First Order Logic

Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware, and Milos Hauskrecht (U. Pittsburgh)

Pros and cons of propositional logic

() Propositional logic is declarative
(:) Propositional logic allows partial/disjunctive/negated information

- (unlike most data structures and databases)
(-) Propositional logic is compositional:
- meaning of $B_{l, 1} \wedge P_{l, 2}$ is derived from meaning of $B_{l, l}$ and of $P_{1,2}$
© Meaning in propositional logic is context-independent
- (unlike natural language, where meaning depends on context)
\therefore Propositional logic has very limited expressive power
- (unlike natural language)
- E.g., cannot say "pits cause breezes in adjacent squares"
- except by writing one sentence for each square

Logic Puzzles

- Gilderoy, Minerva, Pomona and Horace each belong to a different one of the four houses: Gryffindor, Hufflepuff, Ravenclaw, and Slytherin House.
- Gilderoy belongs to Gryffindor or Ravenclaw.
- Pomona does not belong in Slytherin.
- Minerva belongs to Gryffindor.

Logic Puzzles

Propositional Symbols

GilderoyGryffindor GilderoyHufflepuff GilderoyRavenclaw GilderoySlytherin

PomonaGryffindor PomonaHufflepuff PomonaRavenclaw PomonaSlytherin

MinervaGryffindor MinervaHufflepuff MinervaRavenclaw MinervaSlytherin
HoraceGryffindor HoraceHufflepuff HoraceRavenclaw HoraceSlytherin

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, David J. Malan and Brian Yu

Logic Puzzles

(PomonaSlytherin $\rightarrow \neg$ PomonaHufflepuff)
(MinervaRavenclaw $\rightarrow \neg$ GilderoyRavenclaw)
(GilderoyGryffindor v GilderoyRavenclaw)

First Order Logic

- Propositional logic only deals with "facts", statements that may or may not be true of the world, e.g., "It is raining". But, one cannot have variables that stand for books or tables.
- In first-order logic, variables refer to things in the world and, furthermore, you can quantify over them: talk about all of them or some of them without having to name them explicitly.

First-order logic

- First-order logic (like natural language) assumes the world contains
- Objects: people, houses, numbers, colors, baseball games, wars, ...
- Relations: red, round, prime, brother of, bigger than, part of, comes between, ...
- Functions: father of, best friend, one more than, plus,
- (relations in which there is only one value for a given input)

Statements that cannot be made in propositional logic but can be made in FOL

- When you paint a block with green paint, it becomes green.
- In propositional logic, one would need a statement about every single block, one cannot make the general statement about all blocks.
- When you sterilize a jar, all the bacteria are dead.
- In FOL, we can talk about all the bacteria without naming them explicitly.
- A person is allowed access to this Web site if they have been formally authorized or they are known to someone who has access.

Syntax of FOL: Basic elements

- Constants : KingJohn, 2, ...
- Predicates: Brother, >,...
- Functions : Sqrt, LeftLegOf,...
- Variables x, y, a, b,...
- Connectives

$$
\neg, \Rightarrow, \wedge, \vee, \Leftrightarrow
$$

- Equality
$=$
- Quantifiers $\quad \forall, \exists$

Atomic sentences

Term $=$	function $\left(\right.$ term $_{1}, \ldots$, term $\left._{n}\right)$
	or constant
	or variable

Atomic sentence $=\quad$ predicate $\left(\right.$ term $_{l}, \ldots$, term $\left._{n}\right)$ or term $_{1}=$ term $_{2}$

- E.g., Brother(KingJohn,RichardTheLionheart)
- > (Length(LeftLegOf(Richard)), Length(LeftLegOf(KingJohn)))

Complex sentences

Complex sentences are made from atomic sentences using connectives

$$
\neg S, S_{1} \wedge S_{2}, S_{I} \vee S_{2}, S_{1} \Rightarrow S_{2}, S_{l} \Leftrightarrow S_{2}
$$

E.g.

