Algorithms Lecture 3: Finite-State Machines [Fa’14]

Caveat lector! This is the first edition of this lecture note. A few topics are missing, and there are
almost certainly a few serious errors. Please send bug reports and suggestions to jeffe@illinois.edu.

O Marvelous! what new configuration will come next?
| am bewildered with multiplicity.

— William Carlos Williams

Life only avails, not the having lived. Power ceases in the instant of repose;
it resides in the moment of transition from a past to a new state, in the
shooting of the gulf, in the darting to an aim.

— Ralph Waldo Emerson, “Self Reliance”, Essays, First Series (1841)

3 Finite-State Machines

3.1 Intuition

Suppose we want to determine whether a given string w[1..n] of bits represents a multiple of 5 in binary.
After a bit of thought, you might realize that you can read the bits in w one at a time, from left to right,
keeping track of the value modulo 5 of the prefix you have read so far.

MULTIPLEOF5(w[1..n]):
rem <« 0
forie—1ton
rem < (2-rem+w[i]) mod 5

ifrem=0

return TRUE
else

return FALSE

Aside from the loop index i, which we need just to read the entire input string, this algorithm has a
single local variable rem, which has only four different values (0, 1, 2, 3, or 4).

This algorithm already runs in O(n) time, which is the best we can hope for—after all, we have to
read every bit in the input—but we can speed up the algorithm in practice. Let’s define a change or
transition function §: {0,1,2,3,4} x {0,1} — {0, 1, 2,3, 4} as follows:

6(q,a) =(2q + a) mod 5.

(Here I'm implicitly converting the symbols 0 and 1 to the corresponding integers O and 1.) Since we
already know all values of the transition function, we can store them in a precomputed table, and then
replace the computation in the main loop of MULTIPLEOF5 with a simple array lookup.

We can also modify the return condition to check for different values modulo 5. To be completely
general, we replace the final if-then-else lines with another array lookup, using an array A[0..4] of
booleans describing which final mod-5 values are “acceptable”.

After both of these modifications, our algorithm can be rewritten as follows, either iteratively or
recursively (with g = 0 in the initial call):

© Copyright 2014 Jeff Erickson.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (http://creativecommons.org/licenses/by-nc-sa/4.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/ for the most recent revision.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms/

Algorithms Lecture 3: Finite-State Machines [Fa’14]

DOSOMETHINGCOOL(g, w):
ifw=e
return A[q]
else
decompose w =a - x
return DOSOMETHINGCOOL(6(g, a), x)

DOSOMETHINGCOOL(w[1..n]):
q<0
fori—1ton
q < 6[q,wli]]
return Al q]

If we want to use our new DOSOMETHINGCOOL algorithm to implement MULTIPLEOF5, we simply give
the arrays 6 and A the following hard-coded values:

Alq]

We can also visualize the behavior of DOSOMETHINGCOOL by drawing a directed graph, whose
vertices represent possible values of the variable g—the possible states of the algorithm—and whose
edges are labeled with input symbols to represent transitions between states. Specifically, the graph
includes the labeled directed edge pi>q if and only if 6(p,a) = q. To indicate the proper return value,
we draw the “acceptable” final states using doubled circles. Here is the resulting graph for MULTIPLEOF5:

State-transition graph for MULTIPLEOF5

If we run the MULTIPLEOF5 algorithm on the string 00101110110 (representing the number 374 in
binary), the algorithm performs the following sequence of transitions:

0 0 1 0 1 1 1 0 1 1 0
0—0—»0—»1—>2—>0—>1—>3—>1—>3—>2—14
Because the final state is not the “acceptable” state 0, the algorithm correctly returns FALSE. We can also
think of this sequence of transitions as a walk in the graph, which is completely determined by the start
state 0 and the sequence of edge labels; the algorithm returns TRUE if and only if this walk ends at an
“acceptable” state.

3.2 Formal Definitions

The object we have just described is an example of a finite-state machine. A finite-state machine is
a formal model of any system/machine/algorithm that can exist in a finite number of states and that
transitions among those states based on sequence of input symbols.

Finite-state machines are also commonly called deterministic finite-state automata, abbreviated
DFAs. The word “deterministic” means that the behavior of the machine is completely determined by

Algorithms Lecture 3: Finite-State Machines [Fa’14]

I’

the input string; we’ll discuss nondeterministic automata in the next lecture. The word “automaton’
(plural “automata”) comes from ancient Greek alTéuatog meaning “self-acting”, from the roots ad7t6-
(“self”) and -uatoc¢ (“thinking, willing”, the root of Latin mentus).

Formally, every finite-state machine consists of five components:

* An arbitrary finite set 3, called the input alphabet.

* Another arbitrary finite set Q, whose elements are called states.
* An arbitrary transition function 6: Q x X — Q.

* Astart state s € Q.

* A subset A C Q of accepting states.

The behavior of a finite-state machine is governed by an input string w, which is a finite sequence
of symbols from the input alphabet . The machine reads the symbols in w one at a time in order (from
left to right). At all times, the machine has a current state g; initially q is the machine’s start state s.
Each time the machine reads a symbol a from the input string, its current state transitions from ¢ to
6(q,a). After all the characters have been read, the machine accepts w if the current state is in A and
rejects w otherwise. In other words, every finite state machine runs the algorithm DOSOMETHINGCOOL!
The language of a finite state machine M, denoted L(M) is the set of all strings that M accepts.

