
BBM401-Reading: Variants of Turing Machines

Lecturer: Lale Özkahya

Resources for the presentation:
https://courses.engr.illinois.edu/cs373/fa2010/lectures
https://courses.engr.illinois.edu/cs498374/lectures.html

Special	
 purpose	
 machines?	

•  Different	
 DFA	
 for	
 different	
 languages	
 (duh)	

•  Different	
 TMs	
 for	
 different	
 languages,	

funcOons.	

•  Early	
 computer	
 programming	
 was	
 no	
 different	

Von	
 Neumann	
 Architecture	

•  stored-­‐program	
 computer	

– programs	
 can	
 be	
 data!	

– program-­‐as-­‐data	
 determines	

subcircuits	
 to	
 employ	

•  fetch-­‐decode-­‐execute	
 cycle	

•  hence,	
 one	
 computer	
 can	

behave	
 like	
 any	

hap://idiomzero.blogspot.com/2010/07/8-­‐anecdotes-­‐about-­‐john-­‐von-­‐neumann.html	

Original	
 Idea	
 was	
 due	
 to	
 Turing	

“I	
 know	
 that	
 in	
 or	
 about	
 1943	
 or	
 '44	
 von	
 Neumann	
 was	
 well	

aware	
 of	
 the	
 fundamental	
 importance	
 of	
 Turing's	
 paper	

of	
 1936	
 ...	
 Von	
 Neumann	
 introduced	
 me	
 to	
 that	
 paper	

and	
 at	
 his	
 urging	
 I	
 studied	
 it	
 with	
 care.	
 Many	
 people	
 have	

acclaimed	
 von	
 Neumann	
 as	
 the	
 "father	
 of	
 the	

computer"	
 (in	
 a	
 modern	
 sense	
 of	
 the	
 term)	
 but	
 I	
 am	
 sure	

that	
 he	
 would	
 never	
 have	
 made	
 that	
 mistake	
 himself.	
 He	

might	
 well	
 be	
 called	
 the	
 midwife,	
 perhaps,	
 but	
 he	
 firmly	

emphasized	
 to	
 me,	
 and	
 to	
 others	
 I	
 am	
 sure,	
 that	
 the	

fundamental	
 concep,on	
 is	
 owing	
 to	
 Turing—	
 in	
 so	
 far	
 as	

not	
 an,cipated	
 by	
 Babbage	
 ...	
 “	

	
 	
 	
 	
 	
 	
 	
 	
 -­‐	
 Stan	
 Frankel	
 –	
 Los	
 Alamos	

Universal	
 TM	

•  A	
 single	
 TM	
 Mu	
 that	
 can	
 compute	
 anything	

computable!	

•  Takes	
 as	
 input	

–  the	
 descrip(on	
 of	
 some	
 other	
 TM	
 M	

– data	
 w	
 for	
 M	
 to	
 run	
 on	

•  Outputs	

–  the	
 results	
 of	
 running	
 M(w)	

Need	
 to	
 make	
 precise	
 what	
 the	
 descrip,on	
 of	
 a	
 TM	
 is	

Coding	
 of	
 TMs	

•  Show	
 how	
 to	
 represent	
 every	
 TM	
 as	
 a	
 natural	

number	

•  Lemma:	
 	
 If	
 L	
 over	
 alphabet	
 {0,1}	
 is	
 accepted	
 by	

some	
 TM	
 M,	
 then	
 there	
 is	
 a	
 one-­‐tape	
 TM	
 M’	
 that	

accepts	
 L,	
 such	
 that	

–  Γ	
 =	
 {0,1,B}	

–  states	
 numbered	
 1,	
 ...,	
 k	

–  q1	
 is	
 the	
 unique	
 start	
 state	

–  q2	
 is	
 the	
 unique	
 halt/accept	
 state	

–  q3	
 is	
 the	
 unique	
 halt/reject	
 state	

•  So,	
 to	
 represent	
 a	
 TM,	
 we	
 need	
 only	
 list	
 its	
 set	
 of	

transiOons	
 –	
 everything	
 else	
 is	
 implicit	
 by	
 above	

Lis,ng	
 Transi,on	

•  Use	
 the	
 following	
 order:	

	
 δ(q1,0),	
 δ(q1,1),	
 δ(q1,B),	
 δ(q2,0),	
 δ(q2,1),	
 δ(q2,B),...	

