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Abstract

A k-matching in a hypergraph is a set of k edges such that no two of these edges intersect.
The anti-Ramsey number of a k-matching in a complete s-uniform hypergraph H on n vertices,
denoted by ar(n, s, k), is the smallest integer c such that in any coloring of the edges of H with
exactly c colors, there is a k-matching whose edges have distinct colors. The Turán number,
denoted by ex(n, s, k), is the maximum number of edges in an s-uniform hypergraph on n vertices
with no k-matching. For k ≥ 3, we conjecture that if n > sk, then ar(n, s, k) = ex(n, s, k−1)+2.

Also, if n = sk, then ar(n, s, k) =

{
ex(n, s, k − 1) + 2 if k < cs

ex(n, s, k − 1) + s+ 1 if k ≥ cs
,where cs is a constant

dependent on s. We prove this conjecture for k = 2, k = 3, and sufficiently large n, as well as
provide upper and lower bounds.

1 Introduction

A hypergraph H consists of a set V (H) of vertices and a family E(H) of nonempty subsets of
V (H) called edges of H. If each edge of H has exactly s vertices then H is s-uniform. A complete
s-uniform hypergraph is a hypergraph whose edge set is the set of all s-subsets of the vertex set.
A matching is a set of edges in a (hyper)graph in which no two edges have a common vertex.
We call a matching with k edges a k-matching and a matching containing all vertices a perfect
matching. In an edge-coloring of a (hyper)graph H, a sub(hyper)graph F ⊆ H is rainbow if all
edges of F have distinct colors. The anti-Ramsey number of a graph G, denoted by ar(G,n), is
the minimum number of colors needed to color the edges of Kn so that, in any coloring, there
exists a rainbow copy of G. The Turán number of a graph G, denoted by ex(n,G), is the the
maximum number of edges in a graph on n vertices that does not contain G as a subgraph. The
anti-Ramsey number of a k-matching, denoted by ar(n, s, k), is the minimum number of colors
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needed to color the edges of a complete s-uniform hypergraph on n vertices so that there exists a
rainbow k-matching in any coloring. The Turán number of a k-matching, denoted by ex(n, s, k),
is the maximum number of edges in an s-uniform hypergraph on n vertices that contains no
k-matching.

In 1973, Erdős, Simonovits, and Sós [6] showed that ar(Kp, n) = ex(n,Kp−1) + 2 for suf-
ficiently large n. More recently, Montellano-Ballesteros and Neumann-Lara [10] extended this
result to all values of n and p with n > p ≥ 3. A history of results and open problems on
this topic was given by Fujita, Magnant, and Ozeki [8]. The Turán number ex(n, 2, k) was
determined by Erdős and Gallai [4] as

ex(n, 2, k) = max{
(

2k − 1

2

)
,

(
k − 1

2

)
+ (k − 1)(n− k + 1)}

for n ≥ 2k and k ≥ 1. Schiermeyer [11] proved that ar(n, 2, k) = ex(n, 2, k − 1) + 2 for k ≥ 2
and n ≥ 3k + 3. Later, Chen, Li, and Tu [2] and independently Fujita, Kaneko, Schiermeyer,
and Suzuki [7] showed that ar(n, 2, k) = ex(n, 2, k − 1) + 2 for k ≥ 2 and n ≥ 2k + 1. The value

ar(n, 2, k) =

{
ex(n, 2, k − 1) + 2 if k < 7

ex(n, 2, k − 1) + 3 if k ≥ 7

was determined for n = 2k in [2] and by Haas and the second author [9], independently.
The same ideas implying a lower bound for the anti-Ramsey number of graphs given in [6]

provide a lower bound for ar(n, s, k).

Proposition 1. For all n, ar(n, s, k) ≥ ex(n, s, k − 1) + 2.

Proof. Let H be a complete s-uniform hypergraph on n vertices. Let G be a subhypergraph of
H with ex(n, s, k − 1) edges such that G does not contain a (k − 1)-matching. Color each edge
of G with distinct colors and color all of the remaining edges of H the same, using an additional
color. If there is a rainbow k-matching in this coloring, then it uses k − 1 edges from G which
is a contradiction. Therefore, this coloring has no rainbow k-matching.

