BBM401-Lecture 8: Reducibility

Lecturer: Lale Özkahya

Resources for the presentation: https://courses.engr.illinois.edu/cs373/fa2010/lectures

Reductions

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

Reductions

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

• Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides

Reductions

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

• Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix

Reductions

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

- Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix
- The problem L_d reduces to the problem A_{TM} as follows: "To see if w ∈ L_d check if ⟨w, w⟩ ∈ A_{TM}."

Informal Overview Definition and Properties

글 > - < 글 >

- ∢ ∩ 🖓 🕨

э

Undecidability using Reductions

Proposition

Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Informal Overview Definition and Properties

Undecidability using Reductions

Proposition

Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Proof Sketch.

Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2 . Then the following algorithm decides L_1

Undecidability using Reductions

Proposition

Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Proof Sketch.

Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2 . Then the following algorithm decides L_1

- On input w, apply reduction to transform w into an input w' for problem 2
- Run *M* on *w*', and use its answer.

Informal Overview Definition and Properties

3

<ロト <部 > < 注 > < 注 >

Schematic View

W

Reductions schematically

Agha-Viswanathan CS373

Informal Overview Definition and Properties

æ

æ

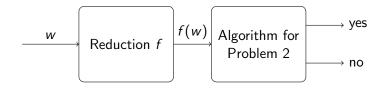
< 17 >

Schematic View

Reductions schematically

Informal Overview Definition and Properties

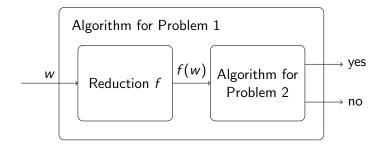
Schematic View



Reductions schematically

Informal Overview Definition and Properties

Schematic View



Reductions schematically

Informal Overview Definition and Properties

- 4 聞 と 4 臣 と 4 臣 と

æ

The Halting Problem

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

The Halting Problem

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

The Halting Problem

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

```
On input x
    Run M on x
    If M accepts then halt and accept
    If M rejects then go into an infinite loop
```

The Halting Problem

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

```
On input x
    Run M on x
    If M accepts then halt and accept
    If M rejects then go into an infinite loop
```

Observe that f(M) halts on input w if and only if M accepts

Informal Overview Definition and Properties

э

The Halting Problem

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT.

Informal Overview Definition and Properties

The Halting Problem

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT. Consider the following program T

```
On input \langle M, w \rangle
Construct program f(M)
Run H on \langle f(M), w \rangle
Accept if H accepts and reject if H rejects
```

Informal Overview Definition and Properties

The Halting Problem

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT. Consider the following program T

```
On input \langle M, w \rangle
Construct program f(M)
Run H on \langle f(M), w \rangle
Accept if H accepts and reject if H rejects
```

T decides A_{TM} .

Informal Overview Definition and Properties

3 × < 3 ×

The Halting Problem

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT. Consider the following program T

```
On input \langle M, w \rangle
Construct program f(M)
Run H on \langle f(M), w \rangle
Accept if H accepts and reject if H rejects
```

 ${\cal T}$ decides ${\it A}_{\rm TM}.$ But, ${\it A}_{\rm TM}$ is undecidable, which gives us the contradiction.

Informal Overview Definition and Properties

Mapping Reductions

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

Mapping Reductions

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

 $w \in A$ if and only if $f(w) \in B$

Mapping Reductions

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

 $w \in A$ if and only if $f(w) \in B$

In this case, we say A is mapping/many-one reducible to B, and we denote it by $A \leq_m B$.

Informal Overview Definition and Properties

In this course, we will drop the adjective "mapping" or "many-one", and simply talk about reductions and reducibility.

Reductions and Recursive Enumerability

Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Reductions and Recursive Enumerability

Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Proof.

Let f be the reduction from A to B and let M_B be the Turing Machine recognizing B.

Reductions and Recursive Enumerability

Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Proof.

Let f be the reduction from A to B and let M_B be the Turing Machine recognizing B. Then the Turing machine recognizing A is

```
On input w

Compute f(w)

Run M_B on f(w)

Accept if M_B does and reject if M_B rejects
```

Informal Overview Definition and Properties

Reductions and non-r.e.

Corollary

If $A \leq_m B$ and A is not recursively enumerable then B is not recursively enumerable.

Informal Overview Definition and Properties

< 17 >

'문⊁ ★ 문⊁

3

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

Proof.

Let M_B be the Turing machine deciding B and let f be the reduction. Then the algorithm deciding A, on input w, computes f(w) and runs M_B on f(w).

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

Proof.

