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Abstract

For a vertex set S ⊆ V (G) in a graph G, the distance multiset, D(S), is the multiset of pairwise

distances between vertices of S in G. Two vertex sets are called homometric if their distance multisets

are identical. For a graph G, the largest integer h, such that there are two disjoint homometric sets of

order h in G, is denoted by h(G). We slightly improve the general bound on this parameter introduced by

Albertson, Pach and Young [1] and investigate it in more detail for trees and graphs of bounded diameter.

In particular, we show that for any tree T on n vertices h(T ) ≥ 3
√
n and for any graph G of fixed diameter

d, h(G) ≥ cn1/(2d−2).

1 Introduction

For a vertex set S ⊆ V (G), the distance multiset, D(S), is the multiset of pairwise distances between

vertices of S in G . We say that two vertex sets are homometric if their distance sets are identical. “How

large could two disjoint homometric sets be in a graph?” was a question of Albertson, Pach and Young [1].
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Formally, for a graph G, the largest integer h, such that there are two disjoint homometric sets S1, S2 in

G with |S1| = |S2| = h, is denoted by h(G). For a family of graphs G, h(G) denotes the largest value of

h such that for each graph G in G, h(G) ≥ h. Let h(n) be h(Gn), where Gn is the set of all graphs on n

vertices. In other words, h(n) = min{h(G) : |V (G)| = n}. Albertson, Pach and Young [1] provided the

most general bounds.

Theorem 1 ([1]). c logn
log logn < h(n) ≤ n

4 for n > 3, and a constant c.

It is an easy observation that h(G) = b|V (G)|/2c when G is a path or G is a cycle. However, more

is known. Note that the multisets of distances for a vertex subset of a path corresponds to a multiset of

pairwise differences between elements of a subset of positive integers. We shall say that two subsets of

integers are homometric if their multisets of pairwise differences coincide. Among others, Rosenblatt and

Seymour [8] proved that two multisets A and B of integers are homometric if and only if there are two

multisets U, V of integers such that A = U + V and B = U − V , where U + V and U − V are multisets,

U + V = {u + v : u ∈ U, v ∈ V }, U − V = {u − v : u ∈ U, v ∈ V }. Lemke, Skiena and Smith [5]

showed that if G is a cycle of length 2n, then every subset of V (G) with n vertices and its complement

are homometric sets. Suprisingly, when the class G of graphs under consideration is not a path or a cycle,

the problem of finding h(G) becomes nontrivial. Even when G is a class of n-vertex graphs that are the

unions of pairs of paths sharing a single point, h(G) is not known. Here, we use standard graph-theoretic

terminology, see for example [2] or [9].

The homometric set problem we consider here has its origins in Euclidean geometry, with applications

in X-ray crystallography introduced in the 1930’s with later applications in restriction site mapping of

DNA. In particular, the fundamental problem that was considered is whether one could identify a given

set of points from its multiset of distances. There are several related directions of research in the area,

for example the question of recognizing the multisets corresponding to a multiset of distances realized by

a set of points in the Euclidean space of given dimension, see [7].

In Section 2 we state our main results. In this paper, we provide the new bounds on h(G) in terms

of densities and diameter in Section 3, we also investigate this function for various classes of graphs, in

particular for trees, in Section 4. Finally, in Section 5, we give additional bounds for h(T ), when T is a

tree in terms of its parameters.
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2 Main Results

Here, we slightly improve the known general bounds of h(G), provide new bounds on h(G) in terms of

density, diameter, degree sequence, and give several results for h(T ) in case when T is a tree.

Theorem 2. For infinitely many values of n, and a positive constant c, h(n) ≤ n/4− c log log n.

Theorem 3. Let G be a graph on n vertices with diameter d, maximum degree ∆, n ≥ 5, d ≥ 2. If for

an integer k,
((k

2)+d−1

d−1

)
< n− 2k + 2, then

h(G) ≥ max{k, d/2,
√

∆}.

In particular,

h(G) ≥ max{0.5n1/(2d−2), d/2,
√

∆}

for n ≥ c(d) = d2d−2.

Since it is well known, see [2], that almost all graphs G(n, p) have diameter 2, the above theorem implies

that for almost every graph G = G(n, p), h(Gn,p) = Ω(
√
n).

Theorem 4 and Theorem 5 are corollaries of previously known results Theorems 10 and 9, by Caro

and Yuster [3] and Karolyi [4], respectively.

Theorem 4. For every fixed α > 0 and for every ε > 0 there exists N = N(α, ε) so that for all n > N ,

if G is a graph on n vertices, diameter 2 and at most n2−α edges or at least
(
n
2

)
− n2−α edges, then

h(G) ≥ n/2− εn.

