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Special	
  purpose	
  machines?	
  
•  Different	
  DFA	
  for	
  different	
  languages	
  (duh)	
  
•  Different	
  TMs	
  for	
  different	
  languages,	
  
funcOons.	
  

•  Early	
  computer	
  programming	
  was	
  no	
  different	
  



Von	
  Neumann	
  Architecture	
  

•  stored-­‐program	
  computer	
  
– programs	
  can	
  be	
  data!	
  

– program-­‐as-­‐data	
  determines	
  
subcircuits	
  to	
  employ	
  

•  fetch-­‐decode-­‐execute	
  cycle	
  
•  hence,	
  one	
  computer	
  can	
  
behave	
  like	
  any	
  

hap://idiomzero.blogspot.com/2010/07/8-­‐anecdotes-­‐about-­‐john-­‐von-­‐neumann.html	
  



Original	
  Idea	
  was	
  due	
  to	
  Turing	
  

“I	
  know	
  that	
  in	
  or	
  about	
  1943	
  or	
  '44	
  von	
  Neumann	
  was	
  well	
  
aware	
  of	
  the	
  fundamental	
  importance	
  of	
  Turing's	
  paper	
  
of	
  1936	
  ...	
  Von	
  Neumann	
  introduced	
  me	
  to	
  that	
  paper	
  
and	
  at	
  his	
  urging	
  I	
  studied	
  it	
  with	
  care.	
  Many	
  people	
  have	
  
acclaimed	
  von	
  Neumann	
  as	
  the	
  "father	
  of	
  the	
  
computer"	
  (in	
  a	
  modern	
  sense	
  of	
  the	
  term)	
  but	
  I	
  am	
  sure	
  
that	
  he	
  would	
  never	
  have	
  made	
  that	
  mistake	
  himself.	
  He	
  
might	
  well	
  be	
  called	
  the	
  midwife,	
  perhaps,	
  but	
  he	
  firmly	
  
emphasized	
  to	
  me,	
  and	
  to	
  others	
  I	
  am	
  sure,	
  that	
  the	
  
fundamental	
  concep,on	
  is	
  owing	
  to	
  Turing—	
  in	
  so	
  far	
  as	
  
not	
  an,cipated	
  by	
  Babbage	
  ...	
  “	
  
	
   	
   	
   	
   	
   	
   	
   	
  -­‐	
  Stan	
  Frankel	
  –	
  Los	
  Alamos	
  



Universal	
  TM	
  

•  A	
  single	
  TM	
  Mu	
  that	
  can	
  compute	
  anything	
  
computable!	
  

•  Takes	
  as	
  input	
  
–  the	
  descrip(on	
  of	
  some	
  other	
  TM	
  M	
  
– data	
  w	
  for	
  M	
  to	
  run	
  on	
  

•  Outputs	
  
–  the	
  results	
  of	
  running	
  M(w)	
  

Need	
  to	
  make	
  precise	
  what	
  the	
  descrip,on	
  of	
  a	
  TM	
  is	
  



Coding	
  of	
  TMs	
  
•  Show	
  how	
  to	
  represent	
  every	
  TM	
  as	
  a	
  natural	
  
number	
  

•  Lemma:	
  	
  If	
  L	
  over	
  alphabet	
  {0,1}	
  is	
  accepted	
  by	
  
some	
  TM	
  M,	
  then	
  there	
  is	
  a	
  one-­‐tape	
  TM	
  M’	
  that	
  
accepts	
  L,	
  such	
  that	
  
–  Γ	
  =	
  {0,1,B}	
  
–  states	
  numbered	
  1,	
  ...,	
  k	
  
–  q1	
  is	
  the	
  unique	
  start	
  state	
  
–  q2	
  is	
  the	
  unique	
  halt/accept	
  state	
  
–  q3	
  is	
  the	
  unique	
  halt/reject	
  state	
  

•  So,	
  to	
  represent	
  a	
  TM,	
  we	
  need	
  only	
  list	
  its	
  set	
  of	
  
transiOons	
  –	
  everything	
  else	
  is	
  implicit	
  by	
  above	
  



Lis,ng	
  Transi,on	
  

•  Use	
  the	
  following	
  order:	
  
	
  δ(q1,0),	
  δ(q1,1),	
  δ(q1,B),	
  δ(q2,0),	
  δ(q2,1),	
  δ(q2,B),...	
  