Sibling(KingJohn,Richard) \Rightarrow Sibling(Richard,KingJohn)
$>(1,2) \vee \leq(1,2)$
$>(1,2) \wedge \neg>(1,2)$

Quantifiers

Universal quantification, \forall (pronounced as "For all")

$\forall \mathrm{x} \operatorname{Cat}(\mathrm{x}) \Rightarrow \operatorname{Mammal}(\mathrm{x})$
All cats are mammals

Existential quantification, \exists (pronounced as "There exists")
$\exists x$ Sister (x, Spot) $\wedge \operatorname{Cat}(x)$
Spot has a sister who is a cat

- $\forall \mathrm{x} P$ is true in a model m
iff P is true with x being each possible object in the model
- $\exists x P$ is true in a model m
iff P is true with x being some possible object in the model

First-Order Logic

Constant Symbol
Minerva
Pomona
Horace
Gilderoy
Gryffindor
Hufflepuff
Ravenclaw
Slytherin

Predicate Symbol

Person
House
BelongsTo

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, David J. Malan and Brian Yu

First-Order Logic

Person(Minerva)
House(Gryffindor)
\neg House(Minerva)
BelongsTo(Minerva, Gryffindor)
Minerva belongs to Gryffindor.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, David J. Malan and Brian Yu

Universal Quantification

$\forall x$. BelongsTo(x, Gryffindor) \rightarrow \neg BelongsTo(x, Hufflepuff)

For all objects x, if x belongs to Gryffindor, then x does not belong to Hufflepuff.

Anyone in Gryffindor is not in Hufflepuff.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, David J. Malan and Brian Yu

Existential Quantification

$\exists x . \operatorname{House}(x) \wedge$ BelongsTo(Minerva, x)

There exists an object \times such that x is a house and Minerva belongs to x.

Minerva belongs to a house.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, David J. Malan and Brian Yu

Truth in first-order logic

- Sentences are true with respect to a model and an interpretation
- Model contains objects (domain elements) and relations among them
- An atomic sentence predicate(term ${ }_{l}, \ldots$, term $\left._{n}\right)$ is true iff the objects referred to by term $_{l}, \ldots$, term $_{n}$ are in the relation referred to by predicate
- Interpretation specifies referents for constant symbols \rightarrow objects predicate symbols \rightarrow relations function symbols \rightarrow functional relations

Interpretation

An interpretation I is defined by a mapping to the domain of discourse D or relations on D

- domain of discourse: a set of objects in the world we represent and refer to;
An interpretation I maps:
- Constant symbols to objects in D

$$
\mathrm{I}(\text { John })=\text { 芺 }
$$

- Predicate symbols to relations, properties on D
- Function symbols to functional relations on D

Models for FOL: Example

Semantics

Meaning (evaluation) function:
V : sentence \times interpretation \rightarrow \{True, False \}
A predicate predicate(term-1, term-2, term-3, term-n) is true for the interpretation I, iff the objects referred to by term-1, term2, term-3, term-n are in the relation referred to by predicate

$$
\mathrm{I}(\text { John })=\underset{\star}{\boldsymbol{\propto}} \quad \mathrm{I}(\text { Paul })=\text { 界 }
$$

 brother $($ John, Paul $)=\langle\dot{\boldsymbol{q}}$ 界 $\rangle \quad$ in $\mathrm{I}($ (brother $)$

V $($ brother $($ John, Paul $), I)=$ True

Semantics

- Equality

$$
\begin{aligned}
& \mathrm{V}(\text { term- } I=\text { term }-2, I)=\text { True } \\
& \text { Iff } \mathrm{I}(\text { term- }-1)=\mathrm{I}(\text { term- }-2)
\end{aligned}
$$

- Boolean expressions: standard
E.g. $\quad \mathrm{V}($ sentence- $1 \vee$ sentence- $2, I)=$ True

Iff $\mathrm{V}($ sentence- $1, I)=$ True or $\mathrm{V}($ sentence- $2, I)=$ True

- Quantifications

$$
\mathrm{V}(\forall x \phi, I)=\text { True }
$$

substitution of x with d
Iff for all $d \in D \mathrm{~V}(\phi, I[x / d])=$ True
$\mathrm{V}(\exists x \phi, I)=$ True
Iff there is a $d \in D$, s.t. $\mathrm{V}(\phi, I[x / d])=$ True