	
 	
 ...	
 δ(qk,0),	
 δ(qk,1),	
 δ(qk,B).	

•  Use	
 the	
 following	
 encoding:	

	
 111	
 	
 t1	
 	
 11	
 	
 t2	
 	
 11	
 	
 t3	
 	
 11	
 	
 ...	
 	
 	
 11	
 	
 t3k	
 	
 	
 111	

where	
 ti	
 is	
 the	
 encoding	
 of	
 transiOon	
 i	
 as	
 given	
 on	

the	
 next	
 slide.	
 	

Encoding	
 a	
 transi,on	

Recall	
 transiOon	
 looks	
 like	
 	
 δ(q,a)	
 =	
 (p,	
 b,	
 L)	

So,	
 encode	
 as	
 	

<state>	
 1	
 <input>	
 1	
 <new	
 state>	
 1	
 <new-­‐symbol>	
 1	
 <direcOon>	

where	
 	
 	

•  state	
 qi	
 	
 represented	
 by	
 0i	

•  0,	
 1,	
 B	
 represented	
 by	
 	
 0,	
 00,	
 000	

•  L,	
 R,	
 S	
 represented	
 by	
 0,	
 00,	
 000	

δ(q3,1)	
 =	
 (q4,	
 0,	
 R)	
 represented	
 by	
 	
 	
 0001001000010100	
 	

q3	
 1	
 q4	
 0	
 R	

Typical	
 TM	
 code:	

•  Begins,	
 ends	
 with	
 111	

•  TransiOons	
 separated	
 by	
 11	

•  Fields	
 within	
 transiOon	
 separated	
 by	
 1	

•  Individual	
 fields	
 represented	
 by	
 0s	

11101010000100100110100100000101011.....11.......11.......111	
 	

TMs	
 are	
 (binary)	
 numbers	

•  Every	
 TM	
 is	
 encoded	
 by	
 a	
 unique	
 element	
 of	
 N	

•  ConvenOon:	
 	
 elements	
 of	
 N	
 that	
 do	
 not	

correspond	
 to	
 any	
 TM	
 encoding	
 represent	
 the	

“null	
 TM”	
 that	
 accepts	
 nothing.	

•  Thus,	
 every	
 TM	
 is	
 a	
 number,	
 and	
 vice	
 versa	

•  Let	
 <M>	
 mean	
 the	
 number	
 that	
 encodes	
 M	

•  Conversely,	
 let	
 Mn	
 be	
 the	
 TM	
 with	
 encoding	
 n.	

Universal	
 TM	
 Mu	

Construct	
 a	
 TM	
 	
 Mu	
 such	
 that	

	
 L(Mu)	
 =	
 {	
 <M>	
 #	
 w	
 	
 |	
 M	
 accepts	
 w}	
 	

Thus,	
 Mu	
 	
 is	
 a	
 stored-­‐program	
 computer.	

It	
 reads	
 a	
 program	
 <M>	
 and	
 executes	
 it	
 on	
 data	
 w	

Mu	
 simulates	
 the	
 run	
 of	
 M	
 on	
 w	

A	
 	
 single	
 TM	
 captures	
 the	
 no,on	
 of	
 “computable”	
 !!	

How	
 Mu	
 works	

3	
 tapes	

•  Tape	
 1:	
 	
 holds	
 input	
 M	
 and	
 w;	
 never	
 changes	

•  Tape	
 2:	
 	
 simulates	
 M’s	
 single	
 tape	

•  Tape	
 3:	
 	
 holds	
 M’s	
 current	
 state	

1	
 1	
 1	
 t1	
 1	
 1	
 t2	
 1	
 1	
 ...	
 t3k	
 1	
 1	
 1	
 #	
 w	

Input	
 M	
 Input	
 w	

Universal	
 TM	
 	
 Mu	

Phase	
 1:	
 	
 Check	
 if	
 <M>	
 is	
 a	
 valid	
 TM	
 on	
 tape	
 1	

– No	
 four	
 1’s	
 in	
 a	
 row	

– Three	
 iniOal,	
 ending	
 1’s	

– substring	
 110i10j1	
 doesn’t	
 appear	
 twice	

– appropriate	
 number	
 of	
 0’s	
 between	
 1’s	
 in	

transiOon	
 codes:	
 	
 11000010100000100001...	