	
  	
  ...	
  δ(qk,0),	
  δ(qk,1),	
  δ(qk,B).	
  

•  Use	
  the	
  following	
  encoding:	
  
	
  111	
  	
  t1	
  	
  11	
  	
  t2	
  	
  11	
  	
  t3	
  	
  11	
  	
  ...	
  	
  	
  11	
  	
  t3k	
  	
  	
  111	
  

where	
  ti	
  is	
  the	
  encoding	
  of	
  transiOon	
  i	
  as	
  given	
  on	
  
the	
  next	
  slide.	
  	
  



Encoding	
  a	
  transi,on	
  

Recall	
  transiOon	
  looks	
  like	
  	
  δ(q,a)	
  =	
  (p,	
  b,	
  L)	
  

So,	
  encode	
  as	
  	
  
<state>	
  1	
  <input>	
  1	
  <new	
  state>	
  1	
  <new-­‐symbol>	
  1	
  <direcOon>	
  
where	
  	
  	
  

•  state	
  qi	
  	
  represented	
  by	
  0i	
  
•  0,	
  1,	
  B	
  represented	
  by	
  	
  0,	
  00,	
  000	
  
•  L,	
  R,	
  S	
  represented	
  by	
  0,	
  00,	
  000	
  

δ(q3,1)	
  =	
  (q4,	
  0,	
  R)	
  represented	
  by	
  	
  	
  0001001000010100	
  	
  

q3	
   1	
   q4	
   0	
   R	
  



Typical	
  TM	
  code:	
  

•  Begins,	
  ends	
  with	
  111	
  
•  TransiOons	
  separated	
  by	
  11	
  
•  Fields	
  within	
  transiOon	
  separated	
  by	
  1	
  
•  Individual	
  fields	
  represented	
  by	
  0s	
  

11101010000100100110100100000101011.....11.......11.......111	
  	
  



TMs	
  are	
  (binary)	
  numbers	
  

•  Every	
  TM	
  is	
  encoded	
  by	
  a	
  unique	
  element	
  of	
  N	
  
•  ConvenOon:	
  	
  elements	
  of	
  N	
  that	
  do	
  not	
  
correspond	
  to	
  any	
  TM	
  encoding	
  represent	
  the	
  
“null	
  TM”	
  that	
  accepts	
  nothing.	
  

•  Thus,	
  every	
  TM	
  is	
  a	
  number,	
  and	
  vice	
  versa	
  

•  Let	
  <M>	
  mean	
  the	
  number	
  that	
  encodes	
  M	
  

•  Conversely,	
  let	
  Mn	
  be	
  the	
  TM	
  with	
  encoding	
  n.	
  



Universal	
  TM	
  Mu	
  

Construct	
  a	
  TM	
  	
  Mu	
  such	
  that	
  
	
  L(Mu)	
  =	
  {	
  <M>	
  #	
  w	
  	
  |	
  M	
  accepts	
  w}	
  	
  

Thus,	
  Mu	
  	
  is	
  a	
  stored-­‐program	
  computer.	
  
It	
  reads	
  a	
  program	
  <M>	
  and	
  executes	
  it	
  on	
  data	
  w	
  

Mu	
  simulates	
  the	
  run	
  of	
  M	
  on	
  w	
  

A	
  	
  single	
  TM	
  captures	
  the	
  no,on	
  of	
  “computable”	
  !!	
  