More formally, we extend the transition function 6: Q x ¥* — Q of any finite-state machine to a
function 6*: Q x ¥* — Q that transitions on strings as follows:

ifw=¢g,

q
6*(q,w) :=
(4. w) {5*(5(q,a),x) ifw=ax.

Finally, a finite-state machine accepts a string w if and only if 6*(s,w) € A, and rejects w otherwise.
(Compare this definition with the recursive formulation of DOSOMETHINGCOOL!)

For example, our final MULTIPLEOF5 algorithm is a DFA with the following components:

* input alphabet: > = {0, 1}

* state set: Q ={0,1,2,3,4}

* transition function: 6(g,a) =(2q +a) mod 5

e start state: s =0

* accepting states: A= {0}
This machine rejects the string 00101110110, because

5%(0,00101110110) = 6*(5(0,0),0101110110)
=6%(0,0101110110) = 6*(6(0,0),101110110)
=6%(0,101110110) = 6*(5(0,1),01110110)
=6%(1,01110110) = §*(6(1,0),1110110) = - --

- =5%(1,110) = 6*(5(1, 1), 10)
=5%(3,10) = 6%(5(3,1),0)
= 5%(2,0) = 6*(5(3,0),¢)
=5"(4,6) =4 €A

Algorithms Lecture 3: Finite-State Machines [Fa’14]

We have already seen a more graphical representation of this entire sequence of transitions:

0—50—50—-51—52—50—-51—53-51-—53—"52-54

The arrow notation is easier to read and write for specific examples, but surprisingly, most people actually
find the more formal functional notation easier to use in formal proofs. Try them both!

We can equivalently define a DFA as a directed graph whose vertices are the states Q, whose edges
are labeled with symbols from X, such that every vertex has exactly one outgoing edge with each label.
In our drawings of finite state machines, the start state s is always indicated by an incoming arrow, and
the accepting states A are always indicted by doubled circles. By induction, for any string w € X*, this
graph contains a unique walk that starts at s and whose edges are labeled with the symbols in w in order.
The machine accepts w if this walk ends at an accepting state. This graphical formulation of DFAs is
incredibly useful for developing intuition and even designing DFAs. For proofs, it’s largely a matter of
taste whether to write in terms of extended transition functions or labeled graphs, but (as much as I
wish otherwise) I actually find it easier to write correct proofs using the functional formulation.

3.3 Another Example

The following drawing shows a finite-state machine with input alphabet © = {0, 1}, state set Q = {s, t},
start state s, a single accepting state t, and the transition function

6(s,0)=s, 6(s,1)=t, 6(t,0)=t, 6(t,1)=s.

(@0

1

A simple finite-state machine.
For example, the two-state machine M at the top of this page accepts the string 00101110100 after
the following sequence of transitions:

0 0 1 0 1 1 1 0 1 0 0
§S—SsS—>s—t—t—s5s—t—s—s—>t—t—t.

The same machine M rejects the string 11100101 after the following sequence of transitions:

1 1 1 0 0 1 0 1
S—t—>>s—D>t—>>t—>>s—>t—t—s.

Finally, M rejects the empty string, because the start state s is not an accepting state.
From these examples and others, it is easy to conjecture that the language of M is the set of all strings
of 0s and 1s with an odd number of 1s. So let’s prove it!

Proof (tedious case analysis): Let #(a,w) denote the number of times symbol a appears in string w.
We will prove the following stronger claims, for any string w.

t if #(1,w) is even
s if #(1,w)is odd

if #(1,w) is even

(s, w) =
o*(s,w
t if #(1,w)is odd

and o*(t,w) = {
Let w be an arbitrary string. Assume that for any string x that is shorter than w, we have 6*(s,x) =s
and 6*(t,x) = t if x has an even number of 1s, and §*(s, x) = t and 6*(¢t, x) = s if x has an odd number
of 1s. There are five cases to consider.

Algorithms Lecture 3: Finite-State Machines [Fa’14]

* If w= ¢, then w contains an even number of 1s and 6*(s,w) =s and 6*(t,w) = t by definition.

* Suppose w = 1x and #(1,w) is even. Then #(1, x) is odd, which implies

6*(s,w) =6"(6(s, 1), x) by definition of §*
=6"(t,x) by definition of §
=s by the inductive hypothesis

6*(t,w)=06%(6(¢,1),x) by definition of 6*
=6%(s,x) by definition of &
=T by the inductive hypothesis

Since the remaining cases are similar, I'll omit the line-by-line justification.

* If w=1x and #(1,w) is odd, then #(1, x) is even, so the inductive hypothesis implies

6*(s,w)=6%"(6(s,1),x)=6"(t,x) =t
6*(t,w)=6"(6(t,1),x)=6%(s,x)=s

* If w=0x and #(1,w) is even, then #(1, x) is even, so the inductive hypothesis implies

6*(s,w)=6%(6(s,0),x)=06%(s,x)=s
6*(t,w)=06%(6(¢t,0),x)=6*(t,x)=t

* Finally, if w = 0x and #(1,w) is odd, then #(1, x) is odd, so the inductive hypothesis implies

6*(s,w)=6%"(6(s,0),x)=6%(s,x) =t
o*(t,w)=6%(6(t,0),x)=6"(t,x)=s O

Notice that this proof contains |Q|? - |Z| + |Q| separate inductive arguments. For every pair of states
p and q, we must argue about the language so strings w such that 6*(p, w) = q, and we must consider
each first symbol in w. We must also argue about §(p, ¢) for every state p. Each of those arguments is
typically straightforward, but it’s easy to get lost in the deluge of cases.

