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Games and Adversarial Search

Artificial Intelligence

Slides are mostly adapted from AIMA, MIT Open Courseware and 

Svetlana Lazebnik (UIUC)



2

World Champion chess player Garry Kasparov is defeated by 

IBM’s Deep Blue chess-playing computer in a 

six-game match in May, 1997

(link)
© Telegraph Group Unlimited 1997© Telegraph Group Unlimited 1997

http://www.computerhistory.org/chess/full_record.php?iid=stl-431e1a07b22e1&mainImage=1


3

Why study games?

• Games are a traditional hallmark of intelligence

• Games are easy to formalize

• Games can be a good model of real-world competitive 

or cooperative activities

– Military confrontations, negotiation, auctions, etc.
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Games – history of chess playing

• 1949 – Shannon paper – originated the ideas

• 1951 – Turing paper – hand simulation

• 1958 – Bernstein program 

• 1955-1960 – Simon-Newell program

• 1961 – Soviet program

• 1966 – 1967 – MacHack 6 – defeated a good player

• 1970s – NW chess 4.5

• 1980s – Cray Bitz

• 1990s – Belle, Hitech, Deep Thought, 

• 1997 - Deep Blue - defeated Garry Kasparov
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Games

• Multi agent environments : any given agent will need to 

consider the actions of other agents and how they affect 

its own welfare.

• The unpredictability of these other agents can introduce 

many possible contingencies

• There could be competitive or cooperative environments

• Competitive environments, in which the agent’s goals are 

in conflict require adversarial search – these problems are 

called as games
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Games vs. single-agent search

• We don’t know how the opponent will act

– The solution is not a fixed sequence of actions from start state to 

goal state, but a strategy or policy (a mapping from state to best 

move in that state)

• Efficiency is critical to playing well

– The time to make a move is limited

– The branching factor, search depth, and number of terminal 

configurations are huge

• In chess, branching factor ≈ 35 and depth ≈ 100, giving a search tree of 

10154 nodes

– Number of atoms in the observable universe ≈ 1080

– This rules out searching all the way to the end of the game
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Types of game environments

Deterministic Stochastic

Perfect information

(fully observable)

Imperfect information

(partially observable)

Chess, checkers, go Backgammon, 

monopoly

Battleships Scrabble, 

poker, bridge
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Games

• In game theory (economics), any multiagent environment 

(either cooperative or competitive) is a game provided 

that the impact of each agent on the other is significant

• AI games are a specialized kind - deterministic, turn 

taking, two-player, zero sum games of perfect 

information

• In our terminology – deterministic, fully observable 

environments with two agents whose actions alternate 

and the utility values at the end of the game are always 

equal and opposite (+1 and –1)
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Alternating two-player zero-sum games

• Players take turns

• Each game outcome or terminal state has a utility for 

each player (e.g., 1 for win, -1 for loss, 0 for draw)

• The sum of both players’ utilities is a constant
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Game Tree search
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Optimal strategies

• In a normal search problem, the optimal solution would be a 
sequence of moves leading to a goal state - a terminal state that is a 
win

• In a game, MIN has something to say about it and therefore MAX 
must find a contingent strategy, which specifies 

– MAX’s move in the initial state, 

– then MAX’s moves in the states resulting from every possible response by 
MIN,

– then MAX’s moves in the states resulting from every possible response by 
MIN to those moves

– …

• An optimal strategy leads to outcomes at least as good as any other 
strategy when one is playing an infallible opponent
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Partial Game Tree for Tic-Tac-Toe
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Game tree

• A game of tic-tac-toe between two players, “max” and “min”
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MAX (X) aims to maximize score. 
MIN (O) aims to minimize score. 