How	
  Mu	
  works	
  

3	
  tapes	
  
•  Tape	
  1:	
  	
  holds	
  input	
  M	
  and	
  w;	
  never	
  changes	
  

•  Tape	
  2:	
  	
  simulates	
  M’s	
  single	
  tape	
  

•  Tape	
  3:	
  	
  holds	
  M’s	
  current	
  state	
  

1	
   1	
   1	
   t1	
   1	
   1	
   t2	
   1	
   1	
   ...	
   t3k	
   1	
   1	
   1	
   #	
   w	
  

Input	
  M	
   Input	
  w	
  



Universal	
  TM	
  	
  Mu	
  

Phase	
  1:	
  	
  Check	
  if	
  <M>	
  is	
  a	
  valid	
  TM	
  on	
  tape	
  1	
  
– No	
  four	
  1’s	
  in	
  a	
  row	
  
– Three	
  iniOal,	
  ending	
  1’s	
  
– substring	
  110i10j1	
  doesn’t	
  appear	
  twice	
  
– appropriate	
  number	
  of	
  0’s	
  between	
  1’s	
  in	
  
transiOon	
  codes:	
  	
  11000010100000100001...	
  
	
  (0000	
  does	
  not	
  encode	
  a	
  0,1,or	
  B	
  to	
  write)	
  

– could	
  check	
  that	
  transiOons	
  are	
  in	
  right	
  order,	
  and	
  
form	
  a	
  complete	
  set	
  (but	
  not	
  necessary)	
  

– etc.	
  
If	
  not	
  valid,	
  then	
  halt	
  and	
  reject	
  



Phase	
  2:	
  	
  Set	
  up	
  
– copy	
  w	
  to	
  tape	
  2,	
  with	
  head	
  scanning	
  first	
  symbol	
  

– write	
  0	
  on	
  tape	
  3	
  indicaOng	
  M	
  is	
  in	
  start	
  state	
  q1	
  

11101010000100100110100100000101011......111	
  #	
  100110	
  

$100110	
  

$0	
  

Tape	
  1	
  

Tape	
  2	
  

Current	
  contents	
  of	
  M’s	
  tape	
  

Current	
  state	
  of	
  M	
  

Tape	
  3	
  

Code	
  for	
  M	
  

If	
  at	
  any	
  Ome,	
  Tape	
  3	
  holds	
  00	
  	
  (or	
  000),	
  then	
  halt	
  and	
  accept	
  (or	
  reject)	
  



Phase	
  3:	
  	
  Repeatedly	
  simulate	
  steps	
  of	
  M	
  

111010100001001001101001000001010011......111	
  #	
  100110	
  

$100110	
  

$0	
  

Tape	
  1	
  

Tape	
  2	
  

Current	
  contents	
  of	
  M’s	
  tape	
  

Current	
  state	
  of	
  M	
  	
  

Tape	
  3	
  

Code	
  for	
  M	
  

If	
  tape	
  3	
  holds	
  0i	
  and	
  tape	
  2	
  is	
  scanning	
  1,	
  then	
  search	
  for	
  
substring	
  	
  110i1001	
  on	
  tape	
  1	
  	
  

copy	
  new	
  state	
  00000	
  to	
  tape	
  3	
  

write	
  a	
  0	
  under	
  tape	
  2’s	
  head	
  

move	
  tape	
  2	
  head	
  to	
  the	
  right	
  
what	
  to	
  do	
  next	
  

Where	
  in	
  code	
  is	
  next	
  transiOon?	
  



Phase	
  3:	
  	
  ARer	
  the	
  single	
  move	
  

111010100001001001101001000001010011......111	
  #	
  100110	
  

$000110	
  

$00000	
  

Tape	
  1	
  

Tape	
  2	
  

Current	
  contents	
  of	
  M’s	
  tape	
  

Current	
  state	
  of	
  M	
  	
  

Tape	
  3	
  

Code	
  for	
  M	
  
copy	
  new	
  state	
  00000	
  to	
  tape	
  3	
  

write	
  a	
  0	
  under	
  tape	
  2’s	
  head	
  

move	
  tape	
  2	
  head	
  to	
  the	
  right	
  

Check	
  if	
  00	
  or	
  000	
  is	
  on	
  tape	
  3;	
  	
  if	
  so,	
  halt	
  and	
  accept	
  or	
  reject	
  

Otherwise,	
  simulate	
  the	
  next	
  move	
  by	
  searching	
  for	
  paaern.	
  
