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Abstract

One of the central problems of extremal hypergraph theory is the description of
unavoidable subhypergraphs, in other words, the Turan problem. Let a = (aq,...,ap)
be a sequence of positive integers, k = a; + --- + ap. An a-partition of a k-set F' is
a partition in the form F = A; U ... A, with |[4;] = a; for 1 < i < p. An a-cluster
A with host Fy is a family of k-sets {Fp,..., F,} such that for some a-partition of
Fy, FoNE; = Fy \ A; for 1 < i < p and the sets F; \ Fy are pairwise disjoint. The
family A has 2k vertices and it is unique up to isomorphisms. With an intensive use
of the delta-system method we prove that for & > p and sufficiently large n, if F is a
k-uniform family on n vertices with | F | exceeding the Erdgs-Ko-Rado bound (}~}),
then F contains an a-cluster. The only extremal family consists of all the k-subsets
containing a given element.
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1 Introduction

1.1 History

Let F be a family of k subsets of the n-set [n] = {1,2,...,n}, F C ([Z]), n>k>2.
The Erdgs-Ko-Rado (EKR) theorem [12] states that if any two sets intersect and n > 2k,
then | F| < (Zj) Katona proposed in 1980 the following related problem: Suppose that
every three members Fy, Fy, F3 € F meet (F; N FyN F3 # () whenever their union is small,
|F1 U Fy U F3| < 2k. It was proved by Frankl and the first author [15] that then the same
EKR-type upper bound holds for | F| for n > ni(k). The case 3k/2 < n < 2k follows
from a result of Frankl [13] (also see Mubayi and Verstraéte [29]), and finally Mubayi [25]
gave a nice short proof that | F| < (Zj) holds for all n > 2k, (with equality only for
NF # 0) so ni(k) = [3k/2]. Mubayi [27] showed that the EKR bound also holds, if
‘Fl Uy, UFs UF4‘ < 2k implies F1 N FoNF3NFy # 0 (fOI' n > ’I?,Q(k‘)) This led him to the
following conjecture.

Conjecture 1. Call a family of k-sets {F1,...,F;} a (k,d)-cluster if
‘FlUF2U~~~UFd| <2k and FINF---NF;=0.

Let k > d > 2, n>dk/(d— 1) and suppose that F is a k-uniform family on n elements
containing no (k,d)-cluster. Then | F | < (Zj), with equality only if NJF # (.

The case d = k follows from a theorem of Chvatal [9] as it was observed by Chen,
Liu, and Wang [7]. Keevash and Mubayi [22] proved Conjecture 1 when both k/n and
n/2 — k are bounded away from zero, and Mubayi and Ramadurai [28] for n > n3(k). The
present authors also proved Conjecture 1 in 2007 for n > n4(k) with a different approach
(unpublished). Recently, Jiang, Pikhurko, and Yilma [20] proved a more general result
concerning the so-called strong simplices.

In Theorem 2, we give a stronger generalization which not only implies Conjecture 1
and all the above results for sufficiently large n but also gives an explicit structure of the
unavoidable subhypergraphs.

In our notation, A C B also includes the case that A = B. We write A C B for the case
AC Band A# B.

1.2 a-clusters

Let a = (a1,...,ap) be a sequence of positive integers, p > 2, k = a1 +--- + ap. An
a-partition of a k-set F' is a partition in the form F = A; U ... A, with |4;| = a; for
1 <i < p. An a-cluster A with host Fy is a family of k-sets {Fp,..., F},} such that for
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some a-partition of Fy, Foy N F; = Fy \ A; for 1 < i < p and the sets F; \ Fy are pairwise
disjoint. The family A has 2k vertices and it is unique up to isomorphisms.

Theorem 2. Suppose that k > p > 1, F C ([Z}) with | F| > (Zj) and n is sufficiently
large (n > N(k)). Then F contains any a-cluster, a # 1. Moreover, if | F| = (Zj),
a-cluster-free, then it consists of all the k-subsets containing a given element.

Our N(k) is very large, it is double exponential in k. In the proof of Theorem 2, we
use the delta-system method and a complicated version of the stability method developed
in [17] by Frankl and the first author of this paper. Note that the case k& = p, i.e,
a=(1,1,...,1), is different as described in Section 3.2.