For k-matchings the Turán number ex(n, s, k) is still not known for k ≥ 3 and s ≥ 3. Erdős [3]
conjectured in 1965 the value of ex(n, s, k) as follows. Let g(n, s, k− 1) be the number of s-sets
of {1, ..., n} that intersect {1, ..., k − 1}. By definition, g(n, s, k − 1) =

(
n
s

)
−
(
n−k+1

s

)
.

Conjecture 2 (Erdős [3]). For n ≥ sk, s ≥ 2, and k ≥ 2,

ex(n, s, k) = max{
(
sk − 1

s

)
, g(n, s, k − 1)}. (1)

Erdős, Ko, and Rado [5] proved that ex(n, s, 2) =
(
n−1
s−1
)

= g(n, s, 1) for n ≥ 2s. This
conjecture is true for s = 2, as shown by Erdős and Gallai [4]. Erdős [3] proved that

ex(n, s, k) = g(n, s, k − 1) =

(
n

s

)
−
(
n− k + 1

s

)
(2)

for sufficiently large n. Later, Bollobás, Daykin, and Erdős [1] sharpened this result by showing
that (2) holds for n > 2s3(k − 1).

In Section 2, we provide bounds on ar(n, s, k) and show that anti-Ramsey number and Turán
number of a k-matching differ at most by a constant. In Section 3, we determine the value of
ar(n, s, k) for k ∈ {2, 3} and show that ar(n, s, k) = ex(n, s, k− 1) + 2 for k ∈ {2, 3} and n > ks.
The claim also holds for n = ks when k = 3. We conjecture that this is true for all k.
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Conjecture 3. Let k ≥ 3. If n > sk, then ar(n, s, k) = ex(n, s, k− 1) + 2. Also, if n = sk, then

ar(n, s, k) =

{
ex(n, s, k − 1) + 2 if k < cs

ex(n, s, k − 1) + s+ 1 if k ≥ cs
where cs is a constant dependent on s.

Finally, in Section 4, we give the exact value of ar(n, s, k) when n is sufficiently large.
We introduce some notation for hypergraphs used in the remaining sections. For a set X,(

X
s

)
denotes all s-subsets of X. We call a hypergraph an intersecting family if every two edges

intersect. For a vertex x in a hypergraph H, we call the number of edges of H containing x the
degree of x written degH(x).The maximum degree of a hypergraph H is denoted by ∆(H).

2 General bounds on the anti-Ramsey number

The following constructions provide a lower bound for ar(n, s, k) in Theorem 6.

Construction 4.
Let H be the complete s-uniform hypergraph with vertex set {v1, . . . , vn}, where n = sk. Let
A = {v1, . . . , vs+1} and c =

(
n−s−1

s

)
+ s. Define a c-coloring h of E(H) as follows. For any

edge E ∈ E, if v1 ∈ E, then let h(e) = min{i : vi /∈ E}. If E ∩ A 6= ∅ but v1 /∈ E, then let
h(E) = min{i : vi ∈ E}. Assign distinct other colors to the remaining edges.

Assume there is a rainbow perfect matching M in this coloring. Since n = sk, at least two
edges of M intersect A. Let E be the edge of M that contains v1. Let j = min{i : vi /∈ V (E)}
and let E′ be the edge of M that contains vj . By the above construction, E and E′ both have
color j.

Construction 5.
Let H be a complete s-uniform hypergraph on n ≥ sk vertices. Let S be a subset of V (H) with
k − 2 vertices and color the edges containing any vertex from S with distinct colors. Color
all of the remaining edges the same with an additional color. The number of colors used is(
n
s

)
−
(
n−k+2

s

)
+ 1.

This construction has no rainbow k-matching, since at least two edges among any k must
lie completely outside S. Constructions 4 and 5 establish lower bounds for the anti-Ramsey
number:

Corollary 6. If n ≥ sk, then ar(n, s, k) ≥

{
max{

(
n
s

)
−
(
n−k+2

s

)
+ 2,

(
n−s−1

s

)
+ s+ 1} if n = sk,(

n
s

)
−
(
n−k+2

s

)
+ 2 otherwise.