MINIMAX

S0 : initial state 
PLAYER(s) : returns which player to move in state s 
ACTIONS(s) : returns legal moves in state s 
RESULT(s, a) : returns state after action a taken in state s 
TERMINAL(s) : checks if state s is a terminal state 
UTILITY(s) : final numerical value for terminal state s 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Minimax

• Perfect play for deterministic games

• Idea: choose move to position with highest minimax value

= best achievable payoff against best play

• E.g., 2-ply game:
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Minimax value

• Given a game tree, the optimal strategy can be 
determined by examining the minimax value of 
each node (MINIMAX-VALUE(n))

• The minimax value of a node is the utility of being 
in the corresponding state, assuming that both 
players play optimally from there to the end of the 
game

• Given a choice, MAX prefer to move to a state of 
maximum value, whereas MIN prefers a state of 
minimum value
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Minimax algorithm
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Game tree search

• Minimax value of a node: the utility (for MAX) of being in the 

corresponding state, assuming perfect play on both sides

• Minimax strategy: Choose the move that gives the best worst-case 

payoff

3 2 2

3
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• Minimax(node) = 

▪ Utility(node) if node is terminal

▪ maxaction Minimax(Succ(node, action)) if player = MAX

▪ minaction Minimax(Succ(node, action)) if player = MIN

3 2 2

3

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,4,6), min(14,5,2))

= max(3,2,2)

= 3
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Optimality of minimax

• The minimax strategy is optimal 

against an optimal opponent

• What if your opponent is suboptimal?

– Your utility can only be higher than if you 

were playing an optimal opponent!

– A different strategy may work better for a 

sub-optimal opponent, but it will 

necessarily be worse against an optimal 

opponent

11

Example from D. Klein and P. Abbeel



26

More general games

• More than two players, non-zero-sum

• Utilities are now tuples

• Each player maximizes their own utility at their node

• Utilities get propagated (backed up) from children to parents

4,3,2 7,4,1

4,3,2

1,5,2 7,7,1

1,5,2

4,3,2
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Tree Player and Non-zero sum games

(+1 +2 +3)

(+6 +1 +2)

(-1 +5 +2) (+5 +4 +5)

(+1 +2 +3)
(-1 +5 +2)

(+1 +2 +3)
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Alpha-beta pruning

• It is possible to compute the exact minimax decision 

without expanding every node in the game tree
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α-β pruning

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,x,y), min(14,5,2))

= max(3,min(2,x,y),2)

= max(3,z,2)      where z <=2

= 3

X Y
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Alpha-beta pruning

3

3
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Alpha-beta pruning

3

3

2
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Alpha-beta pruning

3

3

2 14
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Alpha-beta pruning

3

3

2 5
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Alpha-beta pruning

3

3

2 2 
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Alpha-beta pruning

• α is the value of the best choice for 
the MAX player found so far 
at any choice point above node n

• We want to compute the 
MIN-value at n

• As we loop over n’s children, 
the MIN-value decreases

• If it drops below α, MAX will never 
choose n, so we can ignore n’s 
remaining children

• Analogously, β is the value of the 
lowest-utility choice found so far for 
the MIN player
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The α-β algorithm
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Alpha-beta pruning
Function action = Alpha-Beta-Search(node) 

v = Max-Value(node, −∞, ∞)

return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function v = Max-Value(node, α, β)

if Terminal(node) return Utility(node)

v = −∞

for each action from node

v = Max(v, Min-Value(Succ(node, action), α, β))

if v ≥ β return v

α = Max(α, v)

end for

return v

node

Succ(node, action)

action

…



38Alpha-beta pruning

Function action = Alpha-Beta-Search(node) 

v = Min-Value(node, −∞, ∞)

return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function v = Min-Value(node, α, β)

if Terminal(node) return Utility(node)

v = +∞

for each action from node

v = Min(v, Max-Value(Succ(node, action), α, β))

if v ≤ α return v

β = Min(β, v)

end for

return v

node

Succ(node, action)

action

…
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example



46

α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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α-β pruning example
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H I

A

B C

D E

6 5 8

MAX

MIN

6 >=8

MAX

<=6

J K

= agent = opponent

MIN
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H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