Universal quantification

$\forall<v a r i a b l e s><$ sentence>

All Kings are persons:
$\forall \mathrm{x} \operatorname{King}(\mathrm{x}) \Rightarrow \operatorname{Person}(\mathrm{x})$
$\forall \mathrm{x} P$ is true in a model m
iff P is true with x being each possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P
Richard the Lionheart is a king \Rightarrow Richard the Lionheart is a person
\wedge King John is a king \Rightarrow King John is a person
\wedge Richard's left leg is a king \Rightarrow Richard's left leg is a person
\wedge John's left leg is a king \Rightarrow John's left leg is a person
\wedge The crown is a king \Rightarrow The crown is a person

A common mistake to avoid

- Typically, \Rightarrow is the main connective with \forall
$\forall \mathrm{x} \operatorname{King}(\mathrm{x}) \Rightarrow \operatorname{Person}(\mathrm{x})$
- Common mistake: using \wedge as the main connective with \forall : $\forall \mathrm{x} \operatorname{King}(\mathrm{x}) \wedge$ Person(x) means "Everyone is a king and everyone is a person"

Richard the Lionheart is a king \wedge Richard the Lionheart is a person
\wedge King John is a king \wedge King John is a person
\wedge Richard's left leg is a king \wedge Richard's left leg is a person
\wedge John's left leg is a king \wedge John's left leg is a person
\wedge The crown is a king \wedge The crown is a person

Existential quantification

$\exists<$ variables> <sentence>
$\exists x$ Crown(x) \wedge OnHead(x,John)
$\exists x P$ is true in a model m
iff P is true with x being some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of P

The crown is a crown \wedge the crown is on John's head
\vee Richard the Lionheart is a crown \wedge Richard the Lionheart is on John's head
\vee King John is a crown \wedge King John is on John's head

Another common mistake to avoid

- Typically, \wedge is the main connective with \exists
- $\exists x$ Crown $(\mathrm{x}) \wedge$ OnHead(x,John)
- Common mistake: using \Rightarrow as the main connective with \exists :

$$
\exists x \text { Crown }(\mathrm{x}) \Rightarrow \text { OnHead(x,John) }
$$

is true even if there is anything which is not a crown

The crown is a crown \Rightarrow the crown is on John's head
\checkmark Richard the Lionheart is a crown \Rightarrow Richard the Lionheart is on John's head
\vee King John is a crown \Rightarrow King John is on John's head

Properties of quantifiers

$\forall \mathrm{x} \forall \mathrm{y}$ is the same as $\forall \mathrm{y} \forall \mathrm{x}$, and can be written as $\forall \mathrm{x}, \mathrm{y}$
$\exists \mathrm{x} \exists \mathrm{y}$ is the same as $\exists \mathrm{y} \exists \mathrm{x}$, and can be written as $\exists \mathrm{x}, \mathrm{y}$
$\exists \mathrm{x} \forall \mathrm{y}$ is not the same as $\forall \mathrm{y} \exists \mathrm{x}$
$\forall y \exists x \operatorname{Loves}(x, y)$

- "Everyone in the world is loved by at least one person"
$\exists \mathrm{x} \forall \mathrm{y}$ Loves (x, y)
- "There is a person who loves everyone in the world"
$\forall \mathrm{x} \exists \mathrm{y} P(\mathrm{x}, \mathrm{y})$: every object in the universe has a particular property, given by P $\exists x \forall y P(x, y)$: there is some object in the world that has a particular property

Rule: the variable belongs to the innermost quantifier that mentions it $\forall x[\operatorname{Cat}(x) V(\exists x$ Brother(Richard,x) $)]$
$\forall \mathrm{x}[\operatorname{Cat}(\mathrm{x}) \mathrm{V}(\exists \mathrm{z}$ Brother(Richard,z)$)]$

Properties of quantifiers

- Quantifier duality: each can be expressed using the other

```
\existsx Likes(x,Broccoli) = \neg\forallx }\neg\mathrm{ Likes(x,Broccoli)
\forallx Likes(x,IceCream) = \neg\existsx}\neg\mathrm{ Likes(x,IceCream)
```

