Anti-Ramsey number of matchings in hypergraphs
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Abstract

A k-matching in a hypergraph is a set of k edges such that no two of these edges intersect.
The anti-Ramsey number of a k-matching in a complete s-uniform hypergraph H on n vertices,
denoted by ar(n, s, k), is the smallest integer ¢ such that in any coloring of the edges of H with
exactly ¢ colors, there is a k-matching whose edges have distinct colors. The Turdn number,
denoted by ex(n, s, k), is the maximum number of edges in an s-uniform hypergraph on n vertices
with no k-matching. For k& > 3, we conjecture that if n > sk, then ar(n, s, k) = ex(n,s,k—1)+2.
ex(n,s,k—1)+2 if k <ecs
ex(n,s,k—1)+s+1 if k>
dependent on s. We prove this conjecture for £k = 2,k = 3, and sufficiently large n, as well as
provide upper and lower bounds.

Also, if n = sk, then ar(n,s, k) = ,where ¢, is a constant

1 Introduction

A hypergraph H consists of a set V(H) of vertices and a family £(H) of nonempty subsets of
V(H) called edges of H. If each edge of H has exactly s vertices then H is s-uniform. A complete
s-uniform hypergraph is a hypergraph whose edge set is the set of all s-subsets of the vertex set.
A matching is a set of edges in a (hyper)graph in which no two edges have a common vertex.
We call a matching with k edges a k-matching and a matching containing all vertices a perfect
matching. In an edge-coloring of a (hyper)graph #, a sub(hyper)graph F C H is rainbow if all
edges of F have distinct colors. The anti-Ramsey number of a graph G, denoted by ar(G,n), is
the minimum number of colors needed to color the edges of K, so that, in any coloring, there
exists a rainbow copy of G. The Turdn number of a graph G, denoted by ex(n,G), is the the
maximum number of edges in a graph on n vertices that does not contain G as a subgraph. The
anti-Ramsey number of a k-matching, denoted by ar(n, s, k), is the minimum number of colors
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needed to color the edges of a complete s-uniform hypergraph on n vertices so that there exists a
rainbow k-matching in any coloring. The Turdn number of a k-matching, denoted by ex(n, s, k),
is the maximum number of edges in an s-uniform hypergraph on n vertices that contains no
k-matching.

In 1973, Erdés, Simonovits, and Sés [6] showed that ar(K,,n) = ex(n, Kp—1) + 2 for suf-
ficiently large n. More recently, Montellano-Ballesteros and Neumann-Lara [10] extended this
result to all values of n and p with n > p > 3. A history of results and open problems on
this topic was given by Fujita, Magnant, and Ozeki [8]. The Turdn number ex(n,2,k) was
determined by Erdés and Gallai [4] as

2k —1 k—1
ex(n,2,k) :max{( 5 ), ( 9 > +k-1)n-k+1)}
for n > 2k and k > 1. Schiermeyer [11] proved that ar(n,2,k) = ex(n,2,k — 1) + 2 for k > 2
and n > 3k + 3. Later, Chen, Li, and Tu [2] and independently Fujita, Kaneko, Schiermeyer,
and Suzuki [7] showed that ar(n,2,k) = ex(n,2,k — 1) + 2 for k > 2 and n > 2k + 1. The value

2,k—1 2 ifk<T
ar(n,2,k) = ex(n, 2, )+ 1 <
ex(n,2,k—1)+3 ifk>7
was determined for n = 2k in [2] and by Haas and the second author [9], independently.
The same ideas implying a lower bound for the anti-Ramsey number of graphs given in [6]
provide a lower bound for ar(n, s, k).

Proposition 1. For all n, ar(n, s, k) > ex(n, s,k — 1) + 2.

Proof. Let H be a complete s-uniform hypergraph on n vertices. Let G be a subhypergraph of
‘H with ex(n, s,k — 1) edges such that G does not contain a (k — 1)-matching. Color each edge
of G with distinct colors and color all of the remaining edges of H the same, using an additional
color. If there is a rainbow k-matching in this coloring, then it uses £ — 1 edges from G which
is a contradiction. Therefore, this coloring has no rainbow k-matching. O

For k-matchings the Turdn number ex(n, s, k) is still not known for £ > 3 and s > 3. Erdés [3]
conjectured in 1965 the value of ex(n, s, k) as follows. Let g(n, s,k — 1) be the number of s-sets
of {1,...,n} that intersect {1, ...,k — 1}. By definition, g(n,s, k — 1) = (Z) - (”_k+1).