Theorem 7. If n ≥ sk + (s− 1)(k − 1), then ar(n, s, k) ≤ ex(n, s, k − 1) + k.

Proof. Let H be a complete s-uniform hypergraph on n vertices whose edges are colored with
ex(n, s, k−1)+k colors. Since taking exactly one edge of each color gives a subhypergraph with
ex(n, s, k− 1) + k edges, there exists a rainbow (k− 1)-matchingM. Let the colors of the edges
in M be α1, . . . , αk−1. Let A = V (H) \ V (M). Note that every edge induced by A has a color
in {α1, . . . , αk−1}, otherwise, there is a rainbow k-matching containing the edges of M.

Remove all edges of H that have color αi for 1 ≤ i ≤ k − 1 and let G be the remaining
hypergraph (with colors preserved). In this coloring, there are at least ex(n, s, k − 1) + 1 colors
and therefore a rainbow (k − 1)-matching exists; call it M′. Since no edge of G is induced by
A, |V (M′) ∩ A| ≤ (k − 1)(s − 1). Together with the assumed lower bound on n, this yields
|A \ V (M′)| = |V (H) \ (V (M∪M′))| ≥ n − s(k − 1) − (s − 1)(k − 1) ≥ s. Hence some edge
induced by A intersects no edge in M′ and completes a rainbow k-matching with M induced
by A that does not intersect any edge in M′. The color of e is αi for some i, 1 ≤ i ≤ k − 1 and
there is a rainbow k-matching using the edges in M′ and e.
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3 Anti-Ramsey numbers for k-matchings, k ∈ {2, 3}
Theorem 8. If n ≥ 2s, then

ar(n, s, 2) =

{
1
2

(
n
s

)
+ 1 n = 2s

2 n > 2s.

Proof. Let H be a complete s-uniform hypergraph on n vertices. If n = 2s, then by coloring
complementary edges with the same color and using distinct colors for all such pairs, we can
obtain a coloring without a rainbow 2-matching. If H is colored by at least 1

2

(
n
s

)
+1 colors then,

by the pigeonhole principle, one of the vertex-disjoint edge pairs has distinct colors.
Now, let n ≥ 2s + 1 and consider a coloring of the edge set of H with 2 colors such that

there is no rainbow 2-matching. This requires disjoint edges to have the same color. Hence in
the Kneser graph K(n, s), where the vertices are the edges of H and two vertices are adjacent
when the corresponding edges of H are disjoint, all edges in the same component must have the
same color. It is well known that the Kneser graph is connected when n ≥ 2s + 1, so only one
color can be used when avoiding a rainbow 2-matching.

Theorem 9. If n ≥ 3s, then ar(n, s, 3) =
(
n−1
s−1
)

+ 2 = ex(n, s, 2) + 2.

Proof. Let H be a complete s-uniform hypergraph on n vertices with edge set E . We consider
a coloring of E using

(
n−1
s−1
)

+ 2 colors, such that there is no rainbow 3-matching. Fix a vertex v
and let E(v) denote the set of edges that contain v. Choose Q as a subset of E \E(v) such that
the edges of Q do not have any color in common with the edges of E(v) and each color not used
on E(v) is the color of exactly one edge in Q. This implies that |Q| ≥ 2, since |E(v)| =

(
n−1
s−1
)
.

Note that any pair of edges E1 and E2 in Q have nonempty intersection, otherwise there is
a rainbow 3-matching containing E1, E2, and any edge of E(v) that does not intersect E1 and
E2. Let A,B ∈ Q and C,D ∈ E(v) We use (A,B) to denote an unordered pair of edges A and
B. We write (A,B) � (C,D) if

A ∩D = ∅, B ∩ C = ∅, and A ∪D = B ∪ C
or

A ∩ C = ∅, B ∩D = ∅, and A ∪ C = B ∪D.
(3)

An example of the configuration of A,B,C and D is shown in Figure 1.

A 

B 

D C 
v 

E 

Figure 1: The edges A,B,C, D and E.