- De Morgan's rules for quantifiers:

$$
\begin{aligned}
& \forall \mathrm{x} \neg \mathrm{P}=\neg \exists \mathrm{x} \mathrm{P} \\
& \neg \forall \mathrm{x}=\exists \mathrm{x} \neg \mathrm{P} \\
& \forall \mathrm{xP}=\neg \exists \mathrm{x} \neg \mathrm{P} \\
& \neg \forall \mathrm{x} \neg \mathrm{P}=\exists \mathrm{x} \mathrm{P}
\end{aligned}
$$

Equality

- term $_{1}=$ term $_{2}$ is true under a given interpretation if and only if term ${ }_{1}$ and term $_{2}$ refer to the same object
- E.g., definition of Sibling in terms of Parent:
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(\mathrm{x}=\mathrm{y}) \wedge \exists \mathrm{m}, \mathrm{f} \neg(\mathrm{m}=\mathrm{f}) \wedge$
$\operatorname{Parent}(\mathrm{m}, \mathrm{x}) \wedge \operatorname{Parent}(\mathrm{f}, \mathrm{x}) \wedge \operatorname{Parent}(\mathrm{m}, \mathrm{y}) \wedge \operatorname{Parent}(\mathrm{f}, \mathrm{y})]$

Writing FOL

- Cats are mammals [Cat ${ }^{1}$, Mammal ${ }^{1}$]
- $\forall \mathrm{x}$. Cat(x$) \rightarrow$ Mammal(x$)$
- Jane is a tall surveyor [Tall ${ }^{1}$, Surveyor ${ }^{1}$, Jane]
- Tall(Jane) ^ Surveyor(Jane)
- A nephew is a sibling's son [Nephew ${ }^{2}$, Sibling ${ }^{2}$, Son ${ }^{2}$]
- $V x y$. [Nephew $(x, y) \leftrightarrow \exists z$. [Sibling $(y, z) \wedge \operatorname{Son}(x, z)]]$
- A maternal grandmother is a mother's mother [functions: mgm , mother-of]
- $\forall x y . x=m g m(y) \leftrightarrow$ $\exists z . x=$ mother-of $(z) \wedge z=$ mother-of(y)

Writing FOL

- Nobody loves Jane
- $\forall x$. ᄀ Loves(x, Jane)
- $\neg \exists x$. Loves(x, Jane)
- Everybody has a father
- $\forall x$. ヨy. Father (y, x)
- Everybody has a father and a mother
- $\forall x$. ヨ yz. Father $(y, x) \wedge$ Mother (z, x)
- Whoever has a father, has a mother
- $\forall x$. $[[\exists y$. Father $(y, x)] \rightarrow[\exists y$. Mother $(y, x)]]$

Using FOL

The kinship domain:
Brothers are siblings
$\forall \mathrm{x}, \mathrm{y} \operatorname{Brother}(x, y) \Leftrightarrow \operatorname{Sibling}(x, y)$
One's mother is one's female parent
$\forall \mathrm{m}, \mathrm{c} \operatorname{Mother}(c)=\mathrm{m} \Leftrightarrow($ Female $(m) \wedge \operatorname{Parent}(m, c))$
"Sibling" is symmetric
$\forall \mathrm{x}, \mathrm{y}$ Sibling $(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$
One's husband is one's male spouse
$\forall \mathrm{w}, \mathrm{h} \operatorname{Husband}(h, w) \Leftrightarrow(\operatorname{Male}(m) \wedge \operatorname{Spouse}(h, w))$
Sibling is another child of one's parents
$\forall x, y \operatorname{Sibling}(x, y) \Leftrightarrow[\neg(\mathrm{x}=\mathrm{y}) \wedge \exists \mathrm{m}, \mathrm{f} \neg(\mathrm{m}=\mathrm{f}) \wedge \operatorname{Parent}(m, x) \wedge$ $\operatorname{Parent}(f, x) \wedge \operatorname{Parent}(m, y) \wedge \operatorname{Parent}(f, y)]$

Inference in First Order Logic

Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware,

$$
\begin{gathered}
\text { Milos Hauskrecht (U. Pittsburgh) } \\
\text { and Max Welling (UC Irvine) }
\end{gathered}
$$

Logical Inference

Logical inference problem:

- Given a knowledge base KB (a set of sentences) and a sentence α, does the KB semantically entail α ?

$$
K B \mid=\alpha \quad ?
$$

In other words: In all interpretations in which sentences in the KB are true, is also α true?