Conjecture 2 (Erd6s [3]). Forn > sk, s > 2, and k > 2,
k—1
extrn ) = max{ (" 71 gt k- D). 1)
s

Erdds, Ko, and Rado [5] proved that ex(n,s,2) = (7;:11) = g(n,s,1) for n > 2s. This

conjecture is true for s = 2, as shown by Erdés and Gallai [4]. Erdés [3] proved that

ex(n, 5, k) = g(n, s,k — 1) = (”) _ (” —k 1) @)

S S

for sufficiently large n. Later, Bollobds, Daykin, and Erdés [1] sharpened this result by showing
that (2) holds for n > 2s3(k — 1).

In Section 2, we provide bounds on ar(n, s, k) and show that anti-Ramsey number and Turdn
number of a k-matching differ at most by a constant. In Section 3, we determine the value of
ar(n, s, k) for k € {2,3} and show that ar(n, s, k) = ex(n,s,k—1)+2 for k € {2,3} and n > ks.
The claim also holds for n = ks when k = 3. We conjecture that this is true for all k.



Conjecture 3. Let k > 3. If n > sk, then ar(n, s, k) = ex(n,s,k—1)+2. Also, if n = sk, then

ex(n, s,k —1)+2 if k < cg

77k =
ar(n, s, k) {ex(n,s,k—l)—!—s—i—l if k> cs

where cs s a constant dependent on s.

Finally, in Section 4, we give the exact value of ar(n, s, k) when n is sufficiently large.

We introduce some notation for hypergraphs used in the remaining sections. For a set X,
(f) denotes all s-subsets of X. We call a hypergraph an intersecting family if every two edges
intersect. For a vertex x in a hypergraph #H, we call the number of edges of H containing x the
degree of x written degy, (x).The maximum degree of a hypergraph H is denoted by A(H).

2 General bounds on the anti-Ramsey number

The following constructions provide a lower bound for ar(n, s, k) in Theorem 6.

Construction 4.
Let H be the complete s-uniform hypergraph with vertex set {v1,...,v,}, where n = sk. Let
A =A{vy,...,vs11} and ¢ = ("7571) + s. Define a c-coloring h of E(H) as follows. For any

edge E € €, if vy € E, then let h(e) = min{i : v; ¢ E}. f ENA # 0 but v1 ¢ E, then let
h(E) = min{i : v; € E}. Assign distinct other colors to the remaining edges.

Assume there is a rainbow perfect matching M in this coloring. Since n = sk, at least two
edges of M intersect A. Let E be the edge of M that contains v;. Let j = min{i : v; ¢ V(E)}
and let E' be the edge of M that contains v;. By the above construction, E and E’ both have
color j.

Construction 5.
Let H be a complete s-uniform hypergraph on n > sk vertices. Let S be a subset of V(H) with
k — 2 wertices and color the edges containing any vertexr from S with distinct colors. Color
all of the remaining edges the same with an additional color. The number of colors used is
() = (5 41,
S S

This construction has no rainbow k-matching, since at least two edges among any k& must
lie completely outside S. Constructions 4 and 5 establish lower bounds for the anti-Ramsey

number:
max{(") — (") 42, ("N + s+ 1} ifn=sk,

S

(") — ("‘k+2) + 2 otherwise.

S S

Corollary 6. Ifn > sk, then ar(n, s, k) > {

Theorem 7. Ifn > sk+ (s —1)(k — 1), then ar(n, s, k) < ex(n,s,k — 1) + k.

Proof. Let ‘H be a complete s-uniform hypergraph on n vertices whose edges are colored with
ex(n, s,k —1)+k colors. Since taking exactly one edge of each color gives a subhypergraph with
ex(n, s,k — 1)+ k edges, there exists a rainbow (k — 1)-matching M. Let the colors of the edges
in M be ay,...,ar_1. Let A=V (H)\ V(M). Note that every edge induced by A has a color
in {a1,...,a5_1}, otherwise, there is a rainbow k-matching containing the edges of M.
Remove all edges of H that have color a; for 1 <4 < k — 1 and let G be the remaining
hypergraph (with colors preserved). In this coloring, there are at least ex(n, s,k — 1) 4+ 1 colors
and therefore a rainbow (k — 1)-matching exists; call it M’. Since no edge of G is induced by
A, [VM') N A| < (k- 1)(s — 1). Together with the assumed lower bound on n, this yields
AN VM) = |[VH)\ (VIMUM))| >n—s(k—1)— (s —1)(k — 1) > s. Hence some edge
induced by A intersects no edge in M’ and completes a rainbow k-matching with M induced
by A that does not intersect any edge in M’. The color of e is o; for some i, 1 <i <k — 1 and
there is a rainbow k-matching using the edges in M’ and e. O



3 Anti-Ramsey numbers for k-matchings, k € {2, 3}

Theorem 8. Ifn > 2s, then

(M) +1 n=2
ar(n,s,2) =< 2 ()+1 n=2s
2 n > 2s.