Theorem 5. Let G be a graph with diameter 2 and even number of vertices n ≥ 90. Let Vi = {v ∈ V :

deg(v) = i}. If G satisfies one of the following conditions:

1) |{i : |Vi| is odd}| > n/2,

2) |Vi| is even for each i,

then h(G) = n/2.

Next, we provide the results for trees. In the following theorems, we omit ceilings and floors for

simplicity. Let Tn be the set of all trees on n vertices. A spider is a tree that is a union of vertex-disjoint

paths, called legs and a vertex that is adjacent to one of the endpoints of each leg, called the head. Let

Sn,k be the set of n-vertex spiders with k legs and Sn be the set of all n-vertex spiders. A caterpillar
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is a tree, that is a union of a path, called spine, and leaves adjacent to the spine. Let Rn be the set of

all caterpillars on n vertices. Finally, a haircomb is a tree, that consists of a path called the spine and a

collection of vertex-disjoint paths, called legs, that have an endpoint on the spine. Let Hn be the set of

haircombs on n vertices.

Theorem 6. For a positive integer n, h(Tn) ≥ n1/3 − 1.

Theorem 7. For a positive integer n, h(Rn) ≥ n/6, h(Hn) ≥
√
n/2.

Theorem 8. For positive integers n, k, such that k < n,

h(Sn,k) ≥


5
12n, k = 3,

1
3n, k = 4,(

1
4 + 3

8k−12

)
n, k ≥ 5.

Moreover, h(Sn,n/2) = (n + 2)/4, and h(T ) = n/2 for any T ∈ Sn,3 with legs on l1, l2, l3 vertices if

l1 + 1 = t(l2 − l3) for an odd integer t ≥ 1 or if l1 = l2 = l3.

3 Preliminary facts and proofs of general Theorems 2–5

We shall say that two integers are almost equal if they differ by 1, 0, or −1.

Theorem 9 (Karolyi [4]). Let X be a set of m integers, each between 1 and 2m − 2. If m ≥ 89, then

one can partition X into two sets, X1 and X2 of almost equal sizes such that the sum of elements in X1

is almost equal to the sum of elements in X2.

Theorem 10 (Caro, Yuster [3]). For every fixed α > 0 and for every ε > 0 there exists N = N(α, ε) so

that for all n > N , if G is a graph on n vertices and at most n2−α edges then there are two vertex disjoint

subgraphs of the same order and size with at least n/2− εn vertices in each of them.

Definition 11. For a graph H, we say that G is an (H,m, v)-flower with a path P if G is a vertex-

disjoint union of H and an m-vertex path P with endpoint v, together with all edges between V (H) and

v.

Lemma 12. Let G be an (H,m, v)-flower with a path P . If S1 and S2 are homometric sets of G, where

|S1| = |S2| ≥ 4, then either S1 ∪ S2 ⊆ V (P ) ∪ {u}, u ∈ V (H) or S1 ∪ S2 ⊆ V (H) ∪ {v, v1}, where v1 is

the neighbor of v in P .
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Proof. Let S1, S2 be homometric sets in G of size at least 4 each. Note that D(V (H)) consists of 1s and

2s.

Consider the vertex x ∈ (S1 ∪ S2) ∩ V (P ), farthest from v, at a distance at least 2 from v. Without

loss of generality, x ∈ S1. If there is an x′ ∈ S1 ∩ V (H) then there is no pair of vertices in S2 with the

distance equal to the distance between x and x′. Thus, S1 ∩ V (H) = ∅. Let a be the largest distance in

D(S1), then a ≥ 3 since |S1| ≥ 4. Let y ∈ S2 ∩ V (H), let y′ be at a distance a from y, y′ ∈ V (P ). Note

that a appears exactly once in D(S1) and thus it appears exactly once in D(S2). Since all vertices from

V (H) are at the same distance from y, there is exactly one vertex y′ ∈ S2 ∩ V (H).

Proof of Theorem 2. For a fixed integer k, let a0, a1, . . . , ak be a sequence of integers such that a0 = 1,

a1 ≥ 5 and each ai, i ≥ 2, is the smallest odd number satisfying

ai > 4

1 +

i−1∑
j=1

(
aj + 1

2

) .

