Powers of Paths and Cycles
Definitions

Power of a Path:

For $n, h \geq 0$,

the h-power of a path, denoted by $P_n^{(h)}$, is a graph with n vertices v_1, v_2, \ldots, v_n such that, for $1 \leq i, j \leq n, i \neq j$, $(v_i, v_j) \in E(P_n^{(h)})$ if and only if $|j - i| \leq h$;

Power of a Cycle:

For $n, h \geq 0$,

the h-power of a cycle, denoted by $Q_n^{(h)}$, is a graph with n vertices v_1, v_2, \ldots, v_n such that, for $1 \leq i, j \leq n, i \neq j$, $(v_i, v_j) \in E(Q_n^{(h)})$ if and only if $|j - i| \leq h$ or $|j - i| \geq n - h$.
Examples for Powers of Paths

The graphs $P_1^{(2)}, \ldots, P_5^{(2)}$

P_6^3, P_6^4, P_6^5
Examples for Powers of Cycles

The graphs $Q_1^{(2)}, \ldots, Q_5^{(2)}$

C_6^2 C_6^3
Problem

(i) Let $G = P^k_\infty$ be the kth power of a 2-way infinite path. For example, let $V(G) = \mathbb{Z}$ and $E(G) = \{ij : i < j \leq i + k\}$. What is the maximal number of edges spanned by ℓ vertices?

(ii) Let G be the graph with vertex set $V(G) = \mathbb{Z}_n$ in which vertex i is joined to vertex $j \neq i$ if $-k \leq i - j \leq k$, where $k \geq 1$ and $n \geq 2k + 1$. (Thus, $G = C^k_n$, i.e., G is the kth power of the n-cycle C_n.) Let $V(G) = A \cup B$ be a partition of the vertex set of G into sets with at least k vertices in each. What is the minimal number of edges joining A to B?
Solution for Part (i)

Let \(A = \{x_1, x_2, \ldots, x_l\} \), where \(x_1 < \ldots < x_l \) and \(A_0 = \{1, \ldots, l\} \).

If \(x_i < x_j \leq x_i + k \), then \(i < j \leq i + k \).

So, \(A_0 \) spans at least as many edges of \(G \) as \(A \).

The maximal number of edges spanned by \(l \) vertices is:

- \(\frac{l(l - 1)}{2} \), for \(1 \leq l \leq k+1 \),
- \(kl - k(k+1)/2 \), for \(l \geq k+1 \).
Solution for Part (ii)

- **Claim:** The minimal number of A-B edges, subject to A and B partitioning the vertex set V(G) into sets with at least k vertices each, is \(k(k+1) \).

- Let we denote:

 - \(a \) ⇒ # of vertices in A
 - \(b \) ⇒ # of vertices in B
 - \(r \) ⇒ # of edges joining vertices of A
 - \(t \) ⇒ # of edges joining vertices of B
 - \(s \) ⇒ # of A-B edges

- Since G is 2k-regular, \(2ka = 2r + s \), and so our aim is to show that:

 \[r \leq ka - k(k+1)/2 \Leftrightarrow t \leq kb - k(k+1)/2 \]

- If \(a = k \), it is obvious since \(r \leq k(k-1)/2 \) always holds, which forms a complete subgraph of G.

- If \(a = n - k \), since we always have \(t \leq b(b-1) \), by symmetry, the assertion is also obvious.
Solution for Part (ii) (continued)

Now, we will fix a and k, and apply induction on n:

- **Base step**: If $n = a + k$, then $b = k$; so, $t \leq k(k-1)/2 = kb - k(k+1)/2$, as required.
- **Ind. Hypothesis**: Suppose that $b > k$ and the assertion holds for $n - 1$.
- **Ind. step**: Pick a vertex x of B, and let $G' = G - \{x\}$. Clearly, we can get $H = \binom{k}{n-1}$, i.e, the ground graph with $n-1$ vertices, by adding some edges to G' which are not joining any two vertices of A.

Since this operation does not change the edges joining vertices of A, by induction we still have $r \leq ka - k(k+1)/2$, which completes the proof of the induction step.
References