	
  In	
  this	
  example,	
  the	
  next	
  paaern	
  =	
  	
  1100000101	
  



Towards	
  “real”	
  computers:	
  RAMs	
  

Random	
  Access	
  Machine:	
  
• 	
   finite	
  number	
  of	
  arithmeOc	
  registers	
  

• 	
   infinite	
  number	
  of	
  memory	
  locaOons	
  

• 	
   instrucOon	
  set	
  (next	
  page)	
  
• 	
   program	
  instrucOons	
  wriaen	
  in	
  conOnuous	
  
block	
  of	
  memory	
  starOng	
  at	
  locaOon	
  1	
  and	
  all	
  
registers	
  set	
  to	
  0.	
  



RAM	
  instruc,on	
  set	
  
Instruc(on	
   Meaning	
  

Add	
  X,	
  Y	
   Add	
  contents	
  of	
  register	
  X	
  and	
  Y,	
  and	
  place	
  
result	
  in	
  register	
  X	
  

LOADC	
  X,	
  num	
   Place	
  constant	
  num	
  in	
  register	
  X	
  

LOAD	
  X,	
  M	
   Put	
  contents	
  of	
  memory	
  loc	
  M	
  into	
  register	
  X	
  

LOADI	
  X,	
  M	
   Indirect	
  addressing:	
  	
  put	
  value(value(M))	
  into	
  
register	
  X	
  

STORE	
  X,	
  M	
   Copy	
  contents	
  of	
  reg	
  X	
  into	
  mem	
  locaOon	
  M	
  

JUMP	
  X,	
  M	
   If	
  register	
  X	
  =	
  0,	
  then	
  next	
  instrucOon	
  is	
  at	
  
memory	
  locaOon	
  M	
  (otherwise,	
  next	
  
instrucOon	
  is	
  the	
  one	
  following	
  the	
  current	
  
one,	
  as	
  usual)	
  

HALT	
   Halt	
  (duh)	
  



TMs	
  can	
  simulate	
  RAMs	
  	
  

•  Can	
  write	
  a	
  “TM-­‐interpreter”	
  of	
  RAM	
  code	
  
Thus,	
  no	
  more	
  TM	
  programming.	
  

•  Actual	
  simulaOon	
  has	
  low	
  overhead	
  (though	
  
memory	
  is	
  not	
  random-­‐access).	
  



TM	
  tapes	
  
•  InstrucOon-­‐locaOon	
  tape	
  
– stores	
  memory	
  locaOon	
  where	
  next	
  instrucOon	
  is	
  

–  iniOally	
  contains	
  only	
  “1”	
  
•  Register	
  tape	
  
– stores	
  register	
  numbers	
  and	
  their	
  contents,	
  as	
  
follows:	
  	
  	
  #	
  <reg-­‐num>	
  #	
  <contents>	
  #	
  ..	
  etc.	
  

– Example:	
  	
  suppose	
  R1	
  has	
  11,	
  and	
  R4	
  has	
  101,	
  and	
  
all	
  other	
  registers	
  are	
  empty.	
  	
  	
  Then	
  register	
  tape:	
  

$	
   #	
   1	
   ,	
   1	
   1	
   #	
   1	
   0	
   0	
   ,	
   1	
   0	
   1	
   #	
   .	
   .	
   .	
  