	
 (0000	
 does	
 not	
 encode	
 a	
 0,1,or	
 B	
 to	
 write)	

– could	
 check	
 that	
 transiOons	
 are	
 in	
 right	
 order,	
 and	

form	
 a	
 complete	
 set	
 (but	
 not	
 necessary)	

– etc.	

If	
 not	
 valid,	
 then	
 halt	
 and	
 reject	

Phase	
 2:	
 	
 Set	
 up	

– copy	
 w	
 to	
 tape	
 2,	
 with	
 head	
 scanning	
 first	
 symbol	

– write	
 0	
 on	
 tape	
 3	
 indicaOng	
 M	
 is	
 in	
 start	
 state	
 q1	

11101010000100100110100100000101011......111	
 #	
 100110	

$100110	

$0	

Tape	
 1	

Tape	
 2	

Current	
 contents	
 of	
 M’s	
 tape	

Current	
 state	
 of	
 M	

Tape	
 3	

Code	
 for	
 M	

If	
 at	
 any	
 Ome,	
 Tape	
 3	
 holds	
 00	
 	
 (or	
 000),	
 then	
 halt	
 and	
 accept	
 (or	
 reject)	

Phase	
 3:	
 	
 Repeatedly	
 simulate	
 steps	
 of	
 M	

111010100001001001101001000001010011......111	
 #	
 100110	

$100110	

$0	

Tape	
 1	

Tape	
 2	

Current	
 contents	
 of	
 M’s	
 tape	

Current	
 state	
 of	
 M	
 	

Tape	
 3	

Code	
 for	
 M	

If	
 tape	
 3	
 holds	
 0i	
 and	
 tape	
 2	
 is	
 scanning	
 1,	
 then	
 search	
 for	

substring	
 	
 110i1001	
 on	
 tape	
 1	
 	

copy	
 new	
 state	
 00000	
 to	
 tape	
 3	

write	
 a	
 0	
 under	
 tape	
 2’s	
 head	

move	
 tape	
 2	
 head	
 to	
 the	
 right	

what	
 to	
 do	
 next	

Where	
 in	
 code	
 is	
 next	
 transiOon?	

Phase	
 3:	
 	
 ARer	
 the	
 single	
 move	

111010100001001001101001000001010011......111	
 #	
 100110	

$000110	

$00000	

Tape	
 1	

Tape	
 2	

Current	
 contents	
 of	
 M’s	
 tape	

Current	
 state	
 of	
 M	
 	

Tape	
 3	

Code	
 for	
 M	

copy	
 new	
 state	
 00000	
 to	
 tape	
 3	

write	
 a	
 0	
 under	
 tape	
 2’s	
 head	

move	
 tape	
 2	
 head	
 to	
 the	
 right	

Check	
 if	
 00	
 or	
 000	
 is	
 on	
 tape	
 3;	
 	
 if	
 so,	
 halt	
 and	
 accept	
 or	
 reject	

Otherwise,	
 simulate	
 the	
 next	
 move	
 by	
 searching	
 for	
 paaern.	

	
 In	
 this	
 example,	
 the	
 next	
 paaern	
 =	
 	
 1100000101	

Towards	
 “real”	
 computers:	
 RAMs	

Random	
 Access	
 Machine:	

• 	
 finite	
 number	
 of	
 arithmeOc	
 registers	

• 	
 infinite	
 number	
 of	
 memory	
 locaOons	

• 	
 instrucOon	
 set	
 (next	
 page)	

• 	
 program	
 instrucOons	
 wriaen	
 in	
 conOnuous	

block	
 of	
 memory	
 starOng	
 at	
 locaOon	
 1	
 and	
 all	

registers	
 set	
 to	
 0.	

RAM	
 instruc,on	
 set	

Instruc(on	
 Meaning	

Add	
 X,	
 Y	
 Add	
 contents	
 of	
 register	
 X	
 and	
 Y,	
 and	
 place	

result	
 in	
 register	
 X	

LOADC	
 X,	
 num	
 Place	
 constant	
 num	
 in	
 register	
 X	

LOAD	
 X,	
 M	
 Put	
 contents	
 of	
 memory	
 loc	
 M	
 into	
 register	
 X	

LOADI	
 X,	
 M	
 Indirect	
 addressing:	
 	
 put	
 value(value(M))	
 into	

register	
 X	

STORE	
 X,	
 M	
 Copy	
 contents	
 of	
 reg	
 X	
 into	
 mem	
 locaOon	
 M	

JUMP	
 X,	
 M	
 If	
 register	
 X	
 =	
 0,	
 then	
 next	
 instrucOon	
 is	
 at	

memory	
 locaOon	
 M	
 (otherwise,	
 next	

instrucOon	
 is	
 the	
 one	
 following	
 the	
 current	

one,	
 as	
 usual)	

HALT	
 Halt	
 (duh)	

TMs	
 can	
 simulate	
 RAMs	
 	

•  Can	
 write	
 a	
 “TM-­‐interpreter”	
 of	
 RAM	
 code	

Thus,	
 no	
 more	
 TM	
 programming.	

