
1

Games and Adversarial Search

Artificial Intelligence

Slides are mostly adapted from AIMA, MIT Open Courseware and

Svetlana Lazebnik (UIUC)

2

World Champion chess player Garry Kasparov is defeated by

IBM’s Deep Blue chess-playing computer in a

six-game match in May, 1997

(link)
© Telegraph Group Unlimited 1997© Telegraph Group Unlimited 1997

http://www.computerhistory.org/chess/full_record.php?iid=stl-431e1a07b22e1&mainImage=1

3

Why study games?

• Games are a traditional hallmark of intelligence

• Games are easy to formalize

• Games can be a good model of real-world competitive

or cooperative activities

– Military confrontations, negotiation, auctions, etc.

4

Games – history of chess playing

• 1949 – Shannon paper – originated the ideas

• 1951 – Turing paper – hand simulation

• 1958 – Bernstein program

• 1955-1960 – Simon-Newell program

• 1961 – Soviet program

• 1966 – 1967 – MacHack 6 – defeated a good player

• 1970s – NW chess 4.5

• 1980s – Cray Bitz

• 1990s – Belle, Hitech, Deep Thought,

• 1997 - Deep Blue - defeated Garry Kasparov

5

Games

• Multi agent environments : any given agent will need to

consider the actions of other agents and how they affect

its own welfare.

• The unpredictability of these other agents can introduce

many possible contingencies

• There could be competitive or cooperative environments

• Competitive environments, in which the agent’s goals are

in conflict require adversarial search – these problems are

called as games

6

Games vs. single-agent search

• We don’t know how the opponent will act

– The solution is not a fixed sequence of actions from start state to

goal state, but a strategy or policy (a mapping from state to best

move in that state)

• Efficiency is critical to playing well

– The time to make a move is limited

– The branching factor, search depth, and number of terminal

configurations are huge

• In chess, branching factor ≈ 35 and depth ≈ 100, giving a search tree of

10154 nodes

– Number of atoms in the observable universe ≈ 1080

– This rules out searching all the way to the end of the game

7

Types of game environments

Deterministic Stochastic

Perfect information

(fully observable)

Imperfect information

(partially observable)

Chess, checkers, go Backgammon,

monopoly

Battleships Scrabble,

poker, bridge

8

Games

• In game theory (economics), any multiagent environment

(either cooperative or competitive) is a game provided

that the impact of each agent on the other is significant

• AI games are a specialized kind - deterministic, turn

taking, two-player, zero sum games of perfect

information

• In our terminology – deterministic, fully observable

environments with two agents whose actions alternate

and the utility values at the end of the game are always

equal and opposite (+1 and –1)

9

Alternating two-player zero-sum games

• Players take turns

• Each game outcome or terminal state has a utility for

each player (e.g., 1 for win, -1 for loss, 0 for draw)

• The sum of both players’ utilities is a constant

10

Game Tree search

11

Optimal strategies

• In a normal search problem, the optimal solution would be a
sequence of moves leading to a goal state - a terminal state that is a
win

• In a game, MIN has something to say about it and therefore MAX
must find a contingent strategy, which specifies

– MAX’s move in the initial state,

– then MAX’s moves in the states resulting from every possible response by
MIN,

– then MAX’s moves in the states resulting from every possible response by
MIN to those moves

– …

• An optimal strategy leads to outcomes at least as good as any other
strategy when one is playing an infallible opponent

12

Partial Game Tree for Tic-Tac-Toe

13

Game tree

• A game of tic-tac-toe between two players, “max” and “min”

16

MAX (X) aims to maximize score.
MIN (O) aims to minimize score.