Proof. Let H be a complete s-uniform hypergraph on n vertices. If n = 2s, then by coloring
complementary edges with the same color and using distinct colors for all such pairs, we can
obtain a coloring without a rainbow 2-matching. If # is colored by at least 1 ( ) +1 colors then,
by the pigeonhole principle, one of the vertex-disjoint edge pairs has dlstmct colors.

Now, let n > 2s + 1 and consider a coloring of the edge set of H with 2 colors such that
there is no rainbow 2-matching. This requires disjoint edges to have the same color. Hence in
the Kneser graph K (n,s), where the vertices are the edges of H and two vertices are adjacent
when the corresponding edges of H are disjoint, all edges in the same component must have the
same color. It is well known that the Kneser graph is connected when n > 2s 4 1, so only one

color can be used when avoiding a rainbow 2-matching.
O

Theorem 9. Ifn > 3s, then ar(n,s,3) = (2:11) + 2 =ex(n,s,2) + 2.

Proof. Let H be a complete s-uniform hypergraph on n vertices with edge set £. We consider
a coloring of £ using (Z:ll) + 2 colors, such that there is no rainbow 3-matching. Fix a vertex v
and let F(v) denote the set of edges that contain v. Choose ) as a subset of £\ F(v) such that
the edges of @ do not have any color in common with the edges of E(v) and each color not used
on E(v) is the color of exactly one edge in Q. This implies that |Q| > 2, since |E(v)| = (2:11)

Note that any pair of edges F; and E5 in (Q have nonempty intersection, otherwise there is
a rainbow 3-matching containing E7, Fs, and any edge of E(v) that does not intersect E; and
E,. Let A,B €@ and C,D € E(v) We use (A, B) to denote an unordered pair of edges A and
B. We write (4, B) ¢ (C, D) if

AND=0, BNC=0, and AUD=BUC

or (3)
ANnC=0, BND=(, and AUC =BUD.

An example of the configuration of A, B,C and D is shown in Figure 1.

Figure 1: The edges A,B,C, D and F.

We define an auxiliary bipartite graph G with vertex set V(G) = X UY, where X = (622),
Y = (E(QU)) and the edge set of G is defined as E(G) = {(A,B)(C,D) : (A,B)o(C,D), (A,B) €



X, (C,D) € Y}. In the proof of Claim 10, we use the following result of Erdés, Ko and Rado [5]
which gives an upper bound on the size of an s-uniform intersecting family on n vertices.

n—1

ex(n, 5,2) = ( 1), for n > 2s. (4)

Claim 10. There is a matching in G whose vertex set contains all vertices in X = (g)

Recall that @ is an intersecting subfamily. The degree degs (A, B) is the number of vertices
(C,D) in Y that satisfy the relation in (3). Therefore, the number of neighbors of (A, B) are
given by the number of choices for the set (CN D)\ {v}. Let £ =|ANB|, where 1 < ¢ <s—1.
Since |C' N D| = ¢, each vertex in X has the same degree given by

dega(a.m) = ("~ 50T 5)

Now, by the same observations as above, the degree of a vertex (C, D) in Y can be bounded
above. Let (A, B) and (A’, B'), where (4’, B") # (A, B), be neighbors of (C, D). By definition
of the relation ¢, the edges A, A’, B, and B’ are all distinct. Since @ is an intersecting family,
AN B and A’ N B’ cannot be vertex-disjoint. Therefore the collection of A N B’s that satisfy
(A, B)o(C, D) for a fixed vertex (C, D) in Y with |CND| = £ is an {-uniform intersecting family
on the vertex set V'\ (C'U D) which has n — (2s — £) vertices. By using (4), we obtain an upper
bound on the degree of (C, D) as

(6)

dega((C, D)) < (” ~ @ H- 1).

-1

Let G’ be a connected component of G. A result of the definition of the edge set of G is that
if (U1,U3),(V1,Va) € V(G') and |U; NUs| = ¢, then Vi NVa| = ¢ Let T C (V(G') N X) and
N(T) C (V(G')NY) be the neighborhood of T'. Since (5) and (6) also hold for G’ we have

T|<n—<2;_—1€)—1> = Y deger((A,B))

(A,B)eT

IN

S dege((C, D))

(C,D)eN(T)

< ("G,

Therefore, |T| < |N(T)| for any T C (V(G’) N X) and by Hall’s Theorem, there is a matching
containing each vertex in G’ N X. Applying this to each component of G completes the proof of
the claim.