•  Actual	
 simulaOon	
 has	
 low	
 overhead	
 (though	

memory	
 is	
 not	
 random-­‐access).	

TM	
 tapes	

•  InstrucOon-­‐locaOon	
 tape	

– stores	
 memory	
 locaOon	
 where	
 next	
 instrucOon	
 is	

–  iniOally	
 contains	
 only	
 “1”	

•  Register	
 tape	

– stores	
 register	
 numbers	
 and	
 their	
 contents,	
 as	

follows:	
 	
 	
 #	
 <reg-­‐num>	
 #	
 <contents>	
 #	
 ..	
 etc.	

– Example:	
 	
 suppose	
 R1	
 has	
 11,	
 and	
 R4	
 has	
 101,	
 and	

all	
 other	
 registers	
 are	
 empty.	
 	
 	
 Then	
 register	
 tape:	

$	
 #	
 1	
 ,	
 1	
 1	
 #	
 1	
 0	
 0	
 ,	
 1	
 0	
 1	
 #	
 .	
 .	
 .	

TM	
 tapes	

•  Memory	
 tape	
 –	
 similar	
 to	
 register	
 tape,	
 but	

can	
 hold	
 numbers,	
 OR	
 instrucOons:	

numbers:	
 	
 	
 #	
 <mem-­‐locaOon>	
 ,	
 <value>	
 #	
 ...	

instrucOons:	
 	
 	
 	

	
 example:	
 mem	
 locaOon	
 101	
 holds	
 ADD	
 3,6	

#	
 1	
 0	
 1	
 ,	
 A
D
D	

,	
 1	
 1	
 ,	
 1	
 1	
 0	
 #	
 .	
 .	
 .	

single	
 symbol	

• 	
 	
 5	
 work	
 tapes	

TM	
 setup	

•  Blank	
 register	
 tape	

•  Memory	
 tape	
 holds	
 RAM	
 program,	
 starOng	
 at	

memory	
 locaOon	
 1.	
 	
 No	
 other	
 data	
 stored.	
 	

•  1	
 on	
 instrucOon-­‐locaOon	
 tape	

TM	
 step	
 overview	

(many	
 TM	
 steps	
 for	
 each	
 RAM	
 step)	

•  Read	
 instrucOon-­‐locaOon	
 tape	

•  search	
 memory	
 tape	
 for	
 the	
 instrucOon	

•  execute	
 the	
 instrucOon,	
 changing	
 register	
 and	

memory	
 tapes	
 as	
 needed	

•  update	
 the	
 locaOon-­‐instrucOon	
 tape	

In	
 other	
 words,	
 it	
 goes	
 through	
 a	
 fetch-­‐decode-­‐execute	
 cycle	

Example	

•  Suppose	
 instrucOon	
 locaOon	
 tape	
 holds	
 only:	

$	
 1	
 0	
 1	

•  Scan	
 memory	
 tape,	
 looking	
 for	
 “#	
 1	
 0	
 1	
 ,”	

Suppose	
 it	
 finds	

.	
 .	
 #	
 1	
 0	
 1 ,	
 A
D
D	

,	
 1	
 1	
 ,	
 1	
 1	
 0	
 #	

•  It	
 finds	
 “ADD”	
 following	
 “,”	
 and	
 switches	
 to	

special	
 state	
 qadd	
 	
 to	
 handle	
 the	
 addiOon	

Example	
 (cont.)	

#	
 1	
 0	
 1 ,	
 A
D
D	

,	
 1	
 1	
 ,	
 1	
 1	
 0	
 #	

•  first	
 argument	
 is	
 in	
 register	
 11	
 so	
 search	

register	
 tape	
 for:	

qadd	

#	
 1	
 1	
 ,	
 <bitstring>	

•  then	
 copy	
 <bitstring>	
 to	
 worktape	
 1	

•  similarly,	
 search	
 for,	
 find,	
 place	
 value	
 of	

register	
 110	
 onto	
 worktape	
 2	

Example	
 (cont.)	