MINIMAX

S0 : initial state
PLAYER(s) : returns which player to move in state s
ACTIONS(s) : returns legal moves in state s
RESULT(s, a) : returns state after action a taken in state s
TERMINAL(s) : checks if state s is a terminal state
UTILITY(s) : final numerical value for terminal state s

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

17

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

18

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

19

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

20

Minimax

• Perfect play for deterministic games

• Idea: choose move to position with highest minimax value

= best achievable payoff against best play

• E.g., 2-ply game:

21

Minimax value

• Given a game tree, the optimal strategy can be
determined by examining the minimax value of
each node (MINIMAX-VALUE(n))

• The minimax value of a node is the utility of being
in the corresponding state, assuming that both
players play optimally from there to the end of the
game

• Given a choice, MAX prefer to move to a state of
maximum value, whereas MIN prefers a state of
minimum value

22

Minimax algorithm

23

Game tree search

• Minimax value of a node: the utility (for MAX) of being in the

corresponding state, assuming perfect play on both sides

• Minimax strategy: Choose the move that gives the best worst-case

payoff

3 2 2

3

24

• Minimax(node) =

▪ Utility(node) if node is terminal

▪ maxaction Minimax(Succ(node, action)) if player = MAX

▪ minaction Minimax(Succ(node, action)) if player = MIN

3 2 2

3

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,4,6), min(14,5,2))

= max(3,2,2)

= 3

25

Optimality of minimax

• The minimax strategy is optimal

against an optimal opponent

• What if your opponent is suboptimal?

– Your utility can only be higher than if you

were playing an optimal opponent!

– A different strategy may work better for a

sub-optimal opponent, but it will

necessarily be worse against an optimal

opponent

11

Example from D. Klein and P. Abbeel

26

More general games

• More than two players, non-zero-sum

• Utilities are now tuples

• Each player maximizes their own utility at their node

• Utilities get propagated (backed up) from children to parents

4,3,2 7,4,1

4,3,2

1,5,2 7,7,1

1,5,2

4,3,2

27

Tree Player and Non-zero sum games

(+1 +2 +3)

(+6 +1 +2)

(-1 +5 +2) (+5 +4 +5)

(+1 +2 +3)
(-1 +5 +2)

(+1 +2 +3)

28

Alpha-beta pruning

• It is possible to compute the exact minimax decision

without expanding every node in the game tree

29

α-β pruning

MINIMAX-VALUE(root) = max(min(3,12,8), min(2,x,y), min(14,5,2))

= max(3,min(2,x,y),2)

= max(3,z,2) where z <=2

= 3

X Y

30

Alpha-beta pruning

3

3

31

Alpha-beta pruning

3

3

2

32

Alpha-beta pruning

3

3

2 14

33

Alpha-beta pruning

3

3

2 5

34

Alpha-beta pruning

3

3

2 2

35

Alpha-beta pruning

• α is the value of the best choice for
the MAX player found so far
at any choice point above node n

• We want to compute the
MIN-value at n

• As we loop over n’s children,
the MIN-value decreases

• If it drops below α, MAX will never
choose n, so we can ignore n’s
remaining children

• Analogously, β is the value of the
lowest-utility choice found so far for
the MIN player

36

The α-β algorithm

37

Alpha-beta pruning
Function action = Alpha-Beta-Search(node)

v = Max-Value(node, −∞, ∞)

return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function v = Max-Value(node, α, β)

if Terminal(node) return Utility(node)

v = −∞

for each action from node

v = Max(v, Min-Value(Succ(node, action), α, β))

if v ≥ β return v

α = Max(α, v)

end for

return v

node

Succ(node, action)

action

…

38Alpha-beta pruning

Function action = Alpha-Beta-Search(node)

v = Min-Value(node, −∞, ∞)

return the action from node with value v

α: best alternative available to the Max player

β: best alternative available to the Min player

Function v = Min-Value(node, α, β)

if Terminal(node) return Utility(node)

v = +∞

for each action from node

v = Min(v, Max-Value(Succ(node, action), α, β))

if v ≤ α return v

β = Min(β, v)

end for

return v

node

Succ(node, action)