We define an auxiliary bipartite graph G with vertex set V (G) = X ∪ Y , where X =
(
Q
2

)
,

Y =
(
E(v)
2

)
and the edge set of G is defined as E(G) = {(A,B)(C,D) : (A,B)� (C,D), (A,B) ∈
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X, (C,D) ∈ Y }. In the proof of Claim 10, we use the following result of Erdős, Ko and Rado [5]
which gives an upper bound on the size of an s-uniform intersecting family on n vertices.

ex(n, s, 2) =

(
n− 1

s− 1

)
, for n ≥ 2s. (4)

Claim 10. There is a matching in G whose vertex set contains all vertices in X =
(
Q
2

)
.

Recall that Q is an intersecting subfamily. The degree degG(A,B) is the number of vertices
(C,D) in Y that satisfy the relation in (3). Therefore, the number of neighbors of (A,B) are
given by the number of choices for the set (C ∩D) \ {v}. Let ` = |A ∩B|, where 1 ≤ ` ≤ s− 1.
Since |C ∩D| = `, each vertex in X has the same degree given by

degG((A,B)) =

(
n− (2s− `)− 1

`− 1

)
(5)

Now, by the same observations as above, the degree of a vertex (C,D) in Y can be bounded
above. Let (A,B) and (A′, B′), where (A′, B′) 6= (A,B), be neighbors of (C,D). By definition
of the relation �, the edges A,A′, B, and B′ are all distinct. Since Q is an intersecting family,
A ∩ B and A′ ∩ B′ cannot be vertex-disjoint. Therefore the collection of A ∩ B’s that satisfy
(A,B)�(C,D) for a fixed vertex (C,D) in Y with |C∩D| = ` is an `-uniform intersecting family
on the vertex set V \ (C ∪D) which has n− (2s− `) vertices. By using (4), we obtain an upper
bound on the degree of (C,D) as

degG((C,D)) ≤
(
n− (2s− `)− 1

`− 1

)
. (6)

Let G′ be a connected component of G. A result of the definition of the edge set of G is that
if (U1, U2), (V1, V2) ∈ V (G′) and |U1 ∩ U2| = `, then |V1 ∩ V2| = `. Let T ⊆ (V (G′) ∩ X) and
N(T ) ⊆ (V (G′) ∩ Y ) be the neighborhood of T . Since (5) and (6) also hold for G′ we have

|T |
(
n− (2s− `)− 1

`− 1

)
=

∑
(A,B)∈T

degG′((A,B))

≤
∑

(C,D)∈N(T )

degG′((C,D))

≤ |N(T )|
(
n− (2s− `)− 1

`− 1

)
.

Therefore, |T | ≤ |N(T )| for any T ⊆ (V (G′) ∩X) and by Hall’s Theorem, there is a matching
containing each vertex in G′ ∩X. Applying this to each component of G completes the proof of
the claim.

Claim 11. Let (A,B) ∈
(
Q
2

)
and (C,D) ∈

(
E(v)
2

)
with (A,B) � (C,D). Then the edges C and

D have the same color.

Let S be the subset of V (H) that is vertex-disjoint from these four edges, thus |S| = n−2s ≥
s. Let E be an edge induced by S. Let A,B,C and D be related as in (3) such that without loss
of generality {A,D,E} and {B,C,E} are matchings. If E has the same color as A or B then
{B,C,E} or {A,D,E}, respectively, must be a rainbow matching. Therefore, E must have the
same color as C and D, since there are no rainbow 3-matchings. Hence, C and D have the same
color.

We define another auxiliary graph Gv with vertex set E(v) and edge set {CD : C,D ∈
E(v) and degG((C,D)) > 0}. Let |Q| = q and p be the number of components of Gv. By
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Claim 11, each component of Gv corresponds to a subset of E(v) whose members have the same
color. Therefore, p ≥

(
n−1
s−1
)

+ 2− q.
One can find an injective mapping f :

(
Q
2

)
→
(
E(v)
2

)
defined by using the adjacencies of

vertices in a matching of G given by Claim 10. Therefore there are at least
(
q
2

)
edges in Gv. The

maximum number of components of a graph with fixed number of vertices and edges is attained
in the case when all edges are in a single component with minimum number of vertices and
remaining components are isolated vertices. Thus, p ≤

(
n−1
s−1
)
− q + 1. This is a contradiction

with the lower bound of p given above.