•  Now	
 go	
 to	
 subrouOne	
 to	
 add	
 worktape	
 1	
 +	

worktape	
 2,	
 place	
 results	
 on	
 worktape	
 3.	

•  Result	
 must	
 go	
 back	
 into	
 register	
 11	

•  Search	
 register	
 tape	
 again	
 for	
 	

#	
 1	
 1	
 ,	
 <bitstring>	

•  Replace	
 <bitstring>	
 with	
 new	
 value	
 copied	

from	
 worktape	
 3,	
 shiRing	
 as	
 necessary	

•  Add	
 1	
 to	
 instrucOon-­‐locaOon	
 tape	

RAM	
 simula,on	

•  MANY	
 details	
 leR	
 out	

•  Other	
 types	
 of	
 instrucOons	
 are	
 similar	

•  Number	
 of	
 steps	
 to	
 simulate	
 RAM?	

•  Delicate	
 issue....	
 does	
 RAM	
 actually	
 have	

constant-­‐Ome	
 access	
 to	
 infinite	
 memory?	

•  Can	
 show	
 (beyond	
 this	
 course)	
 for	

“reasonable”	
 Ome	
 model	
 on	
 a	
 RAM,	
 if	
 T(n)	

steps	
 are	
 required,	
 then	
 on	
 a	
 TM,	
 only	
 T(n)2	

steps.	
 	
 (T(n)3	
 if	
 RAM	
 has	
 mult.	
 and	
 div.)	

Church-­‐Turing	
 thesis	

•  TMs	
 capture	
 noOon	
 of	
 “computable”	

•  Evidence	

–  RAM	
 computer	

–  general	
 recursive	
 funcOons	
 (Gödel	
 &	
 Herbrand)	

•  constant/projecOon/successor/composiOon/recursion	

–  	
 λ-­‐calculus	
 (Church)	
 for	
 defining	
 funcOons	
 (CS	
 421)	

–  general	
 string-­‐rewriOng-­‐system	

•  unrestricted	
 grammar,	
 producOons	
 of	
 form	
 α	
 	
 β	
 for	
 any	
 α	

and	
 β	

–  aaempts	
 to	
 extend	
 TMs	

All	
 give	
 you	
 exactly	
 the	
 TM-­‐computable	
 func,ons	

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

finite-state
control

Input on Tape 1

Initially all heads scanning cell 1, and tapes 2 to k blank

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

finite-state
control

Input on Tape 1

Initially all heads scanning cell 1, and tapes 2 to k blank

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

finite-state
control

Input on Tape 1

Initially all heads scanning cell 1, and tapes 2 to k blank

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine

0 1 1 0 t t

1 0 t 0 0 t

0 0 1 t t

finite-state
control

Input on Tape 1

Initially all heads scanning cell 1, and tapes 2 to k blank

In one step: Read symbols under each of the k-heads, and
depending on the current control state, write new symbols on
the tapes, move the each tape head (possibly in different
directions), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Multi-Tape Turing Machine
Formal Definition

A k-tape Turing Machine is M = (Q,Σ, Γ, δ, q0, qacc, qrej) where

Q is a finite set of control states

Σ is a finite set of input symbols

Γ ⊇ Σ is a finite set of tape symbols. Also, a blank symbol
t ∈ Γ \ Σ

q0 ∈ Q is the initial state

qacc ∈ Q is the accept state

qrej ∈ Q is the reject state, where qrej 6= qacc

δ : (Q \ {qacc, qrej})× Γk → Q × (Γ× {L,R})k is the
transition function.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a multi-tape TM must describe the state,
contents of all k-tapes, and positions of all k-heads. Thus,
c ∈ Q × (Γ∗{∗}ΓΓ∗)k , where ∗ denotes the head position.

Accepting configuration is one where the state is qacc, and
starting configuration on input w is (q0, ∗w , ∗t, . . . , ∗t)

Formal definition of a single step is skipped.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of multi-tape TM

Theorem

For any k-tape Turing Machine M, there is a single tape TM
single(M) such that L(single(M)) = L(M).

Challenges

How do we store k-tapes in one?

How do we simulate the movement of k independent heads?

