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Abstract

A multigraph is degree-splittable if it decomposes into two sub-

multigraphs whose degree lists are the same, plus one leftover edge

when the total number of edges is odd. We prove that a connected

multigraph is degree-splittable if it has an even number of vertices

of each odd degree. For caterpillars, we characterize the splittable

caterpillars with diameter at most 4, provide a general sufficient con-

dition for splittability of caterpillars, and prove that the smallest

maximum degree of a non-splittable caterpillar is 5.
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1 Introduction

A decomposition of a graph G is a set of pairwise edge-disjoint subgraphs
whose union is G. The problem of decomposing a graph into isomorphic
copies of a fixed graph has a long history. MathSciNet lists more than 60
papers on the subject; see also the survey paper by Plummer [3] and the
book by Bosák [1].

We study a relaxed problem. A [multi]graph is degree-splittable if it
decomposes into two graphs having identical degree lists, plus one extra
edge when the total number of edges is odd. Ignoring the extra edge echoes
the convention that a k-regular graph is Hamiltonian-decomposable if it has
⌊k/2⌋ pairwise edge-disjoint spanning cycles, leaving a perfect matching
when k is odd. We henceforth abbreviate “degree-splittable” to splittable.
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Analogous problems for isomorphic decomposition motivate our study.
Decomposing complete graphs into isomorphic complete subgraphs is the
fundamental problem of design theory. Other classical problems include
decomposition of complete graphs into cycles of fixed lengths and the fa-
mous conjecture of Ringel that the complete graph K2m+1 decomposes into
isomorphic copies of any tree with m edges.

One can also ask whether G decomposes into t isomorphic copies of any
one (unspecified) subgraph; if so, then t divides G. Ellingham and Wormald
[2] showed that if G is a t-edge-colorable multigraph and t divides |E(G)|,
then t divides G. Wormald [4] proved that for fixed r and t with t ≥ 2 and
r ≥ 2t + 1, almost all r-regular graphs are not divisible by t. Nevertheless,
small examples with t = 2 are not so prevalent. In Section 2, we exhibit a
5-regular multigraph that has no such decomposition and yet is splittable.
We also prove that every connected multigraph having an even number
of vertices of each odd degree is splittable. Thus all regular (connected)
multigraphs are splittable.

Not all graphs are splittable. The components of graphs with maximum
degree 2 are paths and cycles, which are splittable, so all graphs with max-
imum degree 2 are splittable. Already with maximum degree 3 there are
non-splittable graphs.

Example 1.1. Let G be the 7-vertex tree obtained by subdividing each
edge of the claw K1,3. Since G has only one vertex of degree 3, each
subgraph in a splitting must have a vertex of degree 2 and none of degree
3. One graph has two edges at the central vertex, so the other has a path
of length 2 starting there. Each subgraph has one of the two remaining
edges, but this puts a second vertex of degree 2 into only one of them. �

As another example, consider a double-star (a tree having only two non-
leaf vertices). When decomposing the double-star with central vertices of
degrees 5 and 2 into two subgraphs, one subgraph must have a vertex of
degree at least 3, and the other cannot. Indeed, whenever the two central
vertices have degrees of opposite parity that differ by more than 1, the
double-star is not splittable.

Double-stars belong to the class of trees we study in Section 3. A cater-
pillar is a tree whose non-leaf vertices form a path called the spine. We
determine which caterpillars with at most three spine vertices are splittable.
We also prove a general sufficient condition for splittability of caterpillars
with an odd number of spine vertices. As a corollary, all caterpillars with
an odd number of spine vertices and maximum degree 3 are splittable. We
also prove constructively that all caterpillars with maximum degree at most
4 are splittable. The double-star mentioned above with central vertices of
degrees 5 and 2 is a caterpillar with maximum degree 5 that is not splittable.
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The non-splittable tree in Example 1.1 is not a caterpillar but has max-
imum degree only 3. This suggests an extremal problem: What is the
smallest maximum degree of a non-splittable graph with minimum degree
k? Upper bounds are available.

Example 1.2. For each positive integer k, there is a non-splittable graph
with minimum degree k and maximum degree at most 2k + 3.