Inference in Propositional Logic

Computational procedures that answer:

$$
K B \mid=\alpha ?
$$

Three approaches:

- Truth-table approach
- Inference rules
- Conversion to the inverse SAT problem
- Resolution-refutation

Inference in FOL : Truth Table Approach

- Is the Truth-table approach a viable approach for the FOL?
?
- NO!
- Why?
- It would require us to enumerate and list all possible interpretations I
- $\mathrm{I}=$ (assignments of symbols to objects, predicates to relations and functions to relational mappings)
- Simply there are too many interpretations
- Inference rules from the propositional logic:
- Modus ponens

$$
\frac{A \Rightarrow B, \quad A}{B}
$$

- Resolution

$$
\frac{A \vee B, \quad \neg B \vee C}{A \vee C}
$$

- and others: And-introduction, And-elimination, Orintroduction, Negation elimination
- Additional inference rules are needed for sentences with quantifiers and variables
- Rules must involve variable substitutions

Sentences with variables

First-order logic sentences can include variables.

- Variable is:
- Bound - if it is in the scope of some quantifier

$$
\forall x P(x)
$$

- Free - if it is not bound.

$$
\exists x P(y) \wedge Q(x) \quad y \text { is free }
$$

Examples:

$$
\forall x \exists y \text { Likes }(x, y)
$$

- Bound

$$
\forall x(\text { Likes }(x, y) \wedge \exists y \text { Likes }(y, \text { Raymond }))
$$

- Free

Sentences with variables

First-order logic sentences can include variables.

- Sentence (formula) is:
- Closed - if it has no free variables

$$
\forall y \exists x P(y) \Rightarrow Q(x)
$$

- Open - if it is not closed

$$
\exists x P(y) \wedge Q(x) \quad y \text { is free }
$$

- Ground - if it does not have any variables

Likes(John,Jane)

Variable Substitutions

- Variables in the sentences can be substituted with terms. (terms $=$ constants, variables, functions)
- Substitution:
- Is represented by a mapping from variables to terms
$\theta=\left\{x_{1} / t_{1}, x_{2} / t_{2}, \ldots\right\} \quad \operatorname{SUBST}(\theta, \alpha)$
- Application of the substitution to sentences
$\operatorname{SUBST}(\{x / \operatorname{Sam}, y / \operatorname{Pam}\}, \operatorname{Likes}(x, y))=\operatorname{Likes}(\operatorname{Sam}, \operatorname{Pam})$
$\operatorname{SUBST}(\{x / z, y /$ fatherof $(\operatorname{John})\}, \operatorname{Likes}(x, y))=$ Likes(z, fatherof (John))

Universal elimination

- Every instantiation of a universally quantified sentence is entailed by it:

$$
\frac{\forall v \alpha}{\operatorname{Subst}(\{v / \mathrm{g}\}, \alpha)}
$$

for any variable v and ground term g

- E.g., $\forall \mathrm{x} \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$ yields:
$\operatorname{King}(J o h n) \wedge \operatorname{Greedy}(J o h n) \Rightarrow \operatorname{Evil}(J o h n), \quad\{x / J o h n\}$
King (Richard) \wedge Greedy $($ Richard $) \Rightarrow$ Evil(Richard),$\quad\{x /$ Richard $\}$
$\operatorname{King}($ Father (John)) ^ Greedy $($ Father (John $)) \Rightarrow$ Evil(Father(John)), \{x/Father(John)\}

Example:

$\forall x$ Likes(x,IceCream)

$\frac{\forall x \phi(x)}{\phi(a)}$
Likes(Ben,IceCream)

