BBM402-Lecture 9: Reducibility

Lecturer: Lale Özkahya

Resources for the presentation: https://courses.engr.illinois.edu/cs373/fa2010/lectures

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

 Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

 Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix

A reduction is a way of converting one problem into another problem such that a solution to the second problem can be used to solve the first problem. We say the first problem reduces to the second problem.

- Informal Examples: Measuring the area of rectangle reduces to measuring the length of the sides; Solving a system of linear equations reduces to inverting a matrix
- The problem L_d reduces to the problem A_{TM} as follows: "To see if $w \in L_d$ check if $\langle w, w \rangle \in A_{\text{TM}}$."

Undecidability using Reductions

Proposition

Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Undecidability using Reductions

Proposition

Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

Proof Sketch.

Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2 . Then the following algorithm decides L_1

Undecidability using Reductions

Proposition

Suppose L_1 reduces to L_2 and L_1 is undecidable. Then L_2 is undecidable.

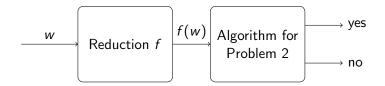
Proof Sketch.

Suppose for contradiction L_2 is decidable. Then there is a M that always halts and decides L_2 . Then the following algorithm decides L_1

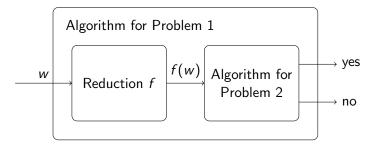
- On input w, apply reduction to transform w into an input w' for problem 2
- Run M on w', and use its answer.

Reductions schematically

Reductions schematically



Reductions schematically



Reductions schematically

Proposition

The language $HALT = \{\langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proposition

The language $HALT = \{\langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

Proposition

The language $HALT = \{\langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

```
On input x
\operatorname{Run}\ M \text{ on } x
\operatorname{If}\ M \text{ accepts then halt and accept}
\operatorname{If}\ M \text{ rejects then go into an infinite loop}
```

Proposition

The language $HALT = \{\langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

We will reduce A_{TM} to HALT. Based on a machine M, let us consider a new machine f(M) as follows:

```
On input x
    Run M on x
    If M accepts then halt and accept
    If M rejects then go into an infinite loop
```

Observe that f(M) halts on input w if and only if M accepts w

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT.

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT. Consider the following program T

```
On input \langle M,w\rangle
Construct program f(M)
Run H on \langle f(M),w\rangle
Accept if H accepts and reject if H rejects
```

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT. Consider the following program T

```
On input \langle M,w\rangle
Construct program f(M)
Run H on \langle f(M),w\rangle
Accept if H accepts and reject if H rejects
```

T decides $A_{\rm TM}$.

Completing the proof

Proof (contd).

Suppose HALT is decidable. Then there is a Turing machine H that always halts and L(H) = HALT. Consider the following program T

```
On input \langle M,w\rangle
Construct program f(M)
Run H on \langle f(M),w\rangle
Accept if H accepts and reject if H rejects
```

T decides $A_{\rm TM}$. But, $A_{\rm TM}$ is undecidable, which gives us the contradiction.

Mapping Reductions

Definition

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine M that on every input w halts with f(w) on the tape.

Mapping Reductions

Definition

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine M that on every input w halts with f(w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

$$w \in A$$
 if and only if $f(w) \in B$

Mapping Reductions

Definition

A function $f: \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine M that on every input w halts with f(w) on the tape.

Definition |

A mapping/many-one reduction from A to B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

$$w \in A$$
 if and only if $f(w) \in B$

In this case, we say A is mapping/many-one reducible to B, and we denote it by $A \leq_m B$.

Convention

In this course, we will drop the adjective "mapping" or "many-one", and simply talk about reductions and reducibility.

Reductions and Recursive Enumerability

Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Reductions and Recursive Enumerability

Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Proof.

Let f be the reduction from A to B and let M_B be the Turing Machine recognizing B.

Reductions and Recursive Enumerability

Proposition

If $A \leq_m B$ and B is recursively enumerable then A is recursively enumerable.

Proof.

Let f be the reduction from A to B and let M_B be the Turing Machine recognizing B. Then the Turing machine recognizing A is

```
On input w
Compute f(w)
Run M_B on f(w)
Accept if M_B does and reject if M_B rejects
```

Reductions and non-r.e.

Corollary

If $A \leq_m B$ and A is not recursively enumerable then B is not recursively enumerable.

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

Proof.

Let M_B be the Turing machine deciding B and let f be the reduction. Then the algorithm deciding A, on input w, computes f(w) and runs M_B on f(w).