For this particular proof, however, we can reduce the number of cases by switching from tail recursion
to head recursion. The following identity holds for all strings x € ¥* and symbols a € %:

6*(q,xa) = 6(6"(q,x),a)

We leave the inductive proof of this identity as a straightforward exercise (hint, hint).

Proof (clever renaming, head induction): Let’s rename the states 0 and 1 instead of s and t. Then
the transition function can be described concisely as 6(q,a) = (q + a) mod 2.

Now we claim that for every string w, we have §*(0,w) = #(1,w) mod 2. So let w be an arbitrary
string, and assume that for any string x that is shorter than w that *(0, x) = #(1,x) mod 2. There are
only two cases to consider: either w is empty or it isn’t.

* If w=¢, then 6*(0,w) =0 = #(1,w) mod 2 by definition.

Algorithms Lecture 3: Finite-State Machines [Fa’14]

* Otherwise, w = xa for some string x and some symbol a, and we have

6*(0,w) = 6(6%(0,x),a)

=6(#(1,x)mod 2,a) by the inductive hypothesis
= (#(1,x)mod 2 + a) mod 2 by definition of &
= (#(1,x)+ a) mod 2 by definition of mod 2
= (#(1,x)+ #(1,a)) mod 2 because #(1,0) =0 and #(1,1)=1
= (#(1,xa)) mod 2 by definition of #
= (#(1,w)) mod 2 because w = xa O

Hmmm. This “clever” proof is certainly shorter than the earlier brute-force proof, but is it really “better”?
“Simpler”? More intuitive? Easier to understand? I'm skeptical. Sometimes brute force really is more
effective.

3.4 Yet Another Example

As a more complex example, consider the Rubik’s cube, a well-known mechanical puzzle invented
independently by Ern6 Rubik in Hungary and Terutoshi Ishigi in Japan in the mid-1970s. This puzzle has
precisely 519,024,039,293,878,272,000 distinct configurations. In the unique solved configuration, each
of the six faces of the cube shows exactly one color. We can change the configuration of the cube by rotating
one of the six faces of the cube by 90 degrees, either clockwise or counterclockwise. The cube has six faces
(front, back, left, right, up, and down), so there are exactly twelve possible turns, typically represented
by the symbols R, L, F,B,U,D,R, L, F,B,U,D, where the letter indicates which face to turn and the presence
or absence of a bar over the letter indicates turning counterclockwise or clockwise, respectively. Thus, we
can represent a Rubik’s cube as a finite-state machine with 519,024,039,293,878,272,000 states and an
input alphabet with 12 symbols; or equivalently, as a directed graph with 519,024,039,293,878,272,000
vertices, each with 12 outgoing edges. In practice, the number of states is far too large for us to actually
draw the machine or explicitly specify its transition function; nevertheless, the number of states is still
finite. If we let the start state s and the sole accepting state be the solved state, then the language of this
finite state machine is the set of all move sequences that leave the cube unchanged.

A complicated finite-state machine.

3.5 Building DFAs

This section describes a few examples of building DFAs that accept particular languages, thereby proving
that those languages are automatic. As usual in algorithm design, there is no purely mechanical
recipe—no automatic method—no algorithm—for building DFAs in general. However, the following
examples show several useful design strategies.

Algorithms Lecture 3: Finite-State Machines [Fa’14]

3.5.1 Superstrings

Perhaps the simplest rule of thumb is to try to construct an algorithm that looks like MULTIPLEOF5:
A simple for-loop through the symbols, using a constant number of variables, where each variable (except
the loop index) has only a constant number of possible values. Here, “constant” means an actual number
that is not a function of the input size n. You should be able to compute the number of possible values
for each variable at compile time.

For example, the following algorithm determines whether a given string in 3 = {0, 1} contains the
substring 11.

CONTAINS11(w[1..n]):
found < FALSE
fori<—1ton
ifi=1
last2 «— w[1]
else
last2 «— w[1] - w[2]
if last =11
found < TRUE

return found

Aside from the loop index, this algorithm has exactly two variables.

* A boolean flag found indicating whether we have seen the substring 11. This variable has exactly
two possible values: TRUE and FALSE.

* A string last2 containing the last (up to) three symbols we have read so far. This variable has
exactly 7 possible values: ¢, 0, 1, 00, 01, 10, and 11.

Thus, altogether, the algorithm can be in at most 2 x 7 = 14 possible states, one for each possible pair
(found, last2). Thus, we can encode the behavior of CONTAINS11 as a DFA with fourteen states, where the
start state is (FALSE, £) and the accepting states are all seven states of the form (TRUE, x). The transition
function is described in the following table (split into two parts to save space):

q 6[q,0] 6[q,1] q 6[q,0] 6[q,1]
(FALSE, &) | (FALSE,0) : (FALSE,1) (TRUE, &) | (TRUE,0) : (TRUE,1)
(FALSE, 0) | (FALSE, 00) (FALSE, 01) (TRUE, 0) | (TRUE,00) (TRUE, 01)
(FALSE, 1) | (FALSE, 10) (TRUE, 11) (TRUE, 1) | (TRUE, 10) (TRUE, 11)

(FALSE, 00) | (FALSE,00) (FALSE,01) (TRUE, 00) | (TRUE, 00) | (TRUE,01)
(FALSE, 01) | (FALSE, 10) (TRUE, 11) (TRUE, 01) | (TRUE, 10) (TRUE, 11)
(FALSE, 10) | (FALSE, 00) (FALSE, 01) (TRUE, 10) | (TRUE, 00) (TRUE, 01)
(FALSE, 11) | (FALSE, 10) (TRUE, 11) (TRUE, 11) | (TRUE, 10) (TRUE, 11)

For example, given the input string 1001011100, this DFA performs the following sequence of transitions
and then accepts.
1 0 0 1
(FALSE, ¢) —> (FALSE, 1) — (FALSE, 10) —> (FALSE, 00) —
0 1 1
(FALSE, 01) — (FALSE, 10) —> (FALSE, 01) —

0 0
(TRUE, 11) BN (TRUE, 11) — (TRUE, 10) — (TRUE, 00)

Algorithms Lecture 3: Finite-State Machines [Fa’14]

3.5.2 Reducing states

You can probably guess that the brute-force DFA we just constructed has considerably more states than
necessary, especially after seeing its transition graph:

*@*ﬁk /R@H

@ o) y

DAY

\V ‘/ < o

Our brute-force DFA for strings containing the substring 11

For example, we don’t need actually to remember both of the last two symbols, but only the penulti-
mate symbol, because the last symbol is the one we’re currently reading. This observation allows us to
reduce the number of states from fourteen to only six. Once the flag part of the state is set to TRUE, we
know the machine will eventually accept, so we might as well merge the two accepting states together.
Finally, and more subtly, because all transitions out of (FALSE, ¢) and (FALSE, 0) are identical, we can
merge those two states together as well. In the end, we obtain the following DFA with just three states:

* The start state, which indicates that the machine has not read the substring 11 an did not just read
the symbol 1.

* An intermediate state, which indicates that the machine has not read the substring 11 but just read
the symbol 1.

* A unique accept state, which indicates that the machine has read the substring 11.

0 0,1
g /0 &
S0—i—
1—

A minimal DFA for superstrings of 11

At the end of this note, I'll describe an efficient algorithm to transform any given DFA into an
equivalent DFA with the fewest possible states. Given that this minimization algorithm exists, there is
very little incentive to optimize DFAs by hand. Clarity is infinitely more important than brevity, especially
in this class.

3.5.3 Every this after that

Suppose we want to accept the set of strings in which every occurrence of the substring 00 occurs after
every occurrence of the substring 11. Equivalently, we want to reject every string in which some 00
occurs before 11. Often the easiest way to design a DFA to check whether a string is not in some set is
first to build a DFA that is in that set and then invert which states in that machine are accepting.

Algorithms Lecture 3: Finite-State Machines [Fa’14]

From the previous example, we know that there is a three-state DFA M, that accepts the set of
strings with the substring 11 and a nearly identical DFA M, that accepts the set of strings containing the
substring 00. By identifying the accept state of M, with the start state of M;;, we obtain a five-state
DFA that accepts the set of strings with 00 before 11. Finally, by inverting which states are accepting, we
obtain the DFA we want.

1 0,1 0 0,1
&1\&0 &5&1 ‘d
—>| —> —>| —>
o—" 1
0,1

~Be—oHemo

B e I

Building a DFA for the language of strings in which every 00 is after every 11.

3.5.4 Both This and That: The Product Construction

Now suppose we want to accept all strings that contain both 00 and 11 as substrings, in either order.
Intuitively, we’d like to run two of our earlier DFAs in parallel—the DFA M, to detect superstrings of 00
and the DFA M, to detect superstrings of 11—and then accept the input string if and only if both of
these DFAs accept. In fact, we can encode precisely this “parallel computation” into a single DFA, whose
states are all ordered pairs (p,q), where p is a state in M, and q is a state in M;;. The new “parallel”
DFA includes the transition (p, q) = (p’,q") if and only if M, contains the transition p N p’ and My,
contains the transition g SN q’. Finally, the state (p, q) is accepting if and only if p and q are accepting
states in their respective machines. The resulting nine-state DFA is shown on the next page.

More generally, let M; = (%,Q;, 61,51,4A1) be an arbitrary DFA that accepts some language L;, and let
M, =(2,Q,, 6,,59,A5) be an arbitrary DFA that accepts some language L, (over the same alphabet).
We can construct a third DFA M = (%, Q, 6,s,A) that accepts the intersection language L, N L, as follows.

Q:=Q; xQ={(p,q) | p€Q and g € Q,}
s :=(51,52)
A=A xAy = {(p,q) | pE€A; and q GAz}
5((P, q)’ a) = (51(19, Cl), 52(‘1, Cl))
To convince yourself that this product construction is actually correct, consider the extended transition

function 6*: (Q x Q') x &* — (Q x Q’), which acts on strings instead of individual symbols. Recall that
this function is defined recursively as follows:

q ifw=e,
5*(5((p,q), a), x) ifw=ax.

5*((p,q), w) := {

Algorithms Lecture 3: Finite-State Machines [Fa’14]

SolFoSE eSO

Building a DFA for the language of strings in which every 00 is after every 11.

Inductive definition-chasing gives us the identity 6*((p,q), w) = (6 1(p,w), 63(q, w)) for any string w:

5*((P,Q), 8) =, by the definition of §*
= (6’1‘(p, £), 65(q, e)) by the definitions of 6] and 63;
5*((p,q),ax) =6*(6((p,q), a), x) by the definition of &*
= 5*((51(13, a), 65(q,a)), X) by the definition of &

= (5’1‘((51(p, a), x), 05(85(q,a), x)) by the induction hypothesis

= (6’1‘(p, ax), 65(q, ax)) by the definitions of 67 and 65.

It now follows from this seemingly impenetrable wall of notation that for any string w, we have 6*(s, w) €
Aif and only if both 67(s;,w) € A; and 65(s2, w) € A,. In other words, M accepts w if and only if both
M; and M, accept w, as required.

As usual, this construction technique does not necessarily yield minimal DFAs. For example, in our
first example of a product DFA, illustrated above, the central state (a, a) cannot be reached by any other
state and is therefore redundant. Whatever.

Similar product constructions can be used to build DFAs that accept any other boolean combination
of languages; in fact, the only part of the construction that needs to be changed is the choice of accepting
states. For example:

* To accept the union L, U L,, define A= {(p,q) | DPEA org EAz}-
* To accept the difference L; \ Lo, define A= {(p,q) | p €A; but not g ¢A2}.
* To accept the symmetric difference L; ® L, define A= {(p,q) | p €A; xor q eAZ}.

Moreover, by cascading this product construction, we can construct DFAs that accept arbitrary boolean
combinations of arbitrary finite collections of regular languages.

10

Algorithms Lecture 3: Finite-State Machines [Fa’14]

3.6 Decision Algorithms

It's unclear how much we can say here, since we haven't yet talked about graph algorithms, or even
really about graphs. Perhaps this discussion should simply be moved to the graph-traversal notes.

* Is w € L(M)? Follow the unique path from g, with label w. By definition, w € L(M) if and only
if this path leads to an accepting state.

* Is L(M) empty? The language L(M) is empty if and only if no accepting state is reachable
from q,. This condition can be checked in O(n) time via whatever-first search, where n is the
number of states. Alternatively, but less usefully, L(M) = @& if and only if L(M) contains no

tring w such that |w| < n.
% %k)

* Is L(M) finite? Remove all states unreachable from g, (via whatever first search). Then L(M)
is finite if and only if the reduced DFA is a dag; this condition can be checked by depth-first
search. Alternatively, but less usefully, L(M) is finite if and only if L(M) contains no string w
such thatn < |w| < 2n.

* Is L(M) = X*? Remove all states unreachable from g, (via whatever first search). Then
L(M) = %*if and only if every state in M is an accepting state.

e Is L(M) = L(M’)? Build a DFA N such that L(N) = L(M) \ L(M’) using a standard product
construction, and then check whether L(N) = @&.

3.7 Closure Properties

We haven't yet proved that automatic languages are regular yet, so formally, for now, some of these
are closure properties of automatic languages.

* Complement (easy for DFAs, hard for regular expressions.)

* Concatenation (trivial for regular expressions, hard for DFAs)
*** * Union (trivial for regular expressions, easy for DFAs via product)

* |Intersection (hard for regular expressions, easy for DFAs via product)

¢ Difference (hard for regular expressions, easy for DFAs via product)
* Kleene star: wait for NFAs (trivial for regular expression, hard for DFAs)
* Homomorphism: only mention in passing
® Inverse homomorphism: only mention in passing

3.8 Fooling Sets

Fix an arbitrary language L over an arbitrary alphabet 3. For any strings x,y,z € X©*, we say that
z distinguishes x from Yy if exactly one of the strings xz and yz is in L. If no string distinguishes x
and y, we say that x and y are L-equivalent and write x =; y. Thus,

x =,y <= Foreverystring z € ©*, we have xz € L if and only if yz € L.

For example, let L,, denote the language of strings over {0, 1} with an even number of 0s and an odd
number of 1s. Then the strings x =01 and y = 0011 are distinguished by the string z = 100, because

xz=01¢100=01100 € L,,
yz=0011¢100 = 0011100 ¢ L,,.

On the other hand, it is quite easy to prove (hint, hint) that the strings 0001 and 1011 are L,,-equivalent.

11

Algorithms Lecture 3: Finite-State Machines [Fa’14]

Let M be an arbitrary DFA for an arbitrary language L, and let x be y be arbitrary strings. If x and y
lead to the same state in M—that is, if 6*(s, x) = 6*(s, y)—then we have

6%(s,x2) =6%(6%(s,x),2) = 6%(6%(s,¥),2) = 6*(s, y2)

for any string z. In particular, either M accepts both x and y, or M rejects both x and y, and therefore
x =; y. It follows that if x and y are not L-equivalent, then any DFA that accepts L has at least two
distinct states 6*(s, x) # 6*(s, y).

Finally, a fooling set for L is a set F of strings such that every pair of strings in F has a distinguishing
suffix. For example, F = {01,101,010, 1010} is a fooling set for the language L,, of strings with an even
number of 0s and an odd number of 1s, because each pair of strings in F has a distinguishing suffix:

* 0 distinguishes 01 and 101;

* 0 distinguishes 01 and 010;

* 0 distinguishes 01 and 1010;
* 10 distinguishes 101 and 010;
* 1 distinguishes 101 and 1010;
* 1 distinguishes 010 and 1010.

The pigeonhole principle now implies that for any integer k, if language L is accepted by a DFA with k
states, then every fooling set for L contains at most k strings. This simple observation has two immediate
corollaries.

First, for any integer k, if L has a fooling set of size k, then every DFA that accepts L has at least k
states. For example, the fooling set {01,101,010,1010} proves that any DFA for L,, has at least four
states. Thus, we can use fooling sets to prove that certain DFAs are as small as possible.

Second, and more interestingly, if a language L is accepted by any DFA, then every fooling set for L
must be finite. Equivalently: If L has an infinite fooling set, then L is not accepted by any DFA. This is
arguably both the simplest and most powerful method for proving that a language is non-regular. Here
are a few canonical examples of the fooling-set technique in action.

Lemma 3.1. The language L = {0"1" | n > 0} is not regular.

Proof: Consider the set F = {0" | n > 0}, or more simply F = 0*. Let x and y be arbitrary distinct strings
in F. Then we must have x = 0 and y = 0/ for some integers i # j. The suffix z = 1! distinguishes x
and y, because xz = 0'1' € L, but yz = 0'1/ ¢ L. We conclude that F is a fooling set for L. Because F is
infinite, L cannot be regular. O

Lemma 3.2. The language L = {wwR | w € £*} of even-length palindromes is not regular.

Proof: Let x and y be arbitrary distinct strings in 0*1. Then we must have x = 0’1 and y = 61 for some
integers i # j. The suffix z = 10" distinguishes x and y, because xz = 0'110"' € L, but yz = 0'116’ ¢ L.
We conclude that 0*1 is a fooling set for L. Because 0*1 is infinite, L cannot be regular. O

Lemma 3.3. The language L = {0%" | n > 0} is not regular.

Proof: Let x and y be arbitrary distinct strings in L. Then we must have x = 02 and y = 0? for
some integers i # j. The suffix z = 0% distinguishes x and y, because xz = 0242 = 92" ¢ L, but
yz = 02+2 ¢ L. We conclude that L itself is a fooling set for L. Because L is infinite, L cannot be
regular. O

12

Algorithms Lecture 3: Finite-State Machines [Fa’14]

Lemma 3.4. The language L = {0? | p is prime} is not regular.

Proof: Again, we use 0* as our fooling set, but but the actual argument is somewhat more complicated
than in our earlier examples.

Let x and y be arbitrary distinct strings in 0*. Then we must have x = 0’ and y = ©’ for some
integers i # j. Without loss of generality, assume that i < j. Let p be any prime number larger than i.
Because p + 0(j —1i) is prime and p + p(j —i) > p is not, there must be a positive integer k < p such that
p + (k—1)(j —1) is prime but p + k(j — i) is not. Then the suffix 0P (<~1i=* distinguishes x and y:

xz = 0f P Hk—Di—k — gp+(k—1)G—1) ¢ [, because p + (k —1)(j —i) is prime;

yz = 0f eprk—Di—ki — gp+k(G—D & [because p + k(j —i) is not prime.

(Because i < j and i < p, the suffix ePT(k—Di=ki — g(P=D+(k=1)(~D has positive length and therefore
actually exists!) We conclude that 0* is indeed a fooling set for L, which implies that L is not regular. O

One natural question that many students ask is “How did you come up with that fooling set?”
Perhaps the simplest rule of thumb is that for most languages L—in particular, for almost all languages
that students are asked to prove non-regular on homeworks or exams—either some simple regular
language like 0* or 10*1 is a fooling set, or the language L itself is a fooling set. (Of course, there are
well-engineered counterexamples.)

*3.9 The Myhill-Nerode Theorem

The fooling set technique implies a necessary condition for a language to be accepted by a DFA—the
language must have no infinite fooling sets. In fact, this condition is also sufficient. The following
powerful theorem was first proved by Anil Nerode in 1958, strengthening a 1957 result of John Myhill.!

The Myhill-Nerode Theorem. For any language L, the following are equal:
(a) the minimum number of states in a DFA that accepts L,

(b) the maximum size of a fooling set for L, and

(c) the number of equivalence classes of =; .

In particular, L is accepted by a DFA if and only if every fooling set for L is finite.

Proof: Let L be an arbitrary language.

We have already proved that the size of any fooling set for L is at most the number of states in any
DFA that accepts L, so (a)<(b). It also follows directly from the definitions that F C %* is a fooling set
for L if and only if F contains at most one string in each equivalence class of =;; thus, (b)=(c). We
complete the proof by showing that (a)>(c).

We have already proved that if =; has an infinite number of equivalence classes, there is no DFA that
accepts L, so assume that the number of equivalence classes is finite. For any string w, let [w] denote its
equivalence class. We define a DFA M= = (X,Q,s,A, §) as follows:

Q:= {[w] | we 2*}

s:=[¢€]

A= {[w] | WEL}
o6([w],a) :=[wea]

!Myhill considered the finer equivalence relation x ~; y, meaning wxz € L if and only if wyz € L for all strings w and z,
and proved that L is regular if and only if ~; defines a finite number of equivalence classes. Like most of Myhill’s early automata
research, this result appears in an unpublished Air Force technical report. The modern Myhill-Nerode theorem appears (in an
even more general form) as a minor lemma in Nerode’s 1958 paper, which (not surprisingly) does not cite Myhill.

13

%k

Algorithms Lecture 3: Finite-State Machines [Fa’14]

We claim that this DFA accepts the language L; this claim completes the proof of the theorem.

But before we can prove anything about this DFA, we first need to verify that it is actually well-defined.
Let x and y be two strings such that [x] = [y]. By definition of L-equivalence, for any string z, we have
xz € L if and only if yz € L. It immediately follows that for any symbol a € % and any string z’, we have
xaz’ € L if and only if yaz’ € L. Thus, by definition of L-equivalence, we have [xa] = [ya] for every
symbol a € 3. We conclude that the function 6 is indeed well-defined.

An easy inductive proof implies that 6§*([¢], x) = [x] for every string x. Thus, M accepts string x if
and only if [x] = [w] for some string w € L. But if [x] = [w], then by definition (setting z = ¢), we have
x € L ifand only if w € L. So M accepts x if and only if x € L. In other words, M accepts L, as claimed,
so the proof is complete. O

*3.10 Minimal Automata

Given a DFA M = (%,Q,s,A, 8), suppose we want to find another DFA M’ = (%,Q’,s’,A’, §’) with the
fewest possible states that accepts the same language. In this final section, we describe an efficient
algorithm to minimize DFAs, first described (in slightly different form) by Edward Moore in 1956. We
analyze the running time of Moore’s in terms of two parameters: n = Q| and o = |3|.

In the preprocessing phase, we find and remove any states that cannot be reached from the start
state s; this filtering can be performed in O(no) time using any graph traversal algorithm. So from now
on we assume that all states are reachable from s.

Now define two states p and ¢ in the trimmed DFA to be distingusiable, written p # q, if at least
one of the following conditions holds:

* peAandq €A,
* p¢Aand g €A, or
* 6(p,a) # 6(q,a) for some a € %.

Equivalently, p # q if and only if there is a string z such that exactly one of the states 5*(p,z) and 6*(q, 2)
is accepting. (Sound familiar?) Intuitively, the main algorithm assumes that all states are equivalent
until proven otherwise, and then repeatedly looks for state pairs that can be proved distinguishable.
The main algorithm maintains a two-dimensional table, indexed by the states, where Dist[p,q] = TRUE
indicates that we have proved states p and q are distinguished. Initially, for all states p and g, we set
Dist[p,q] « TRUE if p € Aand q & A or vice versa, and Dist[p, q] = FALSE otherwise. Then we repeatedly
consider each pair of states and each symbol to find more distinguished pairs, until we make a complete
pass through the table without modifying it. The table-filling algorithm can be summarized as follows:?

Don't just whine; actually explain Moore’s algorithm as a dynamic programming. Need to prove that if
two states can be distinguished at all, they can be distinguished by a string of length at most n.

2More experienced readers should become violently ill at the mere suggestion that any algorithm is merely filling in a table
instead of evaluating a recurrence; this algorithm is no exception. Consider the boolean function Dist(p, g, k), which equals TRUE
if and only if p and q can be distinguished by some string of length at most k. This function obeys the following recurrence:

(peA)e(geA) ifk=0,

Dist(p,q,k) =
P-4 {Dist(p, q.k—1)V\/ o Dist(6(p,a),56(q,a),k—1) otherwise.

The “table-filling” algorithm presented here is just a space-efficient dynamic programming algorithm to evaluate this recurrence.

14

Algorithms Lecture 3: Finite-State Machines [Fa’14]

MINDFATABLE(X, Q,s,A, 8):
forallpeQ
forallgeQ
if(peAand q¢A) or (p ¢Aand q €A)
Dist[p,q] <« TRUE
else
Dist[p,q] « FALSE

notdone < TRUE
while notdone
notdone < FALSE
forallpeQ
forallgeQ
if Dist[p, q] = FALSE
forallae X
if Dist[8(p, a), 5(q,a)]
Dist[p,q] <« TRUE
notdone < TRUE

return Dist

The algorithm must eventually halt, because there are only a finite number of entries in the table
that can be marked. In fact, the main loop is guaranteed to terminate after at most n iterations, which
implies that the entire algorithm runs in O(on?) time. Once the table is filled, any two states p and q
such that Dist(p, q) = FALSE are equivalent and can be merged into a single state. The remaining details
of constructing the minimized DFA are straightforward.

With more care, Moore’s minimization algorithm can be modified to run in O(on?) time. A faster
DFA minimization algorithm, due to John Hopcroft, runs in O(onlogn) time.

Example

To get a better idea how this algorithm works, let’s visualize the algorithm running on our earlier brute-
force DFA for strings containing the substring 11. This DFA has four unreachable states: (FALSE, 11),
(TRUE, €), (TRUE, 0), and (TRUE, 1). We remove these states, and relabel the remaining states for easier
reference. (In an actual implementation, the states would almost certainly be represented by indices
into an array anyway, not by mnemonic labels.)

—> 1—»

& ﬁ
J\a}\@ -

Our brute-force DFA for strings containing the substring 11, after removing all four unreachable states

The main algorithm initializes (the bottom half of) a 10 x 10 table as follows. (In the implementation,
cells marked ¢ have value TRUE and blank cells have value FALSE.)