Claim 11. Let (A,B) € (g) and (C,D) € (Egv)) with (A, B) o (C, D). Then the edges C and
D have the same color.

Let S be the subset of V(H) that is vertex-disjoint from these four edges, thus |S| = n—2s >
s. Let E be an edge induced by S. Let A, B,C and D be related as in (3) such that without loss
of generality {A, D, E} and {B,C, E} are matchings. If E has the same color as A or B then
{B,C,E} or {A, D, E}, respectively, must be a rainbow matching. Therefore, E must have the
same color as C' and D, since there are no rainbow 3-matchings. Hence, C' and D have the same
color.

We define another auxiliary graph G, with vertex set E(v) and edge set {CD : C,D €
E(v) and dego((C,D)) > 0}. Let |Q| = ¢ and p be the number of components of G,. By



Claim 11, each component of G,, corresponds to a subset of E(v) whose members have the same
color. Therefore, p > (Z:ll) +2—¢q

One can find an injective mapping f : (g) — (Eg’)) defined by using the adjacencies of
vertices in a matching of G given by Claim 10. Therefore there are at least (g) edges in G,,. The
maximum number of components of a graph with fixed number of vertices and edges is attained
in the case when all edges are in a single component with minimum number of vertices and
remaining components are isolated vertices. Thus, p < (” 1) — g + 1. This is a contradiction
with the lower bound of p given above. O

4 Anti-Ramsey Number for Large n

By following the same ideas of the proof of (2) in [1] and [3], one can prove Theorem 12. For
completeness, we provide its proof here.

Theorem 12. For fived s and k and n > 2s°k, ar(n, s, k) = (Z)—("7§+2)+2 = Ei:f (::li)+2 =
ex(n, s,k —1)+2.

Proof of Theorem 12. Let H be a complete s-uniform hypergraph on n vertices. The lower
bound for ar(n, s, k) is provided by Construction 5. To prove the upper bound, we proceed by
induction on k. Theorem 9 deals with the base case when &£ = 3 and n > 3s.
For the inductive case, color the edges of H with exactly ¢ = () — ("_f+2) +2 = Zi:f (:__11) +
2 colors. We show that H has a rainbow k-matching. Let G be a subgraph of H with ¢ edges such
that each color appears on exactly one edge of G. Let v be a vertex such that degg(v) = A(G).
Note that there are at least ¢ — (27 1) colors on the edges of the complete subhypergraph

H\{v} and the inductive hypothesis implies that ¢ — (7~ %) = ar(n — 1,5,k — 1) and there
is a rainbow (k — 1) matching in H \{v}. Call this matching M and modlfy G to obtain a
new hypergraph G’ such that the edge set of G’ consists of the edges of M and all edges of
G except the ones that have a color from M. By this definition, G and G’ have the same
number of colors and each color on H appears exactly once on G’. The only difference is that
degg (v) > A(G') — (k — 1) and v may not be a vertex with maximum degree in G’, but its
degree is still high enough.

We analyze the two cases depending on the maximum degree in G'. If A(G") < ¢/((k —1)s)
then the number of edges containing a vertex in M is less than ¢ and there is an edge of G’ that
is vertex-disjoint from M and we are done. Otherwise, A(G') > ¢/((k — 1)s). The number of
edges of G’ containing both v and a vertex of M is at most (k — 1)8(2:22) For n > 253k, we
have

: () (4 1
(k—1)s

degg (v) 2 AG)—~(h=1) 2 —U=) =2 —(k—1)>(k—1>5<2:§>,

(7)
where the last inequality will be proved as Claim 13. Therefore, there is an edge of G’ that
contains v and does not intersect any edge of M, which implies that there is a rainbow k-
matching.

Claim 13. Forn > 2s%k,

(-5 w120 ) (023)

Below, we first present the observations that will be used later.



Note that for r <m < n,

()= Cem) (O)=0-55) ()

By using the fact that (1 —x)* > 1 — ax for 0 < z < 1, the relation above gives that

GREIE
Observe that

()- (4= X (1)) v w2 (1)

=1

By (8) and the inequality above, we obtain

<Z>_<n—f+2>+2>(k—2)w(1—%) (Z‘j) ©

Assume that our claim does not hold. Then, (9) implies that

-1
n—2 n—k+2 (s —2)(k—3)
k—1)2 k-2)—m8 (1 — —r——— .
( )s<s+<8_2> >>( ) s—1 ( n—s+1
One can check that this is a contradiction for n > 2s%k and we are done. O
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