Existential elimination

- For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:
$\frac{\exists v \alpha}{\operatorname{Subst}(\{\mathrm{v} / \mathrm{k}\}, \alpha)}$
- E.g., $\exists x \operatorname{Crown}(x) \wedge \operatorname{OnHead}(x, J o h n)$ yields:

$$
\operatorname{Crown}\left(C_{1}\right) \wedge \operatorname{OnHead}\left(C_{l}, \text { John }\right)
$$

provided C_{l} is a new constant symbol, called a Skolem constant

Inference rules for quantifiers

- Universal instantiation (introduction)

$$
\frac{\phi}{\forall x \phi} \quad x-\text { is not free in } \phi
$$

- Introduces a universal variable which does not affect ϕ or its assumptions
Sister (Amy,Jane) $\quad \forall x \operatorname{Sister}($ Amy,Jane $)$
- Existential instantiation (introduction)

$$
\begin{array}{ll}
\frac{\phi(a)}{\exists x \phi(x)} \quad \begin{array}{l}
a-\text { is a ground term in } \phi \\
x-\text { is not free in } \phi
\end{array} \quad \exists v \operatorname{\alpha } \\
\exists v \operatorname{Subst}(\{\mathrm{~g} / \mathrm{v}\}, \alpha)
\end{array}
$$

- Substitutes a ground term in the sentence with a variable and an existential statement

Likes(Ben,IceCream) $\exists x \operatorname{Likes}(x$, IceCream $)$

Example Proof

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Prove that Col. West is a criminal

Example knowledge base contd.

... it is a crime for an American to sell weapons to hostile nations:
$\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \operatorname{American}(x) \wedge \operatorname{Weapon}(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Nation}(z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
Nono ... has some missiles, i.e.,
$\exists x$ Owns(Nono,x) \wedge Missile (x):
... all of its missiles were sold to it by Colonel West
$\forall \mathrm{x}$ Missile (x) \wedge Owns(Nono, $x) \Rightarrow \operatorname{Sells(\text {West,}x,\text {Nono)})~}$
Missiles are weapons:
$\forall \mathrm{x}$ Missile $(x) \Rightarrow \operatorname{Weapon}(x)$
An enemy of America counts as "hostile":
$\forall \mathrm{x}$ Enemy $(x$, America) \Rightarrow Hostile (x)
West, who is American ...
American(West)
The country Nono
Nation(Nono)
Nono, an enemy of America ...
Enemy(Nono,America), Nation(America)

Example knowledge base contd.

1. $\forall \mathrm{x}, \mathrm{y}, \mathrm{z} \operatorname{American}(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Nation}(z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
2. $\exists \mathrm{x}$ Owns(Nono,x) \wedge Missile(x):
3. $\forall \mathrm{x}$ Missile $(x) \wedge$ Owns $($ Nono,$x) \Rightarrow$ Sells(West,x, Nono $)$
4. $\forall \mathrm{x} \operatorname{Missile}(x) \Rightarrow \operatorname{Weapon}(x)$
5. $\forall \mathrm{x}$ Enemy $(x$, America $) \Rightarrow$ Hostile (x)
6. American(West)
7. Nation(Nono)
8. Enemy(Nono,America)
9. Nation(America)
10. Owns(Nono, M_{I}) and Missile $\left(M_{I}\right)$ Existential elimination 2
11. Owns(Nono, M_{1}) And elimination 10
12. Missile $\left(M_{1}\right)$ And elimination 10
13. Missile(M1) \Rightarrow Weapon(M1) Universal elimination 4
14. Weapon(M1) Modus Ponens, 12, 13
15. Missile(M1) ^Owns(Nono,M1) \Rightarrow Sells(West,M1,Nono) Universal Elimination 3
16. Sells(West,M1,Nono) Modus Ponens 10,15
17. American (West) \wedge Weapon(M1) \wedge Sells(West,M1,Nono) \wedge Nation(Nono) \wedge Hostile(Nono) \Rightarrow Criminal(Nono) Universal elimination, three times 1
18. Enemy(Nono,America) \Rightarrow Hostile(Nono) Universal Elimination 5
19. Hostile(Nono) Modus Ponens 8, 18
20. American $($ West $) ~ \wedge$ Weapon $($ M1 $) ~ \wedge S e l l s($ West,M1,Nono $) \wedge$ Nation(Nono) \wedge Hostile(Nono) And Introduction 6,7,14,16,19
21. Criminal(West) Modus Ponens 17, 20

Reduction to propositional inference

Suppose the KB contains just the following:
$\forall \mathrm{x} \operatorname{King}(\mathrm{x}) \wedge \operatorname{Greedy}(\mathrm{x}) \Rightarrow \operatorname{Evil}(\mathrm{x})$
King(John)
Greedy(John)
Brother(Richard,John)

- Instantiating the universal sentence in all possible ways (there are only two ground terms: John and Richard), we have:

King(John) ^ Greedy(John) $\Rightarrow \operatorname{Evil}(J o h n)$
$\operatorname{King}($ Richard $) \wedge$ Greedy(Richard) \Rightarrow Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

- The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd.