6

H I J K L M

= agent = opponent

2 1

2

<=2

>=6

MIN
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H I
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H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

6

H I J K L M

= agent = opponent

2 1

2

2

6

alpha 

cutoff

beta 

cutoff

Alpha-beta Pruning

MIN
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3 2 2

3 2 2
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Alpha-beta pruning

• Pruning does not affect final result

• Amount of pruning depends on move ordering

– Should start with the “best” moves (highest-value for MAX 

or lowest-value for MIN)

– For chess, can try captures first, then threats, then forward 

moves, then backward moves

– Can also try to remember “killer moves” from other branches 

of the tree

• With perfect ordering, the time to find the best move is 

reduced to O(bm/2) from O(bm)

– Depth of search is effectively doubled
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Move generation
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Min-Max

3
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Resource limits

Suppose we have 100 secs, explore 104 nodes/sec

→ 106 nodes per move

Standard approach:

• cutoff test: 

e.g., depth limit (perhaps add quiescence search)

• evaluation function 

= estimated desirability of position
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Evaluation function 
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Evaluation function

• "material", : some measure of which pieces one has on the 

board. 

• A typical weighting for each type of chess piece is shown 

• Other types of features try to encode something about the 

distribution of the pieces on the board. 
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Evaluation functions

• A typical evaluation function is a linear function in which some set of 

coefficients is used to weight a number of "features" of the board 

position. 

• weighted sum of features:

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

– For chess, wk may be the material value of a piece (pawn = 1, 

knight = 3, rook = 5, queen = 9) and fk(s) may be the advantage in 

terms of that piece

– Eg. w1 = 9 with 

f1(s) = (number of white queens) – (number of black queens)



65

Evaluation function

• Cut off search at a certain depth and compute the value of an 

evaluation function for a state instead of its minimax value

• The evaluation function may be thought of as the probability of 

winning from a given state or the expected value of that state

– If a position A has a 100% chance of winning it should have the 

evaluation 1

– If position B have a 50% chance of winning and 25% os loosing 

and 25% of being a draw, the evaluation value would be 

+1x0.50+ -1x0.25+ 0x0.25 = 0.25

• Evaluation functions may be learned from game databases or by 

having the program play many games against itself
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Cutting off search

MinimaxCutoff is identical to 
MinimaxValue except

1. Terminal? is replaced by 
Cutoff?

2. Utility is replaced by Eval

Does it work in practice?

bm = 106, b=35 m=4

4-ply lookahead is a hopeless chess 
player!

– 4-ply ≈ human novice

– 8-ply ≈ typical PC, human 
master

– 12-ply ≈ Deep Blue, 
Kasparov
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Chess playing systems

• Baseline system: 200 million node evalutions per move 

(3 min), minimax with a decent evaluation function and 

quiescence search

– 5-ply ≈ human novice

• Add alpha-beta pruning

– 10-ply ≈ typical PC, experienced player

• Deep Blue: 30 billion evaluations per move, singular 

extensions, evaluation function with 8000 features, 

large databases of opening and endgame moves

– 14-ply ≈ Garry Kasparov

• More recent state of the art (Hydra, ca. 2006): 36 billion 

evaluations per second, advanced pruning techniques

– 18-ply ≈ better than any human alive?

http://en.wikipedia.org/wiki/Hydra_(chess)
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Practical issues
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Cutting off search

• Horizon effect: you may incorrectly estimate the 

value of a state by overlooking an event that is just 

beyond the depth limit

– For example, a damaging move by the opponent that 

can be delayed but not avoided

• Possible remedies

– Quiescence search: do not cut off search at positions 

that are unstable – for example, are you about to lose an 

important piece?