Let M_B be the Turing machine deciding B and let f be the reduction. Then the algorithm deciding A, on input w, computes f(w) and runs M_B on f(w).

Corollary

If $A \leq_m B$ and A is undecidable then B is undecidable.

Reductions Rice's Theorem Definitions and Observations Examples

3

<ロト <部 > < 注 > < 注 >

Emptiness of Turing Machines

Proposition

The language
$$E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$$
 is not r.e.



Definitions and Observations Examples

(★ 문)★ 문

Emptiness of Turing Machines

Proposition

The language
$$E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$$
 is not r.e.

Proof.

Recall $L_d = \{M \mid M \notin L(M)\}$ is not r.e. L_d is reducible to E_{TM} as follows.

Emptiness of Turing Machines

Proposition

The language
$$E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$$
 is not r.e.

Proof.

Recall $L_d = \{M \mid M \notin L(M)\}$ is not r.e. L_d is reducible to E_{TM} as follows. Let f(M) = N where N is a TM that behaves as follows:

```
On input x
Run M on \langle M \rangle for |x| steps
Accept x only if M accepts \langle M \rangle within |x| steps
```

Emptiness of Turing Machines

Proposition

The language
$$E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$$
 is not r.e.

Proof.

Recall $L_d = \{M \mid M \notin L(M)\}$ is not r.e. L_d is reducible to E_{TM} as follows. Let f(M) = N where N is a TM that behaves as follows:

On input x Run *M* on $\langle M \rangle$ for |x| steps Accept x only if M accepts $\langle M \rangle$ within |x| steps

Observe that $L(N) = \emptyset$ if and only if M does not accept $\langle M \rangle$

- 4 同 6 4 日 6 4 日 6

Emptiness of Turing Machines

Proposition

The language
$$E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$$
 is not r.e.

Proof.

Recall $L_d = \{M \mid M \notin L(M)\}$ is not r.e. L_d is reducible to E_{TM} as follows. Let f(M) = N where N is a TM that behaves as follows:

On input x Run M on $\langle M \rangle$ for |x| steps Accept x only if M accepts $\langle M \rangle$ within |x| steps

Observe that $L(N) = \emptyset$ if and only if M does not accept $\langle M \rangle$ if and only if $\langle M \rangle \in L_d$.

Definitions and Observations Examples

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

3

Checking Regularity

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.



< 17 ▶

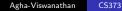
Checking Regularity

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR.



Checking Regularity

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input x If x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

Checking Regularity

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

```
On input x
If x is of the form 0^n 1^n then accept x
else run M on w and accept x only if M does
```

```
If w \in L(M) then L(N) =
```

Checking Regularity

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

```
If w \in L(M) then L(N) = \Sigma^*.
```

Checking Regularity

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input x If x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then L(N) =

Checking Regularity

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept xelse run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) = \{0^n 1^n \mid n \ge 0\}.$

伺 と く ヨ と く ヨ と

Checking Regularity

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept xelse run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) = \{0^n 1^n \mid n \ge 0\}$. Thus, $\langle N \rangle \in \mathsf{REGULAR}$ if and only if $\langle M, w \rangle \in A_{\mathrm{TM}}$

Definitions and Observations Examples

《曰》《聞》《臣》《臣》。

3

Checking Equality

Proposition

 $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

Definitions and Observations Examples

• • • • • • • • • • •

▶ < ≣ ▶

3

Checking Equality

Proposition

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$
 is not r.e.

Proof.

We will give a reduction f from E_{TM} to EQ_{TM}.

Definitions and Observations Examples

Checking Equality

Proposition

$$EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$
 is not r.e.

Proof.

We will give a reduction f from $E_{\rm TM}$ to EQ_{TM}. Let M_1 be the Turing machine that on any input, halts and rejects

Checking Equality

Proposition

$$EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$
 is not r.e.

Proof.

We will give a reduction f from E_{TM} to EQ_{TM}. Let M_1 be the Turing machine that on any input, halts and rejects i.e., $L(M_1) = \emptyset$. Take $f(M) = \langle M, M_1 \rangle$.

Checking Equality

Proposition

$$EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$
 is not r.e.

Proof.

We will give a reduction f from E_{TM} to EQ_{TM} . Let M_1 be the Turing machine that on any input, halts and rejects i.e., $L(M_1) = \emptyset$. Take $f(M) = \langle M, M_1 \rangle$. Observe $M \in E_{\text{TM}}$ iff $L(M) = \emptyset$ iff $L(M) = L(M_1)$ iff $\langle M, M_1 \rangle \in \text{EQ}_{\text{TM}}$.