action

…

39

α-β pruning example

40

α-β pruning example

41

α-β pruning example

42

α-β pruning example

43

α-β pruning example

44

α-β pruning example

45

α-β pruning example

46

α-β pruning example

47

α-β pruning example

48

α-β pruning example

49

α-β pruning example

50

α-β pruning example

51

α-β pruning example

52

H I

A

B C

D E

6 5 8

MAX

MIN

6 >=8

MAX

<=6

J K

= agent = opponent

MIN

53

H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

6

H I J K L M

= agent = opponent

2 1

2

<=2

>=6

MIN

54

H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

6

H I J K L M

= agent = opponent

2 1

2

2

>=6

MIN

55

H I

A

B C

D E F G

6 5 8

MAX

MIN

6 >=8

MAX

6

H I J K L M

= agent = opponent

2 1

2

2

6

alpha

cutoff

beta

cutoff

Alpha-beta Pruning

MIN

57

3 2 2

3 2 2

58

Alpha-beta pruning

• Pruning does not affect final result

• Amount of pruning depends on move ordering

– Should start with the “best” moves (highest-value for MAX

or lowest-value for MIN)

– For chess, can try captures first, then threats, then forward

moves, then backward moves

– Can also try to remember “killer moves” from other branches

of the tree

• With perfect ordering, the time to find the best move is

reduced to O(bm/2) from O(bm)

– Depth of search is effectively doubled

59

Move generation

60

Min-Max

3

61

Resource limits

Suppose we have 100 secs, explore 104 nodes/sec

→ 106 nodes per move

Standard approach:

• cutoff test:

e.g., depth limit (perhaps add quiescence search)

• evaluation function

= estimated desirability of position

62

Evaluation function

63

Evaluation function

• "material", : some measure of which pieces one has on the

board.

• A typical weighting for each type of chess piece is shown

• Other types of features try to encode something about the

distribution of the pieces on the board.

64

Evaluation functions

• A typical evaluation function is a linear function in which some set of

coefficients is used to weight a number of "features" of the board

position.

• weighted sum of features:

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

– For chess, wk may be the material value of a piece (pawn = 1,

knight = 3, rook = 5, queen = 9) and fk(s) may be the advantage in

terms of that piece

– Eg. w1 = 9 with

f1(s) = (number of white queens) – (number of black queens)

65

Evaluation function

• Cut off search at a certain depth and compute the value of an

evaluation function for a state instead of its minimax value

• The evaluation function may be thought of as the probability of

winning from a given state or the expected value of that state

– If a position A has a 100% chance of winning it should have the

evaluation 1

– If position B have a 50% chance of winning and 25% os loosing

and 25% of being a draw, the evaluation value would be

+1x0.50+ -1x0.25+ 0x0.25 = 0.25

• Evaluation functions may be learned from game databases or by

having the program play many games against itself

66

Cutting off search

MinimaxCutoff is identical to
MinimaxValue except

1. Terminal? is replaced by
Cutoff?

2. Utility is replaced by Eval

Does it work in practice?

bm = 106, b=35 m=4

4-ply lookahead is a hopeless chess
player!

– 4-ply ≈ human novice

– 8-ply ≈ typical PC, human
master

– 12-ply ≈ Deep Blue,
Kasparov

67

Chess playing systems

• Baseline system: 200 million node evalutions per move

(3 min), minimax with a decent evaluation function and

quiescence search

– 5-ply ≈ human novice

• Add alpha-beta pruning

– 10-ply ≈ typical PC, experienced player

• Deep Blue: 30 billion evaluations per move, singular

extensions, evaluation function with 8000 features,

large databases of opening and endgame moves

– 14-ply ≈ Garry Kasparov

• More recent state of the art (Hydra, ca. 2006): 36 billion

evaluations per second, advanced pruning techniques

– 18-ply ≈ better than any human alive?

http://en.wikipedia.org/wiki/Hydra_(chess)

68

Practical issues

69

Cutting off search

• Horizon effect: you may incorrectly estimate the

value of a state by overlooking an event that is just

beyond the depth limit

– For example, a damaging move by the opponent that

can be delayed but not avoided

• Possible remedies

– Quiescence search: do not cut off search at positions

that are unstable – for example, are you about to lose an

important piece?

– Singular extension: a strong move that should be tried

when the normal depth limit is reached

71

Types of game environments

Deterministic Stochastic

Perfect information

(fully observable)

Imperfect information

(partially observable)

Chess, checkers, go Backgammon,

monopoly

Battleships Scrabble,

poker, bridge

72

Stochastic games

• How to incorporate dice throwing into the game tree?

73

Stochastic games

74

Minimax vs. Expectiminimax

•

75

Stochastic games

• Expectiminimax: for chance nodes, sum values of

successor states weighted by the probability of each

successor

• Value(node) =

▪ Utility(node) if node is terminal

▪ maxaction Value(Succ(node, action)) if type = MAX

▪ minaction Value(Succ(node, action)) if type = MIN

▪ sumaction P(Succ(node, action)) * Value(Succ(node, action)) if

type = CHANCE

76

Expectiminimax example

• RANDOM: Max flips a coin. It’s heads or tails.

• MAX: Max either stops, or continues.

– Stop on heads: Game ends, Max wins (value = $2).

– Stop on tails: Game ends, Max loses (value = -$2).

– Continue: Game continues.

• RANDOM: Min flips a coin.

– HH: value = $2

– TT: value = -$2

– HT or TH: value = 0

• MIN: Min decides whether to keep the current
outcome (value as above), or pay a penalty
(value=$1).

TH

H H TT

2 -2

02 1 1 0 1 -2 1

1 0 0 -2

½ -1

2 -1

½

77

Imperfect information example

• Min chooses a coin.

• I say the name of a U.S.

President.

– If I guessed right, she gives

me the coin.

– If I guessed wrong, I have

to give her a coin to match

the one she has.

1 -5 5-1

78

Method #1: Treat “unknown” as “unknown”

• The problem: I don’t know which
state I’m in. I only know it’s one of
these two.

• The solution: choose the policy that
maximizes my minimum reward.

– “Lincoln”: minimum reward is -5.

– “Jefferson”: minimum reward is -1.

• Miniminimax policy: say
“Jefferson”.

1 -5 5-1

79

Method #2: Treat “unknown” as “random”

•

1 -1 5-5

80

How to deal with imperfect information

• If you think you know the probabilities of

different settings, and if you want to maximize

your average winnings (for example, you can

afford to play the game many times):

expectiminimax

• If you have no idea of the probabilities of different

settings; or, if you can only afford to play once,

and you can’t afford to lose: miniminimax

• If the unknown information has been selected

intentionally by your opponent: use game theory

83

Stochastic games

• Expectiminimax: for chance nodes, sum values of

successor states weighted by the probability of each

successor

– Nasty branching factor, defining evaluation functions and

pruning algorithms more difficult

• Monte Carlo simulation: when you get to a chance

node, simulate a large number of games with random

dice rolls and use win percentage as evaluation function

– Can work well for games like Backgammon

85

Stochastic games of imperfect information

• Simple Monte Carlo approach: run multiple

simulations with random cards pretending

the game is fully observable

– “Averaging over clairvoyance”

– Problem: this strategy does not account for bluffing,

information gathering, etc.

87

Stochastic search for stochastic games

•

88

Monte Carlo Tree Search

• What about deterministic games with deep trees, large branching

factor, and no good heuristics – like Go?

• Instead of depth-limited search with an evaluation function,

use randomized simulations

• Starting at the current state (root of search tree), iterate:

– Select a leaf node for expansion

using a tree policy (trading off

exploration and exploitation)

– Run a simulation using

a default policy (e.g., random

moves) until a terminal state

is reached

– Back-propagate the outcome

to update the value estimates

of internal tree nodes

C. Browne et al., A survey of Monte Carlo Tree Search Methods, 2012

http://ccg.doc.gold.ac.uk/papers/browne_tciaig12_1.pdf

89

Case study: AlphaGo

• “Gentlemen
should not
waste their
time on trivial
games -- they
should play
go.”