– Singular extension: a strong move that should be tried 

when the normal depth limit is reached
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Types of game environments

Deterministic Stochastic

Perfect information

(fully observable)

Imperfect information

(partially observable)

Chess, checkers, go Backgammon, 

monopoly

Battleships Scrabble, 

poker, bridge
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Stochastic games

• How to incorporate dice throwing into the game tree?
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Stochastic games
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Minimax vs. Expectiminimax

•
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Stochastic games

• Expectiminimax: for chance nodes, sum values of 

successor states weighted by the probability of each 

successor

• Value(node) = 

▪ Utility(node) if node is terminal

▪ maxaction Value(Succ(node, action)) if type = MAX

▪ minaction Value(Succ(node, action)) if type = MIN

▪ sumaction P(Succ(node, action)) * Value(Succ(node, action)) if 

type = CHANCE
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Expectiminimax example

• RANDOM: Max flips a coin.  It’s heads or tails.

• MAX: Max either stops, or continues.

– Stop on heads: Game ends, Max wins (value = $2).

– Stop on tails: Game ends, Max loses (value = -$2).

– Continue: Game continues.

• RANDOM: Min flips a coin.

– HH: value = $2

– TT: value = -$2

– HT or TH: value = 0

• MIN: Min decides whether to keep the current 
outcome (value as above), or pay a penalty 
(value=$1).

TH

H H TT

2 -2

02 1 1 0 1 -2 1

1 0 0 -2

½ -1

2 -1

½
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Imperfect information example

• Min chooses a coin.

• I say the name of a U.S. 

President.

– If I guessed right, she gives 

me the coin.

– If I guessed wrong, I have 

to give her a coin to match 

the one she has.

1 -5 5-1
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Method #1: Treat “unknown” as “unknown”

• The problem: I don’t know which 
state I’m in.  I only know it’s one of 
these two.

• The solution: choose the policy that 
maximizes my minimum reward.

– “Lincoln”: minimum reward is -5.

– “Jefferson”: minimum reward is -1.

• Miniminimax policy: say 
“Jefferson”.

1 -5 5-1
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Method #2: Treat “unknown” as “random”

•

1 -1 5-5
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How to deal with imperfect information

• If you think you know the probabilities of 

different settings, and if you want to maximize 

your average winnings (for example, you can 

afford to play the game many times): 

expectiminimax

• If you have no idea of the probabilities of different 

settings; or, if you can only afford to play once, 

and you can’t afford to lose: miniminimax

• If the unknown information has been selected 

intentionally by your opponent: use game theory
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Stochastic games

• Expectiminimax: for chance nodes, sum values of 

successor states weighted by the probability of each 

successor

– Nasty branching factor, defining evaluation functions and 

pruning algorithms more difficult

• Monte Carlo simulation: when you get to a chance 

node, simulate a large number of games with random 

dice rolls and use win percentage as evaluation function

– Can work well for games like Backgammon
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Stochastic games of imperfect information

• Simple Monte Carlo approach: run multiple 

simulations with random cards pretending 

the game is fully observable

– “Averaging over clairvoyance”

– Problem: this strategy does not account for bluffing, 

information gathering, etc.
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Stochastic search for stochastic games

•
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Monte Carlo Tree Search

• What about deterministic games with deep trees, large branching 

factor, and no good heuristics – like Go?

• Instead of depth-limited search with an evaluation function, 

use randomized simulations

• Starting at the current state (root of search tree), iterate:

– Select a leaf node for expansion 

using a tree policy (trading off

exploration and exploitation)

– Run a simulation using 

a default policy (e.g., random 

moves) until a terminal state 

is reached

– Back-propagate the outcome 

to update the value estimates 

of internal tree nodes

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf
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Case study: AlphaGo

• “Gentlemen 
should not 
waste their 
time on trivial 
games -- they 
should play 
go.”

• -- Confucius,

• The Analects

• ca. 500 B. C. E.

Anton Ninno Roy Laird, Ph.D.
antonninno@yahoo.com roylaird@gmail.com

special thanks to Kiseido Publications 
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Learned evaluation functions
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Stochastic search off-line

Training phase:

• Spend a few weeks allowing your computer to play 
billions of random games from every possible starting state

• Value of the starting state = average value of the ending 
states achieved during those billion random games

Testing phase:

• During the alpha-beta search, search until you reach a state 
whose value you have stored in your value lookup table

• Oops…. Why doesn’t this work?
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Evaluation as a pattern recognition problem

Training phase:

•Spend a few weeks allowing your computer to play billions of random games 
from billions of possible starting states.

•Value of the starting state = average value of the ending states achieved during 
those billion random games

Generalization:

•Featurize (e.g., x1=number of             patterns, x2 = number of             patterns, 
etc.)

•Linear regression: find a1, a2, etc. so that Value(state) ≈ a1*x1+x2*x2+…

Testing phase:

•During the alpha-beta search, search as deep as you can, then estimate the value 
of each state at your horizon using Value(state) ≈ a1*x1+x2*x2+…
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Pros and Cons

• Learned evaluation function

– Pro: off-line search permits lots of compute time, therefore 
lots of training data

– Con: there’s no way you can evaluate every starting state 
that might be achieved during actual game play.  Some 
starting states will be missed, so generalized evaluation 
function is necessary

• On-line stochastic search

– Con: limited compute time

– Pro: it’s possible to estimate the value of the state you’ve 
reached during actual game play
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AlphaGo

• SL policy network

– Idea: perform supervised learning (SL) to predict human 

moves

– Given state s, predict probability distribution over moves a, 

P(a|s)

– Trained on 30M positions, 57% accuracy on predicting 

human moves

– Also train a smaller, faster rollout policy network (24% 

accurate)

• RL policy network

– Idea: fine-tune policy network using reinforcement learning

(RL)

– Initialize RL network to SL network

– Play two snapshots of the network against each other, update 

parameters to maximize expected final outcome

– RL network wins against SL network 80% of the time, wins 

against open-source Pachi Go program 85% of the time

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature 

529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
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Alpha-Go video

https://www.youtube.com/watch?v=g-dKXOlsf98
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Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912

• Chess playing with evaluation function, quiescence 

search, selective search: 

Claude Shannon, 1949 (paper)

• Alpha-beta search: John McCarthy, 1956 

• Checkers program that learns its own evaluation 

function by playing against itself: Arthur Samuel,  

1956 (Rodney Brooks blog post)

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0 and 2-1.Programming_a_computer_for_playing_chess.shannon/2-0 and 2-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
https://rodneybrooks.com/forai-machine-learning-explained/
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Game AI: State of the art

• Computers are better than humans:

– Checkers: solved in 2007

– Chess:

• State-of-the-art search-based systems now better than humans

• Deep learning machine teaches itself chess in 72 hours, plays at 
International Master Level (arXiv, September 2015)

• Computers are competitive with top human players:

– Backgammon: TD-Gammon system (1992) used 
reinforcement learning to learn a good evaluation function

– Bridge: top systems use Monte Carlo simulation and 
alpha-beta search

– Go: computers were not considered competitive until 
AlphaGo in 2016

https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
https://en.wikipedia.org/wiki/TD-Gammon
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Game AI: State of the art

• Computers are not competitive with top human players:

– Poker 

• Heads-up limit hold’em poker is solved (2015) 
– Simplest variant played competitively by humans

– Smaller number of states than checkers, but partial observability makes it difficult

– Essentially weakly solved = cannot be beaten with statistical significance 

in a lifetime of playing

• CMU’s Libratus system beats four of the best human players 

at no-limit Texas Hold’em poker (2017)

http://www.sciencemag.org/content/347/6218/145.abstract
https://www.wired.com/2017/02/libratus/
https://www.wired.com/2017/02/libratus/
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http://xkcd.com/1002/

See also: http://xkcd.com/1263/

http://xkcd.com/1002/
http://xkcd.com/1263/
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Calvinball:

• Play it online

• Watch an instructional video

https://insaner.com/calvinball/
https://www.youtube.com/watch?v=jr85nM9q08k
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