Let k ≥ 2 and n = 2(a1 + · · · + ak) − k/4. Let H be a vertex-disjoint union of cliques on a1, a2, . . . , ak

vertices, respectively. Let the vertex sets of these cliques be Q1, Q2, . . . , Qk, respectively. Note that

aj > 4
∑j−1
i=0 ai for j ≥ 1, which implies that

aj ≥
4

5
(

j∑
i=0

ai). (1)

Let G be an (H,n/2− k/8, v)-flower with a path P . Note that k = c log log n, for a constant c. This

construction of G is inspired by an example given by Caro and Yuster in [3].

Let S1, S2 be largest homometric sets in G. If |S1| = |S2| < 4, then we are done. Otherwise, by

Lemma 12, S1 ∪ S2 ⊆ V (P ) ∪ {u}, u ∈ V (H) or S1 ∪ S2 ⊆ V (H) ∪ {v, v1}, where v1 is the neighbor of v

in P .

Case 1 S1 ∪ S2 ⊆ V (P ) ∪ {u}, u ∈ V (H).

Then h(G) ≤ (|V (P )|+ 1)/2 = n/4− k/16 + 1/2 = n/4− c log log n, for a positive constant c.

Case 2 S1 ∪ S2 ⊆ V (H) ∪ {v, v1}, where v1 is the neighbor of v in P .

Let {v1} = Q0, then S1 ∪ S2 is a vertex subset of a join of vertex-disjoint cliques on sets Q0, . . . , Qk and
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{v}. Since G[V (H) ∪ {v, v1}] is a graph of diameter 2, S1 and S2 induce the same number of edges in G.

For i = 0, . . . , k, let Q′i = Qi ∪ {v} if v ∈ S1 ∪ S2, and let Q′i = Qi if v 6∈ S1 ∪ S2.

If v 6∈ S1∪S2 and for all j, |S1∩Q′j | = |S2∩Q′j |, then, since Qj has odd size, (S1∪S2)∩Qj 6= Qj , and

h(G) ≤ (|V (H)| − k)/2 = n/4 + k/16− k/2 = n/2− c′ log log n, for a positive constant c′. If v ∈ S1 ∪ S2

and for all j, |S1 ∩Q′j | = |S2 ∩Q′j |, then |S1| 6= |S2|, since v ∈ Q′j for all j. So,we can assume that there

is j, for which |S1 ∩Q′j | 6= |S2 ∩Q′j |. Let j be the largest such index and let Q′j = Q.

Assume first that j ≤ k/2 − 2 and v 6∈ S1 ∪ S2. For each i > j, (S1 ∪ S2) ∩ Qi 6= Qi. Thus

h(G) ≤ (n/2 + k/8− k/2 + 2)/2 = n/4− c log log n, for a positive constant c.

Now assume that j ≤ k/2 − 2 and v ∈ S1 ∪ S2. Without loss of generality, let v ∈ S1. Let Q =

Q0 ∪ · · · ∪ Qj , Q′ = Qj+1 ∪ · · · ∪ Qk. Then |S2 ∩ Q′| − |S1 ∩ Q′| ≥ k − j − 1 ≥ k/2 + 1. Since

|S1 ∩ (Q∪Q′ ∪ {v})| = |S2 ∩ (Q∪Q′ ∪ {v})|, |Q| ≥ −|S2 ∩Q|+ |S1 ∩Q| ≥ k/2. Therefore, (1) implies

that aj/2 ≥ 4
10 |Q| ≥

2
5 (k/2) ≥ k/5.

So, we have that either aj/2 ≥ k/5 or that j ≥ k/2 + 2. In any case, we have that aj/2 ≥ k/5.

If |Q− (S1∪S2)| ≥ aj/2, then h(G) ≤ (n/2 +k/8−aj/2)/2 ≤ (n/2 +k/8−k/5)/2 ≤ n/4− c log log n,

for a positive constant c. Otherwise, |Q∩ (S1∪S2)| > aj/2. Then, the number of edges induced by S1∩Q

differs from the number of edges induced by S2 ∩ Q by at least aj/4. The number of edges induced by

S1 ∩ (Q′ ∪ {v}) is the same as number of edges induced by S2 ∩ (Q′ ∪ {v}). The total number of edges

induced by Q∪ {v} is at most 1 +
∑j−1
i=1

(
ai+1

2

)
< aj/4. Thus S1 and S2 can not induce the same number

of edges, a contradiction.

Construction 13. [1] Let G be a graph and G′ = (v1, . . . , v2t) be a shortest v1,v2t-path in G, for some

t ≥ 1. Let S1 = {v1, . . . , vt}, S2 = {vt+1, . . . , v2t}. Since both S1 and S2 induce shortest paths of the same

length, they form homometric sets.

Proof of Theorem 3. The fact that 2h(G) ≥ d follows from Construction 13. For positive integers k, n

(k < n), the Kneser graph KG(n, k) is a graph on the vertex set
(

[n]
k

)
whose edge set consists of pairs of

disjoint k-sets. Lovász [6] proved that the chromatic number of the Kneser graph KG(n, k) is n− 2k+ 2.

We fix k ≤ n/2 and consider the Kneser graph K = KG(n, k). Considering a graph G with vertex set

[n], we define a coloring of K by letting the distance multiset of each k-subset of V (G) be the color of the

corresponding vertex in K. Since any vertex pair in G has distance in {1, . . . , d}, the number of possible
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colors that are used on K is at most
((k

2)+d−1

d−1

)
. If((k

2

)
+ d− 1

d− 1

)
< n− 2k + 2, (2)

then there are two adjacent vertices of the same color in K that correspond to a pair of disjoint k-subsets

of V (G) that are homometric.

Note that when d = 2, we have
((k

2)+d−1

d−1

)
=
(
k
2

)
+ 1 < n− 2k + 2 for k =

√
n.

Let v ∈ V (G) be a vertex of a maximum degree ∆(G). The closed neighborhood N [v] induces a graph

of diameter 2. Moreover, for any two vertices in N [v], the distance between them in G is the same

as in G[N [v]]. As before, we see that (2) with d = 2 and n = ∆ holds for k ≥
√

∆(G). Therefore,

h(G[N [v]]) ≥
√

∆(G). This proves the first part of the theorem.

To prove the second statement of the theorem, we assume that d ≥ 3 and n ≥ d2d−2 and show that for

any k, such that d/2 < k ≤ 0.5n1/(2d−2), the inequality (2) holds. Since d − 1 ≤ k2/2, 2d−2 ≤ (d − 1)!,

and k ≤ 0.5n1/(2d−2) ≤ n/4, we have that

((k
2

)
+ d− 1

d− 1

)
<

((
k
2

)
+ d− 1

)d−1

(d− 1)!
≤ (k2)d−1

(d− 1)!
≤ (k2)d−1

2d−2
≤ n

2d−2
≤ n

2
≤ n− 2k + 2.

Therefore, there are homometric sets of size k for any k, d/2 ≤ k ≤ 0.5n1/(2d−2).

Proof of Theorem 4. In a graph with diameter at most 2, any two distinct vertices are at distance 1 or 2.

Therefore, Theorem 10 implies this result.

Proof of Theorem 5. First, we give a fact observed in [3] stating that if A ⊆ V (G) and
∑
v∈A deg(v) =∑

v 6∈A deg(v) then |E(G[A])| = |E(G[V −A])|. To see this, note that |E(G[A])| = (1/2)((
∑
v∈A deg(v))−

|E(A, V −A)|) and |E(G[V −A])| = (1/2)((
∑
v∈V−A deg(v))− |E(A, V −A)|). So, the difference of these

two numbers is 1
2 [
∑
v∈A deg(v)−

∑
v 6∈A deg(v) ] = 0.

Let D = {0, 1, . . . ,∆(G)} and i ∈ D. Let

Vi = {v ∈ V : deg(v) = i}, Vi = Ai ∪Bi ∪ Si,
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where Ai, Bi, Si are disjoint, |Si| ≤ 1 and |Ai| = |Bi|. In other words, split Vi into two equal parts if

possible, and otherwise, put a remaining vertex into a set Si.

Let

A′ =
⋃
i∈D

Ai, B′ =
⋃
i∈D

Bi, S =
⋃
i∈D

Si.

So, V (G) = A′∪B′∪S. Let s(G) = |S|. We shall show that there are disjoint subsets A,B of n/2 vertices

each, such that
∑
v∈A deg(v) =

∑
v/∈A deg(v), i.e., A and B induce the same number of edges in G.

If |Vi| is even for each i, let A = A′ and B = B′.

Note that all vertices in S have distinct degrees a1, a2, · · · , am, say 1 ≤ a1 < a2 < · · · < am < n, and

since m > n/2, n < 2m. Note also that m = |S| is even, since n is even and |A′|+|B′| is even. So, we could

apply Theorem 9 and split {a1, . . . , am} in two parts, U and U ′ of equal sizes and with almost equal sums.

Since
∑
v∈V deg(v) =

∑
v∈A′ deg(v)+

∑
v∈B′ deg(v)+

∑
v∈S deg(v) = 2

∑
v∈A′ deg(v)+

∑
v∈S deg(v), and

this degree-sum is even, it follows that
∑
v∈S deg(v) is even. Thus

∑m
i=1 ai =

∑
v∈S deg(v) is even, and

the sum of elements in U is exactly equal to the sum of elements in U ′. Let

A′′ = {v ∈ S : deg(v) ∈ U}, B′′ = {v ∈ S : deg(v) ∈ U ′}.