1.3 The delta-system method

It is natural to investigate the intersection structure of F. This is exactly where the
delta-system method can be applied.

The intersection structure of F' € F with respect to the family F is defined as
I(F,F)={FNF :F e€F F+#F}.

If the set F'is given, A C F with (F'\ A) € Z(F, F), then we use the notation F(A) for a
k-set in F such that F(A)NF = F\ A.

A k-uniform family F C ([Z]) is k-partite if one can find a partition [n] = X; U--- U X}
with |[FNX;| =1forall F e F,1<i<k. IfFisk-partite, then for any set S C [n], its
projection T1(S) is defined as

(S)={i: SNX,#0} and INI(F,F)) ={I(S): S € I(F,F)}.

A family {Dy, Do, ..., D} is called a delta-system of size s and with center C'if D;ND; =
C holds for all 1 < ¢ < j < s. The delta-system method is described in the following
theorem due to the first author.

Theorem 3. [19] For any positive integers s and k with s > k, there exists a positive
constant c¢(k, s) such that every family F C ([Z}) contains a subfamily F* C F satisfying

(3.1) |F*| > clks)| |,

(3.2) F*is k-partite,

(3.3) there is a family J C 2812#}\ {[k]} such that TI(Z(F, F*)) = J holds for all
F e F*,

(3.4) J is closed under intersection, (i.e., A, B € J imply AN B € J),

(3.5) every member of Z(F, F*) is the center of a delta-system D of size s formed by
members of F* and containing F', F' € D C F*.
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We call a family F* homogeneous if F* satisfies (3.2)—(3.5). In this paper, we fix s = 2k
in Theorem 3.

Lemma 4. Suppose that F* C F, where F* is obtained by using Theorem 3 with s = 2k.
IfGyeF*,Goe F, M € Z(G1,F*), M C Go and M NS =0, where |S| < k, then there
exists a G3 € F* such that Go NGz = M and SN Gz = (.

Proof. Let {F{,F;,...,F}, } C F* be a delta-system centered at M, where F| = G;. Since
the sets F{ \ M, ..., Fj, \ M are pairwise disjoint, and |G \ M| < k and [S| < k there is
an F/ avoiding both (1 <4 < 2k). Then Go N F/ = M and SN F] = 0. O

2 Proof of the main theorem

2.1 Rank and shadow of a-cluster-free families

Throughout the proof of Theorem 2, we will be mostly interested in the rank of 7, which
is defined as
r(J) =min{|A|: AC [k],PB € J,A C B}.

The rank of 7 is k only if 7 = 2I¥\ {[k]}; otherwise, it is at most k — 1.

From now on, F C ([Z]) is an arbitrary k-family containing no a-cluster, where a =

(a1,...,ap) is a non-increasing sequence with a; > 2. We will show that | F| > (Zj)
implies N F # (O for sufficiently large n.

Frankl and the first author [16] developed a method while proving a conjecture of Erdds
that is used in [17] to show that a family F C ([Z]) has a common element (NF # ) if
certain intersection constraints are fulfilled. Here we revisit that result and modify that
proof to obtain a version for a-cluster-free families.

For the rest of the paper, we let F* C F be a homogeneous subfamily of F.

Corollary 5. Let F ={z1,...,xxy € F*. If r(J) > k—1, thenr(J) =k — 1, i.e., it is
impossible that (F \ {x;}) € Z(F,F") for all 1 <i < k.

Proof. Assume, on the contrary, that r(J) = k. Because J is closed under intersection,
we have J = 281\ {[k]}. Therefore, Z(F,F*) contains all proper subsets of F. Consider
an a-partition of F' = (Ay,...,A4,). Using Lemma 4 p times with G; = F, M = F'\ A,
and S = Uj<;(F; \ F)) we obtain Fy,...,F, € F* such that, fori € [p], FNF; = F\ {4;}
and the sets F; \ F are disjoint. Therefore, {Fi,..., F), F'} is an a-cluster with host F'. O
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We use the notation Ay(H) for the ¢-shadow of the family H, i.e.,
A¢y(H):={L:|L|=¢3H € H with L C H}.
Lemma 6. F is not too dense, i.e., |Ax_1(G)| > c1(k)|G | for all G C F, where c1(k) :=
c(k,2k) from (3.1).