When k ≡ 3 mod 4, form G with maximum degree 2k + 1 by adding
one vertex adjacent to all vertices of a (k − 1)-regular graph with 2k + 1
vertices. Here |E(G)| = (2k + 1)(k + 1)/2, which is even, but G is not
splittable, because the degree of the central vertex is too high.

In other congruence classes, 2k +3 is an upper bound, shown by joining
one vertex to all vertices of a (2k + 3)-vertex graph that has vertices of
degrees k − 1 and k and an odd number of edges. Again the larger “half”
of the maximum degree vertex cannot be matched in the other graph.

When k ≡ 3 mod 4, the upper bound improves from 2k + 1 to 2k − 1.
Join one vertex to all vertices of a (k−1)-regular graph with 2k−1 vertices;
again the number of edges is even. In a splitting, isolated vertices arise only
by splitting vertices of degree k into k and 0. Hence each subgraph in the
splitting has the same number of vertices of degree k retaining their full
degree. Now the large half of the high-degree vertex cannot be matched by
the other vertices, even if it splits into degrees k and k − 1.

The upper bounds here may not be sharp. �

Another question that seems to be open is the complexity of determining
whether an input graph is splittable, even for trees.

2 Splittability of Multigraphs

We treat a decomposition of a multigraph G into two subgraphs as a la-
beling of E(G) using A and B. The two subgraphs, denoted GA and GB

respectively, are viewed as spanning subgraphs, so the degree lists have
the same length. We write dA(v) and dB(v) for the degrees of vertex v in
GA and GB . When the degree lists are identical (under reordering), the
decomposition is a splitting of G.

To illustrate the distinction between divisibility by 2 and splitting, we
present a small 5-regular multigraph without loops that has no decompo-
sition into two isomorphic subgraphs.

Example 2.1. Let T be the loopless multigraph with vertex set {x, y, z}
and seven edges in which the vertex degrees are 4, 5, 5, respectively. Form
G from five disjoint copies of T by adding one central vertex w adjacent to
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the five copies of x (see Figure 1); G is 5-regular with 16 vertices and 40
edges. Let T1, . . . , T5 be the copies of T , with V (Ti) = {xi, yi, zi}.

Suppose that G decomposes into isomorphic subgraphs GA and GB . We
may assume by symmetry that dA(w) = 3, since no other vertex has four
distinct neighbors. To match w, we may assume that x1 is the center of an
induced claw (K1,3) in GB . This leaves the other five edges of T1 in GA.

Now GB must have a component that is a triangle with edges of multi-
plicities 3, 1, and 1. Being a component, it lies in some Ti such that xiw is
in GA. Now xi has three distinct neighbors in GA. We now have forced a
7-vertex double-star into GA. All such subgraphs use w as a central vertex,
so we cannot have such subgraphs in both GA and GV .

Nevertheless, G is splittable, with each submultigraph having eight 2-
valent and eight 3-valent vertices. Take one triangle from each copy of T ,
add the edges from w to three of the triangles, and add one more copy of
yz from each of the other two triangles. This multigraph has the desired
degree list, as does the one obtained by deleting these edges. �
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Figure 1: 5-regular multigraph with no isomorphic decomposition

Our positive result on splittability of general multigraphs is easy to
prove. Our proof extends a short proof given by A. Kostochka for the special
case of regular multigraphs with even degree. We restrict to connected
multigraphs because rounding difficulties could arise for multigraphs with
multiple components that each have an odd number of edges.

Theorem 2.2. Every connected multigraph having an even number of ver-
tices with each odd degree is splittable.

Proof. To such a graph G, add a matching M covering the vertices of odd
degree, each edge joining vertices of the same degree (this may increase
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multiplicity of edges). The resulting graph G′ is connected and has even
degree at each vertex, so it has an Eulerian circuit C.

Traverse C in order, alternately using labels A and B on edges, but skip
labeling edges of M . Each traversal through a vertex that does not involve
M puts one incident edge into each of GA and GB . When an edge of M
is traversed, one incident vertex gains an extra A and the other gains an
extra B, and this occurs at most once at each vertex.