Finally, let A = A′ ∪A′′ and B = B′ ∪B′′.

4 Construction and proofs of the Theorems 6–8 for trees

In the remaining part of the paper, we may omit the floor and ceiling of fractions for simplicity. For a

tree T , and its vertex r, let P = P (T, r) be a partial order on the vertex set of a tree T , such that x < y

in P if the x,r-path in T contains y. We call this an r-order of T and say that T is r-ordered. A vertex y

is a parent of x in P (T, r), and a vertex x is a child of y if x < y and there is no other element z such that

x < z < y. If neither x < y nor y < x for two elements x and y in P (T, r), then we say that x and y are

noncomparable. An antichain is defined as a set of pairwise noncomparable elements. A pair of vertices

x and y are called siblings if they have the same parent.

Construction 14. Let T be a tree and S be an antichain in P (T, r) such that each vertex in S, has a

sibling in S. Let S′1, . . . , S
′
k be the maximal families of siblings in S. Let S′i = Ai∪Bi∪Ci, where Ai, Bi, Ci
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are disjoint, |Ai| = |Bi|, |Ci| ≤ 1, i = 1, . . . , k. Let S1 = A1 ∪ A2 ∪ · · · ∪ Ak, S2 = B1 ∪ B2 ∪ · · · ∪ Bk.

The sets S1 and S2 are homometric. See Figure 1.

Figure 1: Example of Construction 14 with S1 and S2 consisting of black and hollow vertices,

respectively.

Construction 15. Let T ∈ Sn,3 with head v and legs L1, L2, L3 on l1, l2, l3 vertices, respectively, l1 ≥ l2.

Let L3 be a path v1, . . . , vl3 , where vl3 is a leaf of T . Let S1 be the set consisting of v, the vertices v2i,

1 ≤ i ≤ bl3/2c and l2 − 1 vertices in L1 closest to v. Let S2 be the set consisting of the vertices v2i−1,

1 ≤ i ≤ bl3/2c and V (L2). The sets S1 and S2 are homometric (see Figure 2(b)).

Construction 16. Let T ∈ Sn,3 with head v = v0 and legs L1, L2, L3 on `1, `2, `3 vertices, respectively,

and let one leg be longer than the other, say l1 ≥ l2 > l3. Let L1 be a path v1, . . . , vl1 , where vl1 is a leaf of

T . Let l2− l3 = x > 0, l1 +1 = bx+ r, where b and r are integers, 0 ≤ r < x. If b is odd, let a = b−1 and

if b is even, let a = b. Let Pi = {vix, . . . , vix+x−1} for 0 ≤ i ≤ a. Let S1 be the union of P2i, 0 ≤ i ≤ a/2

and V (L3). Let S2 be the union of P2i−1, 1 ≤ i ≤ a/2 and V (L2). The sets S1 and S2 are homometric

(see Figure 2(c)).

Construction 16 is not used in any of the proofs here. However, it hints that for a tree T ∈ Sn,3,

h(T ) can be very close to n/2, depending on the optimized value of x, whereas other construction never
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provide a value close to n/2 when the leg lengths are different.

Construction 17. Let T be a spider with head v and k legs L1, L2, . . . , Lk, k ≥ 3, on `1 ≥ `2 ≥ · · · ≥ `k
vertices, respectively. Let Ai = V (L2i), let Bi be the set of |Ai| vertices closest to v in L2i−1 , i =

1, . . . , bk/2c = m. Then let S1 = A1 ∪ A2 ∪ · · · ∪ Am, S2 = B1 ∪ B2 ∪ · · · ∪ Bm. Clearly S1 and S2 are

homometric sets (see Figure 2(d)).

(a) (b) (c) (d) 

Figure 2: Examples of homometric sets in spiders using Constructions 13, 15, 16 (with x = 2, a = 4)

and 17, respectively. The sets S1 and S2 consist of black and hollow vertices, respectively.

The following lemma will be used later in the proofs of this section.

Lemma 18. Let T be a tree, r be a vertex, and S be an antichain in P (T, r) such that each vertex in S,

has a sibling in S. Let k′ = k′(S) be the number of maximal odd sets of siblings in S. Then

2h(T ) ≥ max

{
diam(T ) + 1, |S| − k′, 2

3
|S|
}
.