15

Algorithms Lecture 3: Finite-State Machines [Fa’14]

0 1 2 3 4 5 6 7 8

O 0O U1~ WN -

In the first iteration of the main loop, the algorithm discovers several distinguishable pairs of states. For
example, the algorithm sets Dist[0, 2] « TRUE because Dist[5(0,1),6(2,1)] = Dist[2,9] = TRUE. After
the iteration ends, the table looks like this:

0 1 2 3 4 5 6 7 8

OO~ WD

\O

The second iteration of the while loop makes no further changes to the table—We got lucky!—so the
algorithm terminates.

The final table implies that the states of our trimmed DFA fall into exactly three equivalence classes:

{0,1,3,5}, {2,4}, and {6,7,8,9}. Replacing each equivalence class with a single state gives us the
three-state DFA that we already discovered.

_,@7 \
*f
Ve ST

o8

Equivalence classes of states in the trimmed DFA, and the resulting minimal equivalent DFA.

16

Algorithms

Lecture 3: Finite-State Machines [Fa’14]

Exercises

1. For each of the following languages in {0, 1}*, describe a deterministic finite-state machine that
accepts that language. There are infinitely many correct answers for each language. “Describe”
does not necessarily mean “draw”.

(a)
(b)
(©)
@
*(e)

®
(g)
(h)
@)
@
k)
0y
(m)
(n)
(0)

2. (a)
(b)

Only the string 0110.

Every string except 0110.

Strings that contain the substring 0110.
Strings that do not contain the substring 0110.

Strings that contain an even number of occurrences of the substring 0110. (For example, this
language contains the strings 0110110 and 01011.)

Strings that contain the subsequence 0110.

Strings that do not contain the subsequence 0110.

Strings that contain an even number of 1s and an odd number of 0s.

Strings that represent a number divisible by 7 in binary.

Strings whose reversals represent a number divisible by 7 in binary.

Strings in which the substrings 01 and 10 appear the same number of times.

Strings such that in every prefix, the number of 0s and the number of 1s differ by at most 1.
Strings such that in every prefix, the number of 0s and the number of 1s differ by at most 4.
Strings that end with 0% = 0000000000.

Strings in which the number of 1s is even, the number of 0s is divisible by 3, the overall
length is divisible by 5, the binary value is divisible by 7, and the binary value of the reversal
is divisible by 11. [Hint: This is more tedious than difficult. |

Let L C 0* be an arbitrary unary language. Prove that L* is regular.

Prove that there is a binary language L C (0 + 1)* such that L* is not regular.

3. Describe and analyze algorithms for the following problems. In each case, the input is a DFA M
over the alphabet & = {0, 1}.

1. 8. 8 ¢

Move these to the graph traversal notes?

(a)
(b)
(©)
@

(e)
®
“(g)

Does M accept any string whose length is a multiple of 5?

Does M accept every string that represents a number divisible by 7 in binary?

Does M accept an infinite number of strings containing an odd number of 0s?

Does M accept a finite number of strings that contain the substring 0110110 and whose
length is divisible by five?

Does M accept only strings whose lengths are perfect squares?

Does M accept any string whose length is composite?

Does M accept any string whose length is prime?

17

Algorithms Lecture 3: Finite-State Machines [Fa’14]

4. Prove that each of the following languages cannot be accepted by a DFA.
(@ {o" | n>o0}
) {o% | n>o0}
(o) {Gf (m \ n=> O}, where f(n) is any fixed polynomial in n with degree at least 2.
(d {0" | nis composite}
(e) {om10" | n> 0}
® {0'|i#j}
(@) {01/ |i<3j}
(h) {Oilj | i and j are relatively prime}
i
G {w#w | we(0+1)}
& {ww]|we(0+1)}
M {wre | we (0+1)7}
(m) {WO'W| | we 0+ 1)*}
) {xy|w,xe€(0+1) and |x| =|y| but x # y}
(0) {0m1”0m+” | m,n > O}
(p) {e™1"0™* | m,n > 0}

(q) Strings in which the substrings 00 and 11 appear the same number of times.

) {Oilj | j—1is a perfect square}

—

—

(r) The set of all palindromes in (0 + 1)* whose length is divisible by 7.
(s) {we(0+1)*| wis the binary representation of a perfect square}

(©) {we(0+1)| wis the binary representation of a prime number}

5. For each of the following languages over the alphabet ¥ = {0, 1}, either describe a DFA that accepts
the language or prove that no such DFA exists. Recall that =% denotes the set of all nonempty
strings over .. [Hint: Believe it or not, most of these languages can be accepted by DFASs.]

(a) {wxw { w,x € Z*}

(b) {wxw \ w,x € ZI+}

© {wxuR | w,x € Tt}

(d {wa \ w,x € Z+}

e {wnhx | w,x € %t}

® {wxwy | w,x,y € ot}

() {wway \ w,Xx,y € Z+}

) {xwwy | w,x,y €T}

6] {xwwRy \ w,Xx,y € ZI+}
@) {wxxw ’ w,x € Z+}

* {wxwkx | w,x € 27}

—

18

	Finite-State Machines
	Intuition
	Formal Definitions
	Another Example
	Yet Another Example
	Building DFAs
	Superstrings
	Reducing states
	Every this after that
	Both This and That: The Product Construction

	Decision Algorithms
	Closure Properties
	Fooling Sets
	The Myhill-Nerode Theorem
	Minimal Automata
	Brzozowski Derivatives