• -- Confucius,

• The Analects

• ca. 500 B. C. E.

Anton Ninno Roy Laird, Ph.D.
antonninno@yahoo.com roylaird@gmail.com

special thanks to Kiseido Publications

90

Learned evaluation functions

91

Stochastic search off-line

Training phase:

• Spend a few weeks allowing your computer to play
billions of random games from every possible starting state

• Value of the starting state = average value of the ending
states achieved during those billion random games

Testing phase:

• During the alpha-beta search, search until you reach a state
whose value you have stored in your value lookup table

• Oops…. Why doesn’t this work?

92

Evaluation as a pattern recognition problem

Training phase:

•Spend a few weeks allowing your computer to play billions of random games
from billions of possible starting states.

•Value of the starting state = average value of the ending states achieved during
those billion random games

Generalization:

•Featurize (e.g., x1=number of patterns, x2 = number of patterns,
etc.)

•Linear regression: find a1, a2, etc. so that Value(state) ≈ a1*x1+x2*x2+…

Testing phase:

•During the alpha-beta search, search as deep as you can, then estimate the value
of each state at your horizon using Value(state) ≈ a1*x1+x2*x2+…

93

Pros and Cons

• Learned evaluation function

– Pro: off-line search permits lots of compute time, therefore
lots of training data

– Con: there’s no way you can evaluate every starting state
that might be achieved during actual game play. Some
starting states will be missed, so generalized evaluation
function is necessary

• On-line stochastic search

– Con: limited compute time

– Pro: it’s possible to estimate the value of the state you’ve
reached during actual game play

95

AlphaGo

• SL policy network

– Idea: perform supervised learning (SL) to predict human

moves

– Given state s, predict probability distribution over moves a,

P(a|s)

– Trained on 30M positions, 57% accuracy on predicting

human moves

– Also train a smaller, faster rollout policy network (24%

accurate)

• RL policy network

– Idea: fine-tune policy network using reinforcement learning

(RL)

– Initialize RL network to SL network

– Play two snapshots of the network against each other, update

parameters to maximize expected final outcome

– RL network wins against SL network 80% of the time, wins

against open-source Pachi Go program 85% of the time

D. Silver et al., Mastering the Game of Go with Deep Neural Networks and Tree Search, Nature

529, January 2016

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

101

Alpha-Go video

https://www.youtube.com/watch?v=g-dKXOlsf98

102

Game AI: Origins

• Minimax algorithm: Ernst Zermelo, 1912

• Chess playing with evaluation function, quiescence

search, selective search:

Claude Shannon, 1949 (paper)

• Alpha-beta search: John McCarthy, 1956

• Checkers program that learns its own evaluation

function by playing against itself: Arthur Samuel,

1956 (Rodney Brooks blog post)

http://archive.computerhistory.org/projects/chess/related_materials/text/2-0 and 2-1.Programming_a_computer_for_playing_chess.shannon/2-0 and 2-1.Programming_a_computer_for_playing_chess.shannon.062303002.pdf
https://rodneybrooks.com/forai-machine-learning-explained/

103

Game AI: State of the art

• Computers are better than humans:

– Checkers: solved in 2007

– Chess:

• State-of-the-art search-based systems now better than humans

• Deep learning machine teaches itself chess in 72 hours, plays at
International Master Level (arXiv, September 2015)

• Computers are competitive with top human players:

– Backgammon: TD-Gammon system (1992) used
reinforcement learning to learn a good evaluation function

– Bridge: top systems use Monte Carlo simulation and
alpha-beta search

– Go: computers were not considered competitive until
AlphaGo in 2016

https://www.theatlantic.com/technology/archive/2017/07/marion-tinsley-checkers/534111/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
http://www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/
https://en.wikipedia.org/wiki/TD-Gammon

104

Game AI: State of the art

• Computers are not competitive with top human players:

– Poker

• Heads-up limit hold’em poker is solved (2015)
– Simplest variant played competitively by humans