Proof. The fact that 2h(T ) ≥ diam(T ) + 1 and 2h(T ) ≥ |S| − k′ follows immediately from Construc-

tions 13 and 14. Since each maximal family of siblings in S has at least two elements, k′ ≤ |S|/3, thus

2h(T ) ≥ 2|S|/3.

Proof of Theorem 6. Assume that v is a vertex contained in the center of T and let t = ddiam(T )/2e.

Let P = P (T, v). We define a partition V (T ) = N0 ∪ N1 ∪ N2 ∪ · · · ∪ Nt, where Ni = Ni(v). So,

Ni is an antichain in P , i = 1, . . . , t. Since h(T ) ≥ t, we can assume that t ≤ n1/3 − 1, and thus
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diam(T ) ≤ 2n
1
3 − 2. Let x be the smallest integer such that |Ni| ≤ |Ni−1| + x − 1 for 1 ≤ i ≤ t. Then

n = 1 +
∑t
i=1 |Ni| ≤ 1 +

∑t
i=1 ix ≤ x(t+ 1)2/2.

Since t ≤ n1/3− 1, by the above inequality we have x ≥ 2n1/3. For some j, 1 ≤ j ≤ t, |Nj | − |Nj−1| =

x− 1. Let S be a largest subset of Nj such that each vertex in S has an odd number of siblings in S. So,

|S| ≥ |Nj | − |Nj−1| = x− 1 ≥ 2n1/3 − 1. By Lemma 18, h(T ) ≥ n1/3 − 1.

Proof of Theorem 7. Let T be a caterpillar on n vertices and assume that its spine P has at least n/3

vertices. Then, by Theorem 3, h(T ) ≥ n/6. If P has less than n/3 vertices, then there are at least

2n/3 leaves. Assume that there are exactly k vertices on the spine with degree at least 4, label them

as v1, . . . , vk. Apply Lemma 18 to a set S consisting of leaves incident to a vertex in v1, . . . , vk. Then

k′(S) ≤ k and 2h(T ) ≥ |S| − k′(S) ≥ (n− |V (P )|)− k ≥ n− 2|V (P )| ≥ n
3 .

Let T be a haircomb with m vertices on its spine and k spinal vertices, where k ≤ m. We denote the

length of the ith leg of T with li. Since (k + 1) max(l1, . . . , lk,m) ≥ m +
∑k

1 li = n, either k + 1 ≥
√
n

implying m ≥ k + 1 ≥
√
n or li ≥

√
n for some i, which implies that diam(T ) ≥

√
n. By Theorem 3,

2h(T ) ≥
√
n.

Proof of Theorem 8.

Let m be an integer such that k = 2m or k = 2m+ 1. Using Construction 17, we see that

2h(G) ≥ n− [(l1 − l2) + (l3 − l4) + . . .+ (l2m−1 − l2m) + x+ 1] ≥ n− l1 + l2m − x− 1, (3)

where x = 0 if k is even and x = lk if k is odd. This observation is used in the following cases.

• Let k = 3. Let min(l1 − l2, l2 − l3) = cn for some c ≥ 0, where l1 ≥ l2 ≥ l3. By Construction 15, we

have 2h(T ) ≥ n − cn. Without loss of generality, assume that l1 − l2 = cn. Then l1 = l2 + cn and

l2 ≥ l3 + cn by our assumption and therefore, n = l1 + l2 + l3 + 1 ≥ 3l3 + 3cn. This implies that

l3 ≤ (n− 3cn)/3 and by Lemma 18, 2h(T ) ≥ l1 + l2 + 1 = n− l3 ≥ 2n/3 + cn. Thus

2h(Sn,3) ≥ min
0≤c≤1

max

{
n− cn, 2n

3
+ cn

}
≥ 5n/6.

• Let k = 4. We have 2h(T ) ≥ diam(T )+1 ≥ l1 + l2 +1 and (3) provides that 2h(T ) ≥ n−(l1− l4)−1.

Adding these inequalities gives that 4h(T ) ≥ n+l2+l4. By letting l2+l4 = c′n, for some c′, 0 ≤ c′ ≤ 1,

11



we rewrite this bound as 4h(T ) ≥ (1 + c′)n. On the other hand, 2h(T ) ≥ diam(T ) + 1 ≥ l1 + l3 + 1 =

(1− c′)n. Thus,

2h(Sn,4) ≥ min
0≤c′≤1

max

{
(1 + c′)n

2
, (1− c′)n

}
≥ 2n/3.

• Let k ≥ 5. Let T be a spider on n vertices with k legs having `1 ≥ `2 ≥ · · · ≥ `k vertices, respectively,

and the head v. Observe that l2 ≥ (n − l1 − 1)/(k − 1). Assume that 2h(T ) = cn for some c > 0.