Proof. Apply Theorem 3 to G to obtain a k-partite G* with a homogeneous intersection
structure J € 2% ie., II(Z(G,G*)) = J for all G € G*. Corollary 5 implies that the rank
of J is at most k — 1 so each G € G* has a (k — 1)-subset that is not contained by another
member of G*. We obtain |Ag_1(G*)| > |G*|, and hence

[Ak-1(9)] = |Ap-1(G7)] = |G7 | = ¢k, 2K)[ G |- (1)
O

2.2 The intersection structure of rank-(k — 1) subfamilies

For a subset S C F' € F, denote the degree of S in F by
degr(S)=|{F:FeF,SCF}.
A subset of F' € F is called an own subset of F, if its degree in F is one.

Lemma 7. Let Fy € F* and {Ay,..., Ay} an a-partition of Fy. Assume that there exists
an H € F and i € [p] such that Fo N H = (Fy \ A;). Suppose Fy \ A; € I(Fy, F*) for each
j € [p] when j # i. Then there is an a-cluster in F with host Fy.

Proof. Call H to F;. Use Lemma 4 (p—1) times to define F} for j € [p]\ {i} with G = H,
M =Fy\Aj € I(Fy, F*) and S = (F; \ Fy) Up<j (Fy \ Fp). Note that |S| < k at each
step. [l

Lemma 7 can be generalized to allow more than one member with properties of H as
used in the proof of Lemma 9.

Lemma 8. Let F' = {x1,...,xx} € F*. If r(J)=k — 1, and there are k — 1 (k — 1)-sets
in J, say F\ {z;} € Z(F,F") for 2 <i <k, then F\ {1} is an own subset of F in F.
Moreover, in this case

F e F, ‘F1QF|Z]€—2 imply z; € F1. (2)

Such an F' (and J and F*) is called of type I. Note that we claim that F'\ {z1} is an
own subset of F'in F, not only in F*.
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Proof. Suppose, on the contrary, that there exists an F; € JF such that F; =
{y,z9,...,x1}, y ¢ F1. This will enable us to find an a-cluster (with a host F» to be
defined later), a contradiction.

Choose a subset M of F such that x; € M and |M| =k —a; + 1(< k). Note that (3.4)
implies that
{E:EC F,z € E} C I(F,F*). (3)

So M € Z(F,F*) and by Lemma 4 we can pick another member F; € F* such that
FNFy,=M and y ¢ F,. We obtain

Nk = M\{.Z‘l} hence |F2 ﬂFl‘ =k—a.

Consider an a-partition of F5 such that A; = Fy \ Fy, i.e. F} = Fy(A;y). Since F, € F*
and F* is homogeneous, by (3) and (3.3) of Theorem 3, we have

{E:EC Fy,z € E} CZ(Fy, F").

Therefore, Fy \ A; € Z(Fy, F*) for 2 < ¢ < p and we obtain an a-cluster by Lemma 7, a
contradiction.

The proof of (2) when |F1 N F| = k—2, assuming x1, o ¢ F1, is similar and we omit the
details. To prove this case, one needs to follow the same steps assuming that 1,20 € M
and have to choose M and F; such that |M| =k —a; + 2 and Fo N Fy = M\ {z1, 22},
respectively, except in the case a; = 2 when we define F, = F'. O

Lemma 9. If r(J )=k — 1, and there are exactly k —t (k — 1)-sets in J with 2 <t < k,
say F\ {x;} € Z(F,F") fort <i <k then

>4t
=T E—T

1
2 degr(F'\ {xi})

1<i<t

These F' € F* (and J and F*) are called type II.

Proof. Define a bipartite graph G with partite sets X = {xy,...,z;} and Y = [n] \ F and
edges zy for z € X and y € Y if and only if (F\ {z}) U{y} € F. We claim that the
maximum number of independent edges in this graph, v(G), is at most ¢t — 2. This indeed
implies Lemma 9 as follows. By Konig—Hall theorem the size of a minimum vertex cover
S of G is at most t — 2. Let | X \ S| =¥, we have £ > 2 and |[SNY| < ¢ — 2. Since each
vertex v € X \ S has neighbors only in SNY, we have

degr(F\ {v}) =degg(v) +1<|SNY|+1</¢—1.
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This yields

Z 1 S l S k
xS degr(F\{v}) ~¢—-1" k-1

To prove v(G) < t—2 suppose, on the contrary, that there are F; := (F'\{z; }U{y;}) € F
for 2 < ¢ < t, where y;’s are distinct elements outside F. We will see this leads to the
existence of an a-cluster. First, we describe the intersection structure of F' in F* by using
repeatedly the fact that Z(F, F*) is closed under intersection.