4 Anti-Ramsey Number for Large n

By following the same ideas of the proof of (2) in [1] and [3], one can prove Theorem 12. For
completeness, we provide its proof here.

Theorem 12. For fixed s and k and n ≥ 2s3k, ar(n, s, k) =
(
n
s

)
−
(
n−k+2

s

)
+2 =

∑k−2
i=1

(
n−i
s−1
)
+2 =

ex(n, s, k − 1) + 2.

Proof of Theorem 12. Let H be a complete s-uniform hypergraph on n vertices. The lower
bound for ar(n, s, k) is provided by Construction 5. To prove the upper bound, we proceed by
induction on k. Theorem 9 deals with the base case when k = 3 and n ≥ 3s.

For the inductive case, color the edges ofH with exactly c =
(
n
s

)
−
(
n−k+2

s

)
+2 =

∑k−2
i=1

(
n−i
s−1
)
+

2 colors. We show that H has a rainbow k-matching. Let G be a subgraph of H with c edges such
that each color appears on exactly one edge of G. Let v be a vertex such that degG(v) = ∆(G).

Note that there are at least c −
(
n−1
s−1
)

colors on the edges of the complete subhypergraph

H\{v} and the inductive hypothesis implies that c −
(
n−1
s−1
)

= ar(n − 1, s, k − 1) and there
is a rainbow (k − 1)-matching in H\{v}. Call this matching M and modify G to obtain a
new hypergraph G′ such that the edge set of G′ consists of the edges of M and all edges of
G except the ones that have a color from M. By this definition, G and G′ have the same
number of colors and each color on H appears exactly once on G′. The only difference is that
degG′(v) ≥ ∆(G′) − (k − 1) and v may not be a vertex with maximum degree in G′, but its
degree is still high enough.

We analyze the two cases depending on the maximum degree in G′. If ∆(G′) < c/((k − 1)s)
then the number of edges containing a vertex inM is less than c and there is an edge of G′ that
is vertex-disjoint from M and we are done. Otherwise, ∆(G′) ≥ c/((k − 1)s). The number of
edges of G′ containing both v and a vertex of M is at most (k − 1)s

(
n−2
s−2
)
. For n ≥ 2s3k, we

have

degG′(v) ≥ ∆(G′)−(k−1) ≥ c

(k − 1)s
−(k−1) =

(
n
s

)
−
(
n−k+2

s

)
+ 2

(k − 1)s
−(k−1) > (k−1)s

(
n− 2

s− 2

)
,

(7)
where the last inequality will be proved as Claim 13. Therefore, there is an edge of G′ that
contains v and does not intersect any edge of M, which implies that there is a rainbow k-
matching.

Claim 13. For n ≥ 2s3k,(
n

s

)
−
(
n− k + 2

s

)
+ 2 > (k − 1)2s

(
s+

(
n− 2

s− 2

)−1)(
n− 2

s− 2

)
.

Below, we first present the observations that will be used later.
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Note that for r ≤ m ≤ n,(
m

r

)
≥
(
m− r + 1

n− r + 1

)r (
n

r

)
=

(
1− n−m

n− r + 1

)r (
n

r

)
By using the fact that (1− x)a ≥ 1− ax for 0 ≤ x < 1, the relation above gives that(

m

r

)
≥
(

1− r(n−m)

n− r + 1

)(
n

r

)
(8)

Observe that(
n

s

)
−
(
n− k + 2

s

)
+ 2 =

k−2∑
i=1

(
n− i
s− 1

)
+ 2 > (k − 2)

n− k + 2

s− 1

(
n− k + 1

s− 2

)
.

By (8) and the inequality above, we obtain(
n

s

)
−
(
n− k + 2

s

)
+ 2 > (k − 2)

n− k + 2

s− 1

(
1− (s− 2)(k − 3)

n− s+ 1

)(
n− 2

s− 2

)
(9)

Assume that our claim does not hold. Then, (9) implies that

(k − 1)2s

(
s+

(
n− 2

s− 2

)−1)
> (k − 2)

n− k + 2

s− 1

(
1− (s− 2)(k − 3)

n− s+ 1

)
.

One can check that this is a contradiction for n ≥ 2s3k and we are done.
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