By Lemma 18, 2h(T ) = cn ≥ diam(T ) + 1 ≥ l1 + l2 + 1 ≥ l1 + (n − l1 − 1)/(k − 1) + 1. Thus,

−l1 ≥ n(1− ck+ c)/(k− 2) + 1. Using (3), cn = 2h(T ) ≥ n− l1− 1 ≥ n+ n(1−ck+c)
k−2 . Since k is fixed,

this implies that c ≥ 1/2 + 3/(4k − 6), i.e., h(T ) ≥ n/4 + 3n/(8k − 12).

The bound h(Sn,k) ≥ (n + 2)/4 for k ≥ 5 is attained by a spider T with n/2 single-vertex legs,

and one leg, P , with n/2 − 1 vertices. If H is an empty graph on n/2 vertices, then T is an

(H,n/2 − 1, v)-flower, where v is the head of T . Let S1, S2 be homometric sets of T . Then by

Lemma 12, S1 ∪ S2 ⊆ V (H) ∪ {v, v1} or S1 ∪ S2 ⊆ V (P ) ∪ {v, u}, where u ∈ V (H), v1 ∈ V (P ) is

adjacent to v. In the first case, we can easily see that v 6∈ S1 ∪ S2, so 2h(T ) ≤ n/2 + 1.

5 More results on trees

For a vertex x of degree at least 3 in a tree T , the connected components of T − x that are paths are

called pendent paths of x. The endpoints of these paths adjacent to x in T are called attachment vertices.

A vertex x of degree at least 3 is called bad if it has an odd number of pendent paths. Moreover, let a

shortest pendent path corresponding to a bad vertex x be called a bad path.

We call a tree T ′ a cleaned T if T ′ is obtained from T by removing the vertices of all bad paths. A tree

T ′′ is called trimmed T if it is obtained from T by removing the vertices of all bad paths and removing

all the vertices except for the attachment vertices of all remaining pendent paths of T .

Let bad(T ), bad3(T ) be the number of bad vertices, and the number of bad vertices of degree 3 in

T , respectively. Let badΣ(T ) be the total number of vertices in bad paths of T . Let Ni(x) be the set of

vertices at distance i from a vertex x. For two disjoint sets A′, A′′ ⊆ V (G), let D(A′, A′′) be the multiset
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of distances in G between pairs u′ and u′′, u′ ∈ A′, u′′ ∈ A′′.

In the following, we extend Lemma 18 to a more general case.

Lemma 19. Let T be a tree, r be a vertex, and S be an antichain in P (T, r) such that each vertex in S,

has a sibling in S. Let k′ = k′(S) be the number of maximal odd sets of siblings in S. Then

2h(T ) ≥ max

{
diam(T ) + 1, |S| − k′, 2

3
|S|, d1(T )− bad(T ),

n

diam(T )
− bad(T ),

n− badΣ(T )

diam(T )

}
.

Proof. The first three bounds are proved in Lemma 18. For any tree T , Dilworth’s theorem applied to

P (T ) implies that the size of a maximum antichain in P (T ) is at least n/diam(T ). The set of leaves is a

maximum antichain of P (T ), thus d1(T ) ≥ n/ diam(T ).

Let T ′ be trimmed T . Since T ′ ⊆ T and all distances in T are preserved in T ′, h(T ) ≥ h(T ′). Let S be

the set of leaves of T ′. Note that |S| = d1(T ′) = d1(T )− bad(T ). Moreover, since T ′ has no bad vertices,

k′(S) = 0 in T ′. So, 2h(T ) ≥ |S| − k′(S) = d1(T )− bad(T ) ≥ n/diam(T )− bad(T ).

Let T ′′ be cleaned T . We have that |V (T ) \ V (T ′)| = badΣ(T ), moreover, T ′′ has no bad vertices. Thus

2h(T ) ≥ 2h(T ′′) ≥ |d1(T ′′)| ≥ (n− badΣ(T ))/ diam(T ′′) ≥ (n− badΣ(T ))/ diam(T ).

For a tree T , let di = di(T ) be the number of vertices of degree i.

Lemma 20.

a) d1 − bad(T ) ≥ 2 +
∑
i≥4 di,

b) d1 ≥ 2/3(n− d2 − d3), and

c)
∑
i≥4 di ≤ (1/3)(n− d2 − d3).

Proof. Observe first that d1 = 2 +
∑
i≥3 di(i− 2). Thus d1 ≥ 2 +

∑
i≥4 2di.