Note that
it AC{x441,...,2;} then F\ A € Z(F,F"). (4)

Also, if AC F, |A| < k and
AN {z1,...,2:}| > 2 then (F\ A) € I(F,F*). (5)

Indeed, the rank of J exceeds k — 2, so we have that F'\ {z,},F \ {z,} ¢ Z(F,F")
(1< u < v <t), but F\{xy,z,} € Z(F,F*). Also F\ {z,} € Z(F,F*) for t < w < k.
Since J is closed under intersection, we obtain that

F\A = N E\{fzwz) || ) FE\{zu))| € Z(FF).

Ty, Ty EA, u<v<t TwEA, w>t

In the rest of the proof, we specify how one can build an a-cluster with host F' using
Lemma 7 if each A; in an a-partition of F satisfies either one of (4) and (5) or 4; = {x;}
with 1 < j < k. There are several cases to consider.

Recall that a1 > as > --- > ap, and a; > 2. Define the positive integers ¢ and ¢ as
follows.

ar+--F+a 1 <tLar+---+a;,
Ezt—(al—l—---—l—ai_l).

Except the last case, the host of the a-cluster is F'.
Case 1: £>2. Thenay,...,a; > £ > 2.
Let A1, Ao, ..., A; 1 C X = {.1'1,...,33}} and |Aiﬂ{$1,...,$t}| =/
Case 2: £ =1 and a; = 1.
By our assumption, there exist F; := (F'\ {z;} U{y;}) € F for 2 < i < ¢, where y;’s are
distinct elements outside F'. Let Ay U Ag---UA; = {z1,..., 2}, 11 € Aj.
From now on, £ =1 and a; > 2 so i > 2.
Case 8: £ =1, a; > 2 and a7 > 3.
Let AyUAy---UA; D {171, - ,xt,xt+1}, Tir1 € A and AoU...UA;_1 C {xl, R ,xt}. We
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have that | X N Ay, | X NA4;| > 2.

Case 4: L =1,a; >2,a1 <2and ap=1. Thena; =---=a; =2.
Let A1UA2~~~UAZ‘_1UAPI{.1'1,...,33t}, Ap = {.I‘t}
Case 5: L =1,a1 =---=a, = 2.

This implies that ¢ is odd, t > 3, and k = 2p is even so t < k. Pick a member Fy from
F* such that Fy = F \ {xr} U {y} for some y # y2. Choose an a-partition of Fy such
that A; = {y,x2}, which means Fy = Fy(A;). The other parts are Ay = {x1,z3} and
A; = {xgj_9,29j—1} for 3 < j < p. By (3.3) of Theorem 3, the intersection structure
I(Fy, F*) is isomorphic to Z(F,F*) so (4) and (5) imply that F \ A; € Z(Fp, F*) for
2 < j < p. Then Lemma 7 implies that there is an a-cluster with host Fjp. O

2.3 Type I dominates, a partition of F

Apply Theorem 3 to F to obtain G; := (F)* with the intersection structure J; C 2%,
Then we apply Theorem 3 again to F \ G1 to obtain Go = (F\ G1)* and J9, then apply to
F\(G1UG2) and so on, until either F\(G1U---UGy,) =0 or (T m+1) < k — 2 for some
m. Let F1 be the union of those G;’s, where J; contains exactly k — 1 (k — 1)-sets (type I
families) and let Fa be the union of the rest of these families (type II families)

Fo = U{G; : r(J;) = k — 1, but J; does not contain exactly (k —1) (k — 1)-sets}.
Finally, let

F3:= f\(glu .- Ugm) = .7'—\(]:1 U]:Q).

Lemma 10. If F C ([Z]) is a-cluster-free with | F | > (Z:}), then

Fal 17l s s () () <t

where c1(k) == c(k,2k) from (3.1).

Proof. Since the rank of 7,11 is at most k — 2, each member of G,,11 has its own (k — 2)-
subset in G,,11. We obtain as in (1) that

(120 F\G1 U+ UG)| < G | < [Be-aGmn)l < (")

therefore we can write

k k n
=17 s e m <k—2>'

Lemma 8 implies that every F' € F; contains an own (k — 1)-set. This and Lemma 9 give
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k
\f1|+—k_1\f2|§2(

FeF

1
v - o= ()

veF

Compare the sum of the above two inequalities to (j_ 1) <|Fi|+|Fa2|+|Fs| A simple
calculation completes the proof. O

2.4 Another partition, the stability of the extremum

For every F' € F1 there exists a type I family G; C F, F' € G;. By the definition of type
I family, there exists a (unique) ¢ := ¢(F') such that {E : ¢ € E C F} C Z(F,G;). Classify
the members F' € F according to {(F'), let H; :={F € F1 : {(F) =i}, i € [n]. Let

Hi = {H\{i}: H e H;}.

These families are pairwise disjoint, 7—ZZ N 7—Zj = (). The shadows Ak 2(7—22) are pairwise
disjoint, too. Otherwise, for a set H € Ay_o(Hi) N Ap_o(H;), i # 7, (2) implies that
H' = HU{i,j} € H;NH; contradicting with the uniqueness of ¢(H').

Given a positive integer d and real z define (3) as z(z —1)...(z —d +1)/d!. We will
need the following version of the Kruskal-Katona theorem due to Lovasz.

Theorem 11. [24] Suppose that H C ([Z]) and |H | = (3), # > d. Then [Ax(H)| > ()
holds for all d > h > 0.

In case of H; # () let x; be a real number such that z; > k — 1 and |H;| = (,%,). Without
loss of generality, let x; be the maximal one, i.e. n—1 > x; > x;. We obtain for all i € [n]
that

N . k+2 k+1 .
|| = [Ha| < 551Dk o(Hi)| < T|Ak 2(Hi)| < T‘Ak o(Hi)l.  (6)
k—2

~
~—

We assume that | F | > (Zj) Then Lemma 10 gave a lower bound for | Fy | = > | H; |-

n—1 PR k—i—2 r1—k+2( n
— < < < — .
(k:—l) an D1l < == D Akl | < =5 <k—2>

i€n] 1€[n]

This inequality implies that 1 > n — c3 for some constant c¢g = c3(k). Therefore there
exists a constant ¢4 := c4(k) such that

> iml= 3 < (") - () <t

2<i<k 2<i<k
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This and Lemma 10 lead to

| F\H1| < (c2+ 04)nk*2. (7)

Note that (with minor modifications) the arguments in the above two sections lead to
the following stability result.

Theorem 12. For every ¢ > 0 there exists a 6 > 0 and ny = no(k,e) such that the
following holds. If F C ([Z]) contains no a-cluster and | F| > (1 —0) (Zj), n > ng, then

there exists an element v € [n] such that all but at most z-:(Zj) members of F contains v.

2.5 The extremal family is unique, the end of the proof

In this section we complete the proof of Theorem 2. We have given a family F C ([Z})

containing no a-cluster and of size | F| > (Zj) In previous sections we have already

defined H; C F1, Fo, and F3 and showed in (7) that H; constitutes the bulk of F. One
can see (as we have seen in Lemma 8) that

FeF, HeHy, |[FNH|>k—a; imply 1€ F. (8)

Let us split F into four subfamilies

B={B:1¢ BeF},
C={C:1€CeF and |CNB|>k— a for some B € B},
D={D:1€D e F\C and every S with 1€ S C D

is a center of some delta-system of F of size 2k},
E={E:1e€EcF}\(CUD).

We have Hy; C D. In (16), (17) and (20) we will prove that for sufficiently large n with
respect to k, one has

n—1 n—1 n—1
plrasl< (1) plvaers (p0)) Iplvael= (1) o)

By adding these three, we have

n

—1
0171+ (Bl +lel+e) <3() )

implying B=C =& = 0. Thus F =D, N.F # (), and we are done.