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Storing Multiple Tapes

0 1 1 t

1 0 t t
finite-state

control

Multi-tape TM M

(1, ·, 0, ∗) (0, ∗, 1, ·) (t, ·, 1, ·) t

finite-state
control

1-tape equivalent single(M)

Store in cell i contents of cell i of all tapes.

“Mark” head position
of tape with ∗.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Storing Multiple Tapes

0 1 1 t

1 0 t t
finite-state

control

Multi-tape TM M

(1, ·, 0, ∗) (0, ∗, 1, ·) (t, ·, 1, ·) t

finite-state
control

1-tape equivalent single(M)

Store in cell i contents of cell i of all tapes. “Mark” head position
of tape with ∗.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Storing Multiple Tapes

0 1 1 t

1 0 t t
finite-state

control

Multi-tape TM M

(1, ·, 0, ∗) (0, ∗, 1, ·) (t, ·, 1, ·) t

finite-state
control

1-tape equivalent single(M)

Store in cell i contents of cell i of all tapes. “Mark” head position
of tape with ∗.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Simulating One Step

Challenge 1: Head of 1-Tape TM is pointing to one cell. How do
we find out all the k symbols that are being read by the k heads,
which maybe in different cells?

Read the tape from left to right, storing the contents of the
cells being scanned in the state, as we encounter them.

Challenge 2: After this scan, 1-tape TM knows the next step of
k-tape TM. How do we change the contents and move the heads?

Once again, scan the tape, change all relevant contents,
“move” heads (i.e., move ∗s), and change state.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.

2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.

Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.

Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Overall Algorithm

On input w , the 1-tape TM will work as follows.

1 First the machine will rewrite input w to be in “new” format.
2 To simulate one step

Read from left-to-right remembering symbols read on each
tape, and move all the way back to leftmost position.
Read from left-to-right, changing symbols, and moving those
heads that need to be moved right.
Scan back from right-to-left moving the heads that need to be
moved left.

Formal construction in notes.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.

Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, M = (Q,Σ, Γ, δ, q0, qacc, qrej), where

Q,Σ, Γ, q0, qacc, qrej are as before for 1-tape machine

δ : (Q \ {qacc, qrej})× Γ→ P(Q × Γ× {L,R})

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.
Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, M = (Q,Σ, Γ, δ, q0, qacc, qrej), where

Q,Σ, Γ, q0, qacc, qrej are as before for 1-tape machine

δ : (Q \ {qacc, qrej})× Γ→ P(Q × Γ× {L,R})

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.
Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, M = (Q,Σ, Γ, δ, q0, qacc, qrej), where

Q,Σ, Γ, q0, qacc, qrej are as before for 1-tape machine

δ : (Q \ {qacc, qrej})× Γ→ P(Q × Γ× {L,R})

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Turing Machine

Deterministic TM: At each step, there is one possible next state,
symbols to be written and direction to move the head, or the TM
may halt.
Nondeterministic TM: At each step, there are finitely many
possibilities. So formally, M = (Q,Σ, Γ, δ, q0, qacc, qrej), where

Q,Σ, Γ, q0, qacc, qrej are as before for 1-tape machine

δ : (Q \ {qacc, qrej})× Γ→ P(Q × Γ× {L,R})

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM.

So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi)

; case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi)

; case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi)

; case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi); case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi); case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Computation, Acceptance and Language

A configuration of a nondeterministic TM is exactly the same
as that of a 1-tape TM. So are notions of starting
configuration and accepting configuration.

A single step ` is defined similarly.
X1X2 · · ·Xi−1qXi · · ·Xn ` X1X2 · · · pXi−1Y · · ·Xn, if
(p,Y , L) ∈ δ(q,Xi); case for right moves is analogous.

w is accepted by M, if from the starting configuration with w
as input, M reaches an accepting configuration, for some
sequence of choices at each step.

L(M) = {w | w accepted by M}

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.

Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA

but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Expressive Power of Nondeterministic TM

Theorem

For any nondeterministic Turing Machine M, there is a
(deterministic) TM det(M) such that L(det(M)) = L(M).

Proof Idea

det(M) will simulate M on the input.

Idea 1: det(M) tries to keep track of all possible
“configurations” that M could possibly be after each step.
Works for DFA simulation of NFA but not convenient here.

Idea 2: det(M) will simulate M on each possible sequence of
computation steps that M may try in each step.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Computation

cε = q0w

c1 · · · ci · · · · · · cr

· · · · · · cij · · · cr1 · · · crr

· · · · · ·

If r = maxq,X |δ(q,X)| then the runs of M can be organized
as an r -branching tree.

ci1i2···in is the configuration of M after n-steps, where choice i1
is taken in step 1, i2 in step 2, and so on.

Input w is accepted iff ∃ accepting configuration in tree.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Computation

cε = q0w

c1 · · · ci · · · · · · cr

· · · · · · cij · · · cr1 · · · crr

· · · · · ·

If r = maxq,X |δ(q,X)| then the runs of M can be organized
as an r -branching tree.

ci1i2···in is the configuration of M after n-steps, where choice i1
is taken in step 1, i2 in step 2, and so on.

Input w is accepted iff ∃ accepting configuration in tree.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Nondeterministic Computation

cε = q0w

c1 · · · ci · · · · · · cr

· · · · · · cij · · · cr1 · · · crr

· · · · · ·

If r = maxq,X |δ(q,X)| then the runs of M can be organized
as an r -branching tree.

ci1i2···in is the configuration of M after n-steps, where choice i1
is taken in step 1, i2 in step 2, and so on.

Input w is accepted iff ∃ accepting configuration in tree.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree. Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree. Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree.

Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree. Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Idea

The machine det(M) will search for an accepting configuration in
computation tree

The configuration at any vertex can be obtained by simulating
M on the appropriate sequence of nondeterministic choices

det(M) will perform a BFS on the tree. Why not a DFS?

Observe that det(M) may not terminate if w is not accepted.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M

(note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M

(note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M (note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M (note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Proof Details

det(M) will use 3 tapes to simulate M (note, multitape TMs are
equivalent to 1-tape TMs)

Tape 1, called input tape, will always hold input w

Tape 2, called simulation tape, will be used as M’s tape when
simulating M on a sequence of nondeterministic choices

Tape 3, called choice tape, will store the current sequence of
nondeterministic choices

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Execution of det(M)

1 Initially: Input tape contains w , simulation tape and choice
tape are blank

2 Copy contents of input tape onto simulation tape
3 Simulate M using simulation tape as its (only) tape

1 At the next step of M, if state is q, simulation tape head reads
X , and choice tape head reads i , then simulate the ith
possibility in δ(q,X); if i is not a valid choice, then goto step 4

2 After changing state, simulation tape contents, and head
position on simulation tape, move choice tape’s head to the
right. If Tape 3 is now scanning t, then goto step 4

3 If M accepts then accept and halt, else goto step 3(1) to
simulate the next step of M.

4 Write the lexicographically next choice sequence on choice
tape, erase everything on simulation tape and goto step 2.

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Deterministic Simulation
In a nutshell

det(M) simulates M over and over again, for different
sequences, and for different number of steps.

If M accepts w then there is a sequence of choices that will
lead to acceptance. det(M) will eventually have this sequence
on choice tape, and then its simulation M will accept.

If M does not accept w then no sequence of choices leads to
acceptance. det(M) will therefore never halt!

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Deterministic Simulation
In a nutshell

det(M) simulates M over and over again, for different
sequences, and for different number of steps.

If M accepts w then there is a sequence of choices that will
lead to acceptance. det(M) will eventually have this sequence
on choice tape, and then its simulation M will accept.

If M does not accept w then no sequence of choices leads to
acceptance. det(M) will therefore never halt!

Agha-Viswanathan CS373

Variants of Turing Machines
Church-Turing Thesis

Multi-Tape TM
Nondeterministic TM
Random Access Machine

Deterministic Simulation
In a nutshell

det(M) simulates M over and over again, for different
sequences, and for different number of steps.

If M accepts w then there is a sequence of choices that will
lead to acceptance. det(M) will eventually have this sequence
on choice tape, and then its simulation M will accept.

If M does not accept w then no sequence of choices leads to
acceptance. det(M) will therefore never halt!

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it.

There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

Deciding a Language

Only halting configurations are those with state qacc or qrej

A Turing machine may keep running forever on some input

Then the machine does not accept that input

So two ways to not accept: reject or never halt

Definition

A Turing machine M is said to decide a language L if L = L(M)
and M halts on every input

Deciding a language is more than recognizing it. There are
languages which are recognizable, but not decidable.

Agha-Viswanathan CS373