Since bad vertices have degree at least 3, we have that bad(T ) ≤ d3 +
∑
i≥4 di, so d1 − bad(T ) ≥

2 +
∑
i≥4 di. We also have that d1 ≥

∑
i≥4 2di = 2(n− d1− d2− d3), thus d1 ≥ 2/3(n− d2− d3). To show

the last inequality, observe that
∑
i≥4 di = n− d1 − d2 − d3, so using (b),

∑
i≥4 di = n− d1 − d2 − d3 ≥

n− 2/3(n− d2 − d3)− (d2 + d3) = 1/3(n− d2 − d3).
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Theorem 21. Let T be a tree on n vertices. Then h(T ) = Ω(
√
n) if one of the following holds:

a) bad(T ) = o(
√
n),

b) bad3(T ) = o(
√
n) and bad(T ) = Ω(

√
n),

c) badΣ(T ) = o(n).

Moreover h(T ) ≥ max{(n− d2 − 4d3)/6, (n− d1 − d2)/(diam(T ) + 1)}.

Comment. There are trees on n vertices, such as double haircombs, for which our proof techniques do

not provide bounds of the order of magnitude
√
n. A double haircomb is constructed from a haircomb

by attaching vertex-disjoint paths to the vertices of the legs, see Figure 3. By appropriately choosing the

distances between the vertices of degree 3, one can construct an n-vertex double haircomb T , such that

bad3(T ) ≥ c
√
n, badΣ(T ) ≥ c′n for some constants c, c′ > 0 and diam(T ) = o(

√
n).

Figure 3: A double haircomb.

Proof of Theorem 21. To prove the first part of the theorem, we assume throughout the proof that

diam(T ) = o(
√
n), otherwise by Lemma 19, h(T ) = Ω(

√
n).

• bad(T ) = o(
√
n). By Lemma 19, 2h(T ) ≥ n/diam(T )− bad(T ) = Ω(

√
n).

• bad3(T ) = o(
√
n) and bad(T ) = Ω(

√
n).

By Lemma 20, d1 − bad(T ) ≥
∑
i≥4 di ≥ bad(T ) − bad3(T ) = Ω(

√
n). Lemma 19 implies that

2h(T ) = Ω(
√
n).

• badΣ(T ) = o(n). By Lemma 19, h(T ) ≥ (n− badΣ(T ))/ diam(T ) = Ω(
√
n).
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To prove the second part of the theorem, we use Lemma 19 and Lemma 20-(b),(c). We have that

2h(T ) ≥ d1 − bad(T ) ≥ (d1 −
∑
i≥4 di)− d3 ≥ 1/3(n− d2 − d3)− d3 = 1/3(n− d2 − 4d3).

Let S be the set of vertices with degree at least 3 in T , |S| = n − (d1 + d2). Let r be a leaf in T ,

V (T ) = N0∪N1∪N2∪· · ·∪Nt, where N0 = {r}, Ni = Ni(r) and t = ddiam(T )/2e. There is an i ∈ [t] such

that |Ni(r)∩S| ≥ |S|/t. Let L = Ni(r)∩S. We have |L| ≥ (n−d1−d2)/t ≥ 2(n−d1−d2)/(diam(T )+1).

Let the set of children of L with respect to P (T, r) be L′. Since each vertex in S and thus in L has

degree at least three, |L′| ≥ 2|L|. Using Lemma 19 and the fact that k′(L′) ≤ |L|, we have h(T ) ≥

(|L′| − k′(L′))/2 ≥ (2|L| − |L|)/2 = |L|/2 ≥ (n− d1 − d2)/(diam(T ) + 1).

6 Concluding Remarks

The definition of homometric sets allows for little control over what pairs of vertices realize what distance.

This makes proving the upper bounds on h(n) difficult. One may consider another definition for two sets

being homometric. For a graph G, let K(G) = (V (G), c) be a complete graph on vertex set V (G) with

an edge-coloring c, where c(u, v) is equal to the distance between u and v in G. Let two disjoint sets

S1, S2 ⊂ V (G) be similar if there is an isomorphism between K(G)[S1] and K(G)[S2]. Note that there

may be homometric sets that are not similar. Let T be a spider with four long legs of equal length, let S1

consist of four vertices on distinct legs with distances 2,2,2,6 to the head of the spider, respectively, let

S2 be the set of four vertices - one is the head, three other are on three distinct legs with distance 4 to

the head. Although D(S1) = D(S2) = {4, 4, 4, 8, 8, 8}, S1 and S2 are not similar, since there is a triangle

with all edges colored 4 in K(G)[S1] and there is a triangle with all edges colored 8 in K(G)[S2].
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