FUREDI AND OzKAHYA: UNAVOIDABLE SUBHYPERGRAPHS: a-CLUSTERS 11

Before starting the proof of (9), let us define the following subfamilies.
C:={C\{1}:Ccec}, D:={D\{1}:DeD}, E:={E\{1}:Ec&} (10)

We also apply Theorem 3 with ¢; (k) := ¢(k, s) and s = 2k to C and & to obtain (k — 1)-
partite subfamilies C* C C and £* C €. By (3.1), we have

[C*| > a(k)lCl=car(k)|C| and |€*] > cr(k)E] = er(R)| €] (11)

Since each member of D has (k— 1) subsets of size k—2 and every (k—2)-set is contained
in at most (n — k + 1) members of D we have that (n —k + 1)|Ax_o(D)| > (k — 1)|D|.
Rearranging and using |D| = |D| we obtain

n—k+1 -
ﬁ|Ak72(D)| > |D]. (12)

Subfamily B: By definition of D and Lemma 8, we have [D N B| # k—2for all D € D and
B € B. In other words, Ar_o(D) N Ag_o(B) = (). Hence,

<Z _ ;) > |Ap—2(D)| + |Ap—2(B)|.

Multiplying (14) with (n — k +1)/(k — 1) and using (12), we obtain

n—1 n—k+1
> D+ ———|Ak_ . 1
(i 1) 2121+ 2 Aea) (13)
Let z > k — 1 be a real number such that [A,_;(B)| = (,%,). By Theorem 11, we have
Ao (B) > A (B) (14)
k—2 Z kg aPkBl
By Lemma 6,
[Ap-1(B)| = c1 (k)| B. (15)
Then (13), (14) and (15) yield
n—1 n—k+1
> _— .
(i 1) 2 121+ am = 5] (16)

Since B is contained in F \ H; inequality (7) gives
<k3 f 1) = |Ap_1(B)| < k|B| < k(ca + C4)nk72

implying that z < csn*=2/(#=1) for some constant cs. Therefore, the coefficient of | B| in
(16) is at least 4 for sufficiently large n.

Subfamily C: We denote the homogeneous intersection structure of C by J¢.
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Claim 13. Each C' € C* has a (k — 2)-set such that it is contained neither in Ag_o(D)
nor in Z(C',C*).

Proof. Suppose, on the contrary, that for some C' = {x1,...,2p,_1} € C* with C =
C"U{1} € C, we have

(¢, D), i=1,...,r

C'\ {zi} €
Vi {I(C/,c*), i=r+1.... k-1

All subsets of C’\ {z;} are contained in Z(C’,D), for 1 <4 < r, and all supersets of the
set {z1,...,z,} in C’, except C’ itself, are contained in Z(C’,C*). So, for all S C C’, there
is a delta-system of size 2k with center S U {1}.

We claim that r > 1. Otherwise J¢ = 2F=1U\ {[k — 1]} and there exists a member
C" € C such that C" \ {1} € C* and |C”" N B| = k — a; for some B € B. Then one can
build an a-cluster with host C” such that C”(A;) = B.

Let D; € D such that C N D; = C\ {x;}, for i = 1,...,r and choose a B € B with
|C' N B| > k — a;. By definition of D,

\DiﬂB|§k:—a1—1.

We also have

ID;NB|+1>|C'"NB|=|CNB|>k—a.
Therefore, x; € CN B foralli =1,...,r and |C N B| = k — a; and one can build an
a-cluster with host C' and C (A1) = B, a contradiction. O

By Claim 13, we have
n—1 ~ "
( ) > |Ag_a(D)] + €.

k—2
Multiplying this by ";ﬁ'l and applying (11) and (12) we obtain
n—1 n—k+1
> _— .
(:21) 2 1Pl +a®™ el (17)

Subfamily & : First we show that each E' € £ has a (k—2)-subset that is neither in Z(E’, £*)
nor in Z(E’, D). Suppose, on the contrary, that for some F € £, E' := E \ {1} € &%,
E' ={x1,...,x5_1} such that

I(E'\D), i=1,...,r

nE (1
(B, &%), i=r+1,...,k—1.

E’\{xz} S {
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All subsets of E' \ {z;} are contained in I(E',D), for 1 < i < r, and all supersets of the
set {x1,...,z,} in E'| except F’ itself, are contained in Z(E’,£*). So, for all S C E’, there
is a delta-system of size 2k with center S U {1}. This contradicts to E ¢ D.