TM	
  tapes	
  
•  Memory	
  tape	
  –	
  similar	
  to	
  register	
  tape,	
  but	
  
can	
  hold	
  numbers,	
  OR	
  instrucOons:	
  

numbers:	
  	
  	
  #	
  <mem-­‐locaOon>	
  ,	
  <value>	
  #	
  ...	
  

instrucOons:	
  	
  	
  	
  

	
  example:	
  mem	
  locaOon	
  101	
  holds	
  ADD	
  3,6	
  

#	
   1	
   0	
   1	
   ,	
   A
D
D	
  

,	
   1	
   1	
   ,	
   1	
   1	
   0	
   #	
   .	
   .	
   .	
  

single	
  symbol	
  

• 	
  	
  5	
  work	
  tapes	
  



TM	
  setup	
  

•  Blank	
  register	
  tape	
  
•  Memory	
  tape	
  holds	
  RAM	
  program,	
  starOng	
  at	
  
memory	
  locaOon	
  1.	
  	
  No	
  other	
  data	
  stored.	
  	
  

•  1	
  on	
  instrucOon-­‐locaOon	
  tape	
  



TM	
  step	
  overview	
  

(many	
  TM	
  steps	
  for	
  each	
  RAM	
  step)	
  

•  Read	
  instrucOon-­‐locaOon	
  tape	
  
•  search	
  memory	
  tape	
  for	
  the	
  instrucOon	
  

•  execute	
  the	
  instrucOon,	
  changing	
  register	
  and	
  
memory	
  tapes	
  as	
  needed	
  

•  update	
  the	
  locaOon-­‐instrucOon	
  tape	
  

In	
  other	
  words,	
  it	
  goes	
  through	
  a	
  fetch-­‐decode-­‐execute	
  cycle	
  



Example	
  

•  Suppose	
  instrucOon	
  locaOon	
  tape	
  holds	
  only:	
  
$	
   1	
   0	
   1	
  

•  Scan	
  memory	
  tape,	
  looking	
  for	
  “#	
  1	
  0	
  1	
  ,”	
  
Suppose	
  it	
  finds	
  

.	
   .	
   #	
   1	
   0	
   1 ,	
   A
D
D	
  

,	
   1	
   1	
   ,	
   1	
   1	
   0	
   #	
  

•  It	
  finds	
  “ADD”	
  following	
  “,”	
  and	
  switches	
  to	
  
special	
  state	
  qadd	
  	
  to	
  handle	
  the	
  addiOon	
  



Example	
  (cont.)	
  

#	
   1	
   0	
   1 ,	
   A
D
D	
  

,	
   1	
   1	
   ,	
   1	
   1	
   0	
   #	
  

•  first	
  argument	
  is	
  in	
  register	
  11	
  so	
  search	
  
register	
  tape	
  for:	
  

qadd	
  

#	
   1	
   1	
   ,	
   <bitstring>	
  

•  then	
  copy	
  <bitstring>	
  to	
  worktape	
  1	
  
•  similarly,	
  search	
  for,	
  find,	
  place	
  value	
  of	
  
register	
  110	
  onto	
  worktape	
  2	
  



Example	
  (cont.)	
  

•  Now	
  go	
  to	
  subrouOne	
  to	
  add	
  worktape	
  1	
  +	
  
worktape	
  2,	
  place	
  results	
  on	
  worktape	
  3.	
  

•  Result	
  must	
  go	
  back	
  into	
  register	
  11	
  

•  Search	
  register	
  tape	
  again	
  for	
  	
  
#	
   1	
   1	
   ,	
   <bitstring>	
  

•  Replace	
  <bitstring>	
  with	
  new	
  value	
  copied	
  
from	
  worktape	
  3,	
  shiRing	
  as	
  necessary	
  

•  Add	
  1	
  to	
  instrucOon-­‐locaOon	
  tape	
  



RAM	
  simula,on	
  
•  MANY	
  details	
  leR	
  out	
  
•  Other	
  types	
  of	
  instrucOons	
  are	
  similar	
  

•  Number	
  of	
  steps	
  to	
  simulate	
  RAM?	
  

•  Delicate	
  issue....	
  does	
  RAM	
  actually	
  have	
  
constant-­‐Ome	
  access	
  to	
  infinite	
  memory?	
  