- Every FOL KB can be propositionalized so as to preserve entailment
- A ground sentence is entailed by new KB iff entailed by original KB
- Idea for doing inference in FOL:
- propositionalize KB and query
- apply inference
- return result
- Problem: with function symbols, there are infinitely many ground terms,
- e.g., Father(Father(Father(John))), etc

Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For $n=0$ to ∞ do
create a propositional KB by instantiating with depth-n terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed

Theorem: Turing (1936), Church (1936)
Entailment for FOL is semidecidable (algorithms exist that say yes to every entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.)

Problems with propositionalization

- Propositionalization seems to generate lots of irrelevant sentences.
- E.g., from:
$\forall \mathrm{x} \operatorname{King}(\mathrm{x}) \wedge \operatorname{Greedy}(\mathrm{x}) \Rightarrow \operatorname{Evil}(\mathrm{x})$
King(John)
$\forall y$ Greedy(y)
Brother(Richard,John)
- it seems obvious that Evil(John) is entailed, but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant
- With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations.
- Lets see if we can do inference directly with FOL sentences

Generalized Modus Ponens (GMP)

where we can unify $p_{i}{ }^{\prime}$ and p_{i} for all i

$$
\mathrm{p}_{1}^{\prime}, \mathrm{p}_{2}^{\prime}, \ldots, \mathrm{p}_{\mathrm{n}}^{\prime},\left(\mathrm{p}_{1} \wedge \mathrm{p}_{2} \wedge \ldots \wedge \mathrm{p}_{\mathrm{n}} \Rightarrow \mathrm{q}\right) \quad \text { i.e. } \mathrm{p}_{\mathrm{i}}^{\prime} \theta=\mathrm{p}_{\mathrm{i}} \theta \text { for all } i
$$

$\operatorname{Subst}(\theta, \mathrm{q})$	
Example: $\forall \mathrm{x} \operatorname{King}(\mathrm{x}) \wedge \operatorname{Greedy}(\mathrm{x}) \Rightarrow \operatorname{Evil}(\mathrm{x})$	
$\mathrm{p}_{1}{ }^{\prime}$ is $\operatorname{King}(J o h n)$	p_{1} is $\operatorname{King}(x)$
$\mathrm{p}_{2}{ }^{\prime}$ is Greedy ${ }^{\text {a }}$)	p_{2} is Greedy (x)
θ is $\{\mathrm{x} / \mathrm{John}, \mathrm{y} / \mathrm{John}\}$	q is $\operatorname{Evil}(x)$
$\operatorname{Subst}(\theta, \mathrm{q})$ is $\operatorname{Evil}($ John $)$	
Example: $\forall \mathrm{x}$ Missile $(x) \wedge$ Owns(Nono, x) \Rightarrow Sells(West, x, Nono)	
$\mathrm{p}_{1}{ }^{\prime}$ is Missile(M1)	p_{1} is Missile(x)
$\mathrm{p}_{2}{ }^{\prime}$ is $O w n s(y, M 1)$	p_{2} is Owns(Nono,)
θ is $\{\mathrm{x} / \mathrm{M} 1, \mathrm{y} / \mathrm{Nono}\}$	q is Sells(West, Nono, x)
$\operatorname{Subst}(\theta, \mathrm{q})$ is $\operatorname{Sells}($ West	ono, M1)

- Implicit assumption that all variables universally quantified GMP used with KB of definite clauses (exactly one positive literal)

Soundness and completeness of GMP

GMP is sound

Only derives sentences that are logically entailed

- Need to show that $p_{1}{ }^{\prime}, \ldots, p_{n}{ }^{\prime},\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)=q^{\prime} \theta$ provided that $\mathrm{p}_{\mathrm{i}}^{\prime} \theta=\mathrm{p}_{\mathrm{i}} \theta$ for all I
- Lemma: For any sentence p, we have $p \neq \mathrm{p} \theta$ by UI

1. $\left(\mