(N) = ∅ if and only if M does not accept 〈M〉 if
and only if 〈M〉 ∈ Ld . �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not r.e.

Proof.

Recall Ld = {M |M 6∈ L(M)} is not r.e.
Ld is reducible to Etm as follows.

Let f (M) = N where N is a TM
that behaves as follows:

On input x
Run M on 〈M〉 for |x | steps
Accept x only if M accepts 〈M〉 within |x | steps

Observe that L(N) = ∅ if and only if M does not accept 〈M〉 if
and only if 〈M〉 ∈ Ld . �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not r.e.

Proof.

Recall Ld = {M |M 6∈ L(M)} is not r.e.
Ld is reducible to Etm as follows. Let f (M) = N where N is a TM
that behaves as follows:

On input x
Run M on 〈M〉 for |x | steps
Accept x only if M accepts 〈M〉 within |x | steps

Observe that L(N) = ∅ if and only if M does not accept 〈M〉 if
and only if 〈M〉 ∈ Ld . �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not r.e.

Proof.

Recall Ld = {M |M 6∈ L(M)} is not r.e.
Ld is reducible to Etm as follows. Let f (M) = N where N is a TM
that behaves as follows:

On input x
Run M on 〈M〉 for |x | steps
Accept x only if M accepts 〈M〉 within |x | steps

Observe that L(N) = ∅ if and only if M does not accept 〈M〉

if
and only if 〈M〉 ∈ Ld . �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not r.e.

Proof.

Recall Ld = {M |M 6∈ L(M)} is not r.e.
Ld is reducible to Etm as follows. Let f (M) = N where N is a TM
that behaves as follows:

On input x
Run M on 〈M〉 for |x | steps
Accept x only if M accepts 〈M〉 within |x | steps

Observe that L(N) = ∅ if and only if M does not accept 〈M〉 if
and only if 〈M〉 ∈ Ld . �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR.

Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) =

Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗.

If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) =

{0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}.

Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.

We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.

We will give a reduction f from Etm to EQtm. Let M1 be the
Turing machine that on any input, halts and rejects i.e.,
L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.

We will give a reduction f from Etm to EQtm.

Let M1 be the
Turing machine that on any input, halts and rejects i.e.,
L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.

We will give a reduction f from Etm to EQtm. Let M1 be the
Turing machine that on any input, halts and rejects

i.e.,
L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.

We will give a reduction f from Etm to EQtm. Let M1 be the
Turing machine that on any input, halts and rejects i.e.,
L(M1) = ∅. Take f (M) = 〈M,M1〉.

Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Agha-Viswanathan CS373

Reductions
Rice’s Theorem

Definitions and Observations
Examples

Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.

We will give a reduction f from Etm to EQtm. Let M1 be the
Turing machine that on any input, halts and rejects i.e.,
L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �

Agha-Viswanathan CS373