Thus from the set of vertices of each degree in G, the contribution to
the degree lists of GA and GB is the same. �

3 Splittability of Caterpillars

When a multigraph has odd maximum degree, splittability requires a second
vertex with degree greater than half the maximum degree. We will see that
this necessary condition is not sufficient, not even for caterpillars with small
spines. We focus primarily on caterpillars with even size (number of edges),
since a caterpillar with odd size is splittable if and only if deleting some
edge leaves a splittable forest of caterpillars with total size even.

First we note a necessary condition for splittings of trees with even size.
A graph is nontrivial if it has at least one edge.

Lemma 3.1. In every splitting of a tree with even size, the two decomposing
subgraphs have the same number of nontrivial components.

Proof. Each of the two subgraphs in the splitting is a spanning forest. A
forest with n vertices and k edges has n − k components. Since the two
subgraphs have the same number of edges, they have the same number of
components. Since the vertices of degree 0 are the isolated vertices, and
they have the same number of vertices of degree 0, they also have the same
number of nontrivial components. �

To specify a caterpillar, let v1, . . . , vt be the vertices along the spine (the
non-leaves), and let d1, . . . , dt be their degrees in order. Note that di ≥ 2 for
all i. Henceforth fix this notation. We begin by determining the splittable
caterpillars that have small spines. Those having one spine vertex are stars
and are splittable. Those having two spine vertices are double-stars and
generally are not splittable.

Theorem 3.2. A double-star of even size is splittable if and only if the
degrees of the two spine vertices differ by exactly 1. A double-star of odd
size is splittable if and only if the degrees of the two spine vertices are both
odd or differ by at most 2.
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Proof. Let G be a double-star of even size. By symmetry, we may assume
that d1 ≥ d2 and that the subgraph GA in some splitting contains the
edge of the spine. Now GA can have only one nontrivial component. By
Lemma 3.1, also GB has only one nontrivial component. Hence GA and
GB each is one star plus isolated vertices. Thus GA contains all the pen-
dant edges at one spine vertex, and GB contains all those at the other.
Splittability now requires d1 = d2 + 1, and both stars have d2 edges.

When G is a double-star of odd size, d1+d2 is even. If d1 and d2 are odd,
then deleting the spine edge leaves two stars of even size; put half the edges
of each star in GA. If d1 and d2 are both even, then deleting the central edge
does not leave a splittable forest unless d1 = d2. When d1 6= d2, therefore,
splittability requires obtaining a splittable double-star by deleting one edge.
By the preceding paragraph, this requires |d1 − d2| = 2. �

Before determining the splittable caterpillars with three-vertex spines,
we develop some more general machinery.

Lemma 3.3. In a splittable caterpillar with even size, the number of spine
vertices has opposite parity from the sum of the degrees of the spine vertices.

Proof. The total number of edges in the caterpillar is (
∑t

i=1
di)− (t− 1).�

For caterpillars of even size, an arithmetic condition is sufficient when
the spine has an odd number of vertices.

Lemma 3.4. Let G be a caterpillar with even size and degrees d1, . . . , dt

along the spine. If t is odd and the system {αi + βi = di : 1 ≤ i ≤ t} has
an integer solution with {αi}

t
i=1 = {βi}

t
i=1 and all values positive except

possibly αt = β1 = 0, then G is splittable.

Proof. We construct a splitting. Since t is odd, the number of edges on the
spine is even. Let MA and MB be the matchings that arise by alternating
labels A and B along the spine. We may assume that MA covers v1 and
MB covers vt. Put αi − 1 pendant edges at vi into GA and βi − 1 pendant
edges at vi into GB , except for putting αt pendant edges at vt into GA and
β1 pendant edges at v1 into GB .

Since αi + βi = di, the edges in this construction all exist. The number
of nontrivial components in both GA and GB is (t − 1)/2 if αt = β1 = 0
and is (t + 1)/2 otherwise. Degrees α1, . . . , αt and β1, . . . , βt are enforced
at the spine vertices; by hypothesis these are the same numbers. The
remaining degrees are 0 or 1 in each of GA and GB . Each subgraph has
αt +

∑t−1

i=1
(αi − 1) vertices of degree 1 among the leaves of G. The other

leaves of G are isolated vertices in that subgraph. Hence indeed GA and
GB form a splitting of G. �
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A corresponding sufficient condition for splittability of caterpillars of
odd size is that reducing some di by 1 yields a list that is solvable as
in Lemma 3.4. The condition of Lemma 3.4 produces splittings for all
splittable caterpillars of even size that have three spine vertices. Unlike
double-stars, most caterpillars with three spine vertices are splittable, in-
cluding those whose spine degrees are all even or satisfy the strict triangle
inequality.

Theorem 3.5. Let G be a caterpillar with three spine vertices. Let the set
of degrees of the spine vertices be {a, b, c}, labeled so that a ≥ b ≥ c. If G
has even size, then G is splittable if and only if at least one of the following
conditions holds:
(1) a, b, c are all even,
(2) a < b + c,
(3) a = b + c and a = d2, or
(4) a > b + c and b = c.

Proof. By Lemma 3.3, a+b+c is even. In each case, we construct a splitting
with v1v2 and v2v3 in opposite subgraphs. These are obtained by applying
Lemma 3.4. In each case, we provide a solution to the system of equations
in Lemma 3.4 that satisfies all the requirements. We then complete the
proof by showing that when the sufficient conditions all fail, there is no
splitting. There are only two ways for the conditions to all fail: a = b + c
with a = d1 (or similarly a = d3), or a > b + c with b > c.

Case 1: a, b, and c are all even. In this case, set αi = βi = di/2.
Case 2: a < b+c. Since the sum is even, the triangle inequality implies

that each quantity of the form (di + dj − dk)/2 is a positive integer. Also,
di+dj−dk

2
+

di+dk−dj

2
= di. For i ∈ {1, 2, 3}, set αi and βi to be these two

summands, where always k ≡ j + 1 mod 3. Now α1 = β2, α2 = β3, and
α3 = β1.

Case 3: a = b + c and a = d2. Set β1 = α3 = 0, α1 = β2 = d1, and
α2 = β3 = d3. Note that α2 + β2 = d1 + d3 = d2. (Each subgraph is a
double-star with vertices of degrees d1 and d3, plus isolated vertices.)

Case 4: a > b+c and b = c. Since the sum is even, a is even. If d1 = d3,
then set α3 = β1 = 0, α1 = β3 = d1, and α2 = β2 = a/2. If d2 = d3, then
set α1 = β1 = d1/2, α2 = β3 = 1, and α3 = β2 = d2 − 1. In each case,
Lemma 3.4 applies. (The construction does not require a > b + c.)

Case 5: a ≥ b+c and b > c, with a = d1 if a = b+c. Let x be the vertex
with degree a. If x has the same degree in GA and GB , then the union of
the contributions greater than 1 from the other two spine vertices must be
the same in GA and GB . Also a is then even, so to avoid Case 1 with even
sum, b and c must be odd. Hence the other two vertices each contribute
one odd and one even degree, and the number of contributions that are
greater than 1 is even. Since b 6= c, we cannot complete this allocation.
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Hence the contributions from x to the two subgraphs are not equal.
Neither contribution can exceed b, because no vertex can provide that much
for the other subgraph. Also x cannot contribute more than c to both
subgraphs, because only the vertex with degree b can provide more than c
for the second copy of each such degree, and it cannot provide a total of
a. Therefore, splittability in this case requires that a = b + c and that x
contributes degrees b and c to the two subgraphs. Since b > c, the degree
equalling b can be matched only by the vertex of degree b contributing all its
incident edges to the same subgraph, and then the vertex of degree c must
contribute all its incident edges to the other subgraph. This is impossible
when a = d1, since the vertices of degrees b and c are adjacent. �

A caterpillar of odd size with three spine vertices is splittable if and only
if reducing the degree of some spine vertex yields a splittable caterpillar of
even size or deleting some spine edge yields a splittable union of a star and
a double-star. It is lengthy but not hard to characterize such graphs.

The last part of Case 5 yields a general necessary condition.

Lemma 3.6. Let a, b, and c be three largest terms in the degree list of a
graph G. Suppose that a > b + c and b 6= c. If a is odd, then G is not
splittable. If a is even, then in every splitting the vertex with degree a has
half its edges in both subgraphs. �

Generalizing the characterization in Theorem 3.5 to longer spines seems
difficult. In the proof, we were able to use Lemma 3.4 to construct splittings
in all cases where they exist, because Lemma 3.1 guarantees that in all
splittings, the spine edges alternate between the decomposing subgraphs.
Lemma 3.4 precisely describes all splittings of this type.

For general caterpillars, it may be necessary to find splittings of other
types, which correspond to modified versions of the equations. When the
spine edges incident to vi both lie in GA, the variable βi is allowed to be
0. Similarly, αi is allowed to be 0 when those edges both lie in GB . In
addition to having exponentially many versions of the equations, it may be
difficult to tell when a solution exists with the appropriate nonnegativity
or positivity conditions on the variables.

Note also that the splittability of caterpillars with given degree lists
may depend on the order of the degrees along the spine. For example,
when a = b+c in Theorem 3.5, the caterpillar is splittable if a is the degree
of the middle vertex and is not splittable otherwise.

Next we give another sufficient condition for splittability of caterpillars
having even size and an odd number of spine vertices. It does not depend
on the order of the vertex degrees along the spine. It is a sufficient condition
for Lemma 3.4 to provide a splitting.
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Theorem 3.7. Let G be a caterpillar of even size with t spine vertices,
where t is odd. Let d1, . . . , dt be the degrees of the spine vertices, indexed so

that d1 ≥ · · · ≥ dt. If dt +
∑⌊t/2⌋

i=1
d2i >

∑⌊t/2⌋
i=1

d2i−1, then G is splittable.

Proof. For 1 ≤ i ≤ t, let Si be the ⌊t/2⌋-element set in {1, . . . , t} obtained
from {i + 2j : 1 ≤ j ≤ ⌊t/2⌋} by reducing each element modulo t. Treating
t + 1 as 1, for each i we have Si ∩ Si−1 = ∅, and the element missing from
their union is i.

Let D =
∑t

i=1
di. For 1 ≤ i ≤ t, let αi = D/2 −

∑
j∈Si

dj and βi =
D/2 −

∑
j∈Si−1

dj . By construction, αi + βi = di. Also, since t is odd and
G has even size, D is even, and hence each αi and βi is an integer. Finally,
βi = αi−1, cyclically, so {βi}

t
i=1 = {αi}

t
i=1.

Because Lemma 3.4 allows any permutation of the indices in matching
{βi}

t
i=1 with {αi}

t
i=1 (when no 0s are used), it suffices to find a solution

under any indexing of the spine degrees, such as placing them in nonin-
creasing order as above. Lemma 3.4 thus completes the proof each value in
the solution is positive, which requires

∑
j∈Si

dj < D/2 for all i.
We need di +

∑
j∈Si−1

dj −
∑

j∈Si
dj > 0. The numbers of the form

di+2j−1 for 1 ≤ j ≤ (t + 1)/2 are counted positively, and those of the form
di+2j for 1 ≤ j ≤ (t−1)/2 are counted negatively. Group the contributions
as (di+1 − di+2) + (di+3 − di+4) + · · · (di−2 − di−1) + di.

With the degrees indexed in nonincreasing order, all these contributions
are positive except one, which is dt − d1 when i is even. (When i is odd,
all the contributions are positive.) Always ⌊t/2⌋ terms have negative signs,
and they are largest when i = t−1 and the negatives are the odd terms from
d1 through dt−2. The condition in the hypothesis is precisely the condition
that the result remains positive in this case. �

Corollary 3.8. Let G be a caterpillar of even size with an odd number
of spine vertices. If the degree of each spine vertex is more than half the
maximum degree, then G is splittable.

Proof. Let the spine degrees be d1, . . . , dt in nonincreasing order. Because
the negative contributions are differences of successive entries in a mono-
tone list, the total of the negative contributions in the computation of
Theorem 3.7 is at most d1 − dt. By the hypothesis, this is less than the
positive contribution of dt, so Theorem 3.7 applies. �

The condition of Corollary 3.8 holds for caterpillars with maximum de-
gree 3. The corollary fails to determine whether caterpillars with spine
degrees like (4, 3, 3, 2, 2) are splittable. Nevertheless our final result is a
constructive proof that all caterpillars of even size with maximum degree
at most 4 are splittable (regardless of the number of spine vertices). Since
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the double-star with vertices of degrees 5 and 2 is not splittable, the smallest
maximum degree in a non-splittable caterpillar is thus 5.

Theorem 3.9. Every caterpillar with even size and maximum degree at
most 4 is splittable.

Proof. We construct a splitting by specifying a red/blue coloring of the
edges of such a caterpillar G. Let t be the number of spine vertices.

Case 1: t is odd. Alternate colors red and blue along the spine edges.
This will ensure that both subgraphs have (t+1)/2 nontrivial components,
since each end-vertex of the spine will get an incident edge of the other
color. Hence the two subgraphs will have the same number of isolated
vertices (by Lemma 3.1) if they have the same lists of nonzero degrees.

Since t is odd and G has even size, the sum of the spine degrees is even
(by Lemma 3.3). Since the spine degrees lie in {2, 3, 4}, the number of
vertices of degree 3 is even. Arbitrarily pick half to be majority red and
half to be majority blue. Whether a vertex of degree 3 is in the middle or
at the end of the spine, we can allocate the pendant edge(s) at that vertex
to obtain degrees 2 and 1 there in the desired colors.

Each remaining vertex has even degree, with one assigned incident edge
of each color (or just one assigned incident edge if at the end of the spine).
The pendant edges can now be colored so that each vertex of even degree
has half its incident edges in each color.

We have now colored the edges, with half in each color. We ensured that
each color has the same number of vertices with degree 2 (half the vertices
of degree 3 in G, plus all the vertices of degree 4 in G). Hence the two
colors also have the same number of vertices of degree 1 and then degree 0.

Case 2: t is even. The degree-sum of the spine vertices is odd, by
Lemma 3.3. Hence G has an odd number of vertices of degree 3. Since t is
even, there is a vertex v of degree 3 adjacent to a vertex w of degree 2 or 4.
Let u and x be the other neighbors of v and w along the spine, respectively,
so that u, v, w, x lie along the spine in order (u or x may be a leaf if v or w
is the end of the spine).

Form G′ by deleting v and w (and their incident edges and resulting
isolated vertices) from G and replacing them with one vertex z adjacent to
u and x. Now G′ is a caterpillar with an even number of edges (four or six
edges were replaced with two) and t − 1 spine vertices. Since t − 1 is odd,
G′ is splittable via the argument in Case 1. Furthermore, that splitting
alternates colors along the spine, so z has one incident edge of each color;
we may assume that uz is red and xz is blue. See Figure 2, where red is
shown in bold.

Returning to G, give the edges of G that lie also in G′ the same color
as in the splitting of G′. Replace the red uz with uv in red; also put red
on the remaining edge incident to v other than vw. If w has degree 2, then
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make both edges at w blue. Now degree 1 in each subgraph at z has been
replaced with vertices of degrees 0, 1, 2 in each subgraph, so G has been
split. If w has degree 4, then make wv red and wx blue, and make the two
remaining edges at w blue. Now degree 1 in each subgraph at z has been
replaced with vertices of degrees 0, 0, 1, 1, 3 in each subgraph, so again G
has been split. �

• •

•

• •
2:1

1:0

0:2

u v
G

w x
↔ • • •

u z x

1:1
↔

G′

• •

•

• •

• •
1:0 0:1 0:1

u v

3:0

w x

1 : 3

G

Figure 2: Two cases for splitting caterpillars

It is disappointing in Case 2 to introduce a vertex of degree 2 or 4 whose
incident edges are not split equally between the two subgraphs, but it is
unavoidable, as shown by the caterpillar obtained by subdividing one edge
of the claw K1,3.
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