BBM402-Lecture 9: PSPACE: A Class of Problems beyond NP

Lecturer: Lale Özkahya

 $ar{X}$: Complementary problem for X

$$s \in X \iff s \notin \bar{X}$$

 $ar{X}$: Complementary problem for X

$$s \in X \iff s \notin \bar{X}$$

Observation: If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.

 \bar{X} : Complementary problem for X

$$s \in X \iff s \notin \bar{X}$$

Observation: If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.

Definition of co-NP:

$$X \in co - \mathcal{NP} \iff \bar{X} \in \mathcal{NP}.$$

 \bar{X} : Complementary problem for X

$$s \in X \iff s \notin \bar{X}$$

Observation: If $X \in \mathcal{P}$, then $\bar{X} \in \mathcal{P}$.

Definition of co-NP:

$$X \in co - \mathcal{NP} \iff \bar{X} \in \mathcal{NP}.$$

$$\mathcal{NP} = co - \mathcal{NP}$$
?

Belief: $\mathcal{NP} \neq co - \mathcal{NP}$

From Kleinberg-Tardos' book:

Again, the widespread belief is that $\mathcal{NP} \neq \text{co-}\mathcal{NP}$. Just because the "yes" instances of a problem have short proofs, it is not clear why we should believe that the "no" instances have short proofs as well.

Proving NP \neq co-NP would be an even bigger step than proving P \neq NP, for the following reason:

(8.26) If
$$\mathbb{NP} \neq \text{co-NP}$$
, then $\mathbb{P} \neq \mathbb{NP}$.

Proof. We'll actually prove the contrapositive statement: $\mathcal{P}=\mathcal{NP}$ implies $\mathcal{NP}=\text{co-}\mathcal{NP}$. Essentially, the point is that \mathcal{P} is closed under complementation; so if $\mathcal{P}=\mathcal{NP}$, then \mathcal{NP} would be closed under complementation as well. More formally, starting from the assumption $\mathcal{P}=\mathcal{NP}$, we have

$$X \in \mathcal{NP} \Longrightarrow X \in \mathcal{P} \Longrightarrow \overline{X} \in \mathcal{P} \Longrightarrow \overline{X} \in \mathcal{NP} \Longrightarrow X \in \text{co-}\mathcal{NP}$$

and

$$X\in \text{co-NP} \Longrightarrow \overline{X}\in \mathbb{NP} \Longrightarrow \overline{X}\in \mathbb{P} \Longrightarrow X\in \mathbb{P} \Longrightarrow X\in \mathbb{NP}.$$

Hence it would follow that $\mathcal{NP}\subseteq \text{co-NP}$ and $\text{co-NP}\subseteq \mathcal{NP},$ whence $\mathcal{NP}=\text{co-NP}.$

A recursive Algorithm solving Q-SAT

From Kleinberg-Tardos' book:

```
If the first quantifier is \exists x_i then
  Set x_i = 0 and recursively evaluate the quantified expression
                     over the remaining variables
  Save the result (0 or 1) and delete all other intermediate work
  Set x_i = 1 and recursively evaluate the quantified expression
                     over the remaining variables
  If either outcome yielded an evaluation of 1, then
     return 1
  Else return 0
  Endif
If the first quantifier is \forall x_i then
  Set x_i = 0 and recursively evaluate the quantified expression
                     over the remaining variables
  Save the result (0 or 1) and delete all other intermediate work
  Set x_i = 1 and recursively evaluate the quantified expression
                     over the remaining variables
  If both outcomes yielded an evaluation of 1, then
     return 1
  Else return 0
  Endif
Endif
```