Since every E' € £* contains a (k — 2)-set that is not contained in any member of D or
another member of £*, we have

(1 25) = 18aDil +1€7) (19)

After multiplying (19) with “*4 and applying the inequalities (11) and (12), we obtain

n—1 n—k+1
> _— .
(:21) 2 1Pl am e (20)

3 Concluding remarks

3.1 Finding a (k,k + 1)-cluster

Our first observation is, that in Conjecture 1 the constraint d < k is not necessary. We
prove the case d = k+ 1. It is not clear what is the possible maximum value of d. We need
a classical result of Bollobas [4]. A cross-intersecting set system, {A;, B;} for i € [m], is a
collection of pairs of sets such that A; N B;=0 and A; N B; # 0 for i # j. If |A;| < a and

|B;| < b (for all 1 <i < m) then
m < (a—i—b)'
a

Equality holds only if {A1,...,An} = ([a:b}) and B; = [a +b] \ 4;.

Theorem 14. If F C ([Z]) contains no (k,k + 1)-cluster and n > k, then | F| < (Zj)
Here equality hold only if N F # (.

Proof. Every F € F has a (k — 1)-subset B(F) C F that is not contained by any other
member of F, otherwise there are sets F1,...,F; € F such that F' = {z1,...,2} and
FNF;, = F\{x;}, a contradiction. Therefore, the sets { B(F'), [n] — F'} form an intersecting

set pair system and the result of Bollobas yields | F | < ((kfll)::(lnfk)) = (Zj) O

3.2 Trees in hypergraphs, Kalai’s conjecture

A system of k-sets T := {E1, B, ..., E,} is called a tree (k-tree) if for every 2 <i < g we
have |E; \ Uj<;E;| = 1, and there exists an a = a(i) < ¢ such that |E, N E;| = k — 1. The



FUREDI AND OzKAHYA: UNAVOIDABLE SUBHYPERGRAPHS: a-CLUSTERS 14

case k = 2 corresponds to the usual trees in graphs. Let T be a k-tree on v vertices, and
let exy(n,T) denote the maximum size of a k-family on n elements without T. We have

v—k( n
T) > (1 1 . 21
exi(n.) > (1 o) (") 21)
Indeed, consider a P(n,v— 1,k — 1) packing Py, ..., P, on the vertex set [n]. This means
that [P =v—1and |[BNP;j| <k—1forl <i<j<m. R6dl’s [32] theorem gives a
packing of the size m = (1+o0(1)) (kﬁl)/(Zj), when n — oco. Put a complete k-hypergraph
into each P;, the obtained k-graph does not contain T.

Conjecture 15. (Erdés and Sos for graphs, Kalai 1984 for all k, see in [17])

-k
exe(n, T) < ”T(kﬁl).

This was proved for star-shaped trees by Frankl and the first author [17], i.e., whenever
T contains an edge wich intersects all other edges in k — 1 vertices. (For k = 2 these are
the the diameter 3 trees, i.e., ’brooms’.)

Note that a 1-cluster is a k-tree with v = 2k, here 1 := (1,1,...,1). A Steiner system
S(n, k,t) is a perfect packing, a family of k-subsets of [n] such that each t-subset of [n]
is contained in a unique member of that family. So if an S(n,2k — 1,k — 1) exists then
construction (21) gives a cluster-free k-family of size (kfl), slightly exceeding the EKR
bound. (Such designs exist, e.g., for £ = 3 and n =1 or 5 (mod 20), see [3]). On the other
hand, the result of Frankl and the first author 17| (cited above) implies that if F C ([Z})
is a family with more than (kfl) members, then F contains every star-shaped tree with
k + 1 edges, especially it contains a 1-cluster.

3.3 Traces

Theorem 2 is related to the trace problem of uniform hypergraphs. Given a hypergraph
H, its trace on S C V(H) is defined as the set {ENS: E € E(H)}. Let Tr(n,r, k) denote
the maximum number of edges in an r-uniform hypergraph of order n and not admitting
the power set 2[¥ as a trace. For k < r < n, the bound Tr(n,r, k) < (kﬁl) was proved
by Frankl and Pach [18]. Mubayi and Zhao [30] slightly reduced this upper bound by
log,, n — E'k* in the case when k — 1 is a power of the prime p and n is large. On the other
hand, Ahlswede and Khachatrian 1] showed Tr(n,k, k) > (Zj) + (Z:ﬁ) for n > 2k > 6.
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