•  Can	
  show	
  (beyond	
  this	
  course)	
  for	
  
“reasonable”	
  Ome	
  model	
  on	
  a	
  RAM,	
  if	
  T(n)	
  
steps	
  are	
  required,	
  then	
  on	
  a	
  TM,	
  only	
  T(n)2	
  

steps.	
  	
  (T(n)3	
  if	
  RAM	
  has	
  mult.	
  and	
  div.)	
  



Church-­‐Turing	
  thesis	
  
•  TMs	
  capture	
  noOon	
  of	
  “computable”	
  
•  Evidence	
  
–  RAM	
  computer	
  
–  general	
  recursive	
  funcOons	
  (Gödel	
  &	
  Herbrand)	
  

•  constant/projecOon/successor/composiOon/recursion	
  

–  	
  λ-­‐calculus	
  (Church)	
  for	
  defining	
  funcOons	
  (CS	
  421)	
  
–  general	
  string-­‐rewriOng-­‐system	
  

•  unrestricted	
  grammar,	
  producOons	
  of	
  form	
  α	
  	
  β	
  for	
  any	
  α	
  
and	
  β	
  

–  aaempts	
  to	
  extend	
  TMs	
  

All	
  give	
  you	
  exactly	
  the	
  TM-­‐computable	
  func,ons	
  



Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

finite-state
control

Input on Tape 1

Initially all heads scanning cell 1, and tapes 2 to k blank

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.

Agha-Viswanathan CS373
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Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.
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Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}
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Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?
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Storing Multiple Tapes

0 1 1 t

1 0 t t
finite-state

control

Multi-tape TM M

(1, ·, 0, ∗) (0, ∗, 1, ·) (t, ·, 1, ·) t

finite-state
control

1-tape equivalent single(M)

Store in cell i contents of cell i of all tapes.

“Mark” head position
of tape with ∗.
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Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.
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Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.

2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.
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Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.

Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, M = (Q,Σ, Γ, δ, q0, qacc, qrej), where

Q,Σ, Γ, q0, qacc, qrej are as before for 1-tape machine

δ : (Q \ {qacc, qrej})× Γ→ P(Q × Γ× {L,R})
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Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM.

So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi )

; case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373



Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi )

; case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373



Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi )

; case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373



Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi ); case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373



Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi ); case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}
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Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.
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Variants of Turing Machines
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Nondeterministic Computation

cε = q0w

c1 · · · ci · · · · · · cr

· · · · · · cij · · · cr1 · · · crr

· · · · · ·

If r = maxq,X |δ(q,X )| then the runs of M can be organized
as an r -branching tree.

ci1i2···in is the configuration of M after n-steps, where choice i1
is taken in step 1, i2 in step 2, and so on.

Input w is accepted iff ∃ accepting configuration in tree.
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Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree. Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.
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Variants of Turing Machines
Church-Turing Thesis
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Proof Details

det(M) will use 3 tapes to simulate M

(note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices
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Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Execution of det(M)

1 Initially: Input tape contains w , simulation tape and choice
tape are blank

2 Copy contents of input tape onto simulation tape
3 Simulate M using simulation tape as its (only) tape

1 At the next step of M, if state is q, simulation tape head reads
X , and choice tape head reads i , then simulate the ith
possibility in δ(q,X ); if i is not a valid choice, then goto step 4

2 After changing state, simulation tape contents, and head
position on simulation tape, move choice tape’s head to the
right. If Tape 3 is now scanning t, then goto step 4

3 If M accepts then accept and halt, else goto step 3(1) to
simulate the next step of M.

4 Write the lexicographically next choice sequence on choice
tape, erase everything on simulation tape and goto step 2.
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Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Deterministic Simulation
In a nutshell

det(M) simulates M over and over again, for different
sequences, and for different number of steps.

If M accepts w then there is a sequence of choices that will
lead to acceptance. det(M) will eventually have this sequence
on choice tape, and then its simulation M will accept.

If M does not accept w then no sequence of choices leads to
acceptance. det(M) will therefore never halt!
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Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.
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