– Smaller number of states than checkers, but partial observability makes it difficult

– Essentially weakly solved = cannot be beaten with statistical significance

in a lifetime of playing

• CMU’s Libratus system beats four of the best human players

at no-limit Texas Hold’em poker (2017)

http://www.sciencemag.org/content/347/6218/145.abstract
https://www.wired.com/2017/02/libratus/
https://www.wired.com/2017/02/libratus/

105

http://xkcd.com/1002/

See also: http://xkcd.com/1263/

http://xkcd.com/1002/
http://xkcd.com/1263/

106

Calvinball:

• Play it online

• Watch an instructional video

https://insaner.com/calvinball/
https://www.youtube.com/watch?v=jr85nM9q08k

	Slide 1: Games and Adversarial Search
	Slide 2
	Slide 3: Why study games?
	Slide 4: Games – history of chess playing
	Slide 5: Games
	Slide 6: Games vs. single-agent search
	Slide 7: Types of game environments
	Slide 8: Games
	Slide 9: Alternating two-player zero-sum games
	Slide 10: Game Tree search
	Slide 11: Optimal strategies
	Slide 12: Partial Game Tree for Tic-Tac-Toe
	Slide 13: Game tree
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Minimax
	Slide 21: Minimax value
	Slide 22: Minimax algorithm
	Slide 23: Game tree search
	Slide 24
	Slide 25: Optimality of minimax
	Slide 26: More general games
	Slide 27: Tree Player and Non-zero sum games
	Slide 28: Alpha-beta pruning
	Slide 29: α-β pruning
	Slide 30: Alpha-beta pruning
	Slide 31: Alpha-beta pruning
	Slide 32: Alpha-beta pruning
	Slide 33: Alpha-beta pruning
	Slide 34: Alpha-beta pruning
	Slide 35: Alpha-beta pruning
	Slide 36: The α-β algorithm
	Slide 37: Alpha-beta pruning
	Slide 38: Alpha-beta pruning
	Slide 39: α-β pruning example
	Slide 40: α-β pruning example
	Slide 41: α-β pruning example
	Slide 42: α-β pruning example
	Slide 43: α-β pruning example
	Slide 44: α-β pruning example
	Slide 45: α-β pruning example
	Slide 46: α-β pruning example
	Slide 47: α-β pruning example
	Slide 48: α-β pruning example
	Slide 49: α-β pruning example
	Slide 50: α-β pruning example
	Slide 51: α-β pruning example
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 57
	Slide 58: Alpha-beta pruning
	Slide 59: Move generation
	Slide 60: Min-Max
	Slide 61: Resource limits
	Slide 62: Evaluation function
	Slide 63: Evaluation function
	Slide 64: Evaluation functions
	Slide 65: Evaluation function
	Slide 66: Cutting off search
	Slide 67: Chess playing systems
	Slide 68: Practical issues
	Slide 69: Cutting off search
	Slide 71: Types of game environments
	Slide 72: Stochastic games
	Slide 73: Stochastic games
	Slide 74: Minimax vs. Expectiminimax
	Slide 75: Stochastic games
	Slide 76: Expectiminimax example
	Slide 77: Imperfect information example
	Slide 78: Method #1: Treat “unknown” as “unknown”
	Slide 79: Method #2: Treat “unknown” as “random”
	Slide 80: How to deal with imperfect information
	Slide 83: Stochastic games
	Slide 85: Stochastic games of imperfect information
	Slide 87: Stochastic search for stochastic games
	Slide 88: Monte Carlo Tree Search
	Slide 89: Case study: AlphaGo
	Slide 90: Learned evaluation functions
	Slide 91: Stochastic search off-line
	Slide 92: Evaluation as a pattern recognition problem
	Slide 93: Pros and Cons
	Slide 95: AlphaGo
	Slide 101: Alpha-Go video
	Slide 102: Game AI: Origins
	Slide 103: Game AI: State of the art
	Slide 104: Game AI: State of the art
	Slide 105
	Slide 106