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable then A is decidable.

Proof.

Let M_B be the Turing machine deciding B and let f be the reduction. Then the algorithm deciding A, on input w, computes f(w) and runs M_B on f(w).

Corollary

If $A \leq_m B$ and A is undecidable then B is undecidable.

Proposition

The language $E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$ is not r.e.

Proposition

The language $E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$ is not r.e.

Proof.

Recall $L_d = \{M \mid M \notin L(M)\}$ is not r.e.

 L_d is reducible to $E_{\rm TM}$ as follows.

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not r.e.

Proof.

Recall $L_d = \{M \mid M \notin L(M)\}$ is not r.e. L_d is reducible to E_{TM} as follows. Let f(M) = N where N is a TM that behaves as follows:

```
On input x  \text{Run } M \text{ on } \langle M \rangle \text{ for } |x| \text{ steps}    \text{Accept } x \text{ only if } M \text{ accepts } \langle M \rangle \text{ within } |x| \text{ steps}
```

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not r.e.

Proof.

Recall $L_d = \{M \mid M \notin L(M)\}$ is not r.e. L_d is reducible to E_{TM} as follows. Let f(M) = N where N is a TM that behaves as follows:

```
On input x Run M on \langle M \rangle for |x| steps Accept x only if M accepts \langle M \rangle within |x| steps
```

Observe that $L(N) = \emptyset$ if and only if M does not accept $\langle M \rangle$

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not r.e.

Proof.

Recall $L_d = \{M \mid M \notin L(M)\}$ is not r.e. L_d is reducible to E_{TM} as follows. Let f(M) = N where N is a TM that behaves as follows:

```
On input x Run M on \langle M \rangle for |x| steps Accept x only if M accepts \langle M \rangle within |x| steps
```

Observe that $L(N) = \emptyset$ if and only if M does not accept $\langle M \rangle$ if and only if $\langle M \rangle \in L_d$.

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR.

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

```
On input x
If x is of the form 0^n1^n then accept x
else run M on w and accept x only if M does
```

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

```
We give a reduction f from A_{\text{TM}} to REGULAR. Let f(\langle M, w \rangle) = N, where N is a TM that works as follows:
```

```
On input x

If x is of the form 0^n1^n then accept x

else run M on w and accept x only if M does
```

If
$$w \in L(M)$$
 then $L(N) =$

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input x

If x is of the form 0^n1^n then accept x else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$.

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

```
We give a reduction f from A_{\text{TM}} to REGULAR. Let f(\langle M, w \rangle) = N, where N is a TM that works as follows:
```

```
On input x

If x is of the form 0^n1^n then accept x

else run M on w and accept x only if M does
```

If
$$w \in L(M)$$
 then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) =$

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input x

If x is of the form 0^n1^n then accept x else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) = \{0^n 1^n \mid n \ge 0\}$.

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input x

If x is of the form 0^n1^n then accept x else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \not\in L(M)$ then $L(N) = \{0^n 1^n \mid n \ge 0\}$. Thus, $\langle N \rangle \in \mathsf{REGULAR}$ if and only if $\langle M, w \rangle \in A_{\mathrm{TM}}$

Proposition

$$EQ_{\scriptscriptstyle \mathrm{TM}} = \{\langle \textit{M}_1, \textit{M}_2 \rangle \mid \textit{L}(\textit{M}_1) = \textit{L}(\textit{M}_2) \}$$
 is not r.e.

Proposition

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$
 is not r.e.

Proof.

We will give a reduction f from E_{TM} to EQ_{TM} .

Proposition

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$
 is not r.e.

Proof.

We will give a reduction f from E_{TM} to EQ_{TM} . Let M_1 be the Turing machine that on any input, halts and rejects

Proposition

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$
 is not r.e.

Proof.

We will give a reduction f from $E_{\rm TM}$ to EQ $_{\rm TM}$. Let M_1 be the Turing machine that on any input, halts and rejects i.e., $L(M_1)=\emptyset$. Take $f(M)=\langle M,M_1\rangle$.

Proposition

$$EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \} \text{ is not r.e. }$$

Proof.

We will give a reduction f from $E_{\rm TM}$ to ${\sf EQ}_{\rm TM}$. Let M_1 be the Turing machine that on any input, halts and rejects i.e., $L(M_1)=\emptyset$. Take $f(M)=\langle M,M_1\rangle$. Observe $M\in E_{\rm TM}$ iff $L(M)=\emptyset$ iff $L(M)=L(M_1)$ iff $\langle M,M_1\rangle\in {\sf EQ}_{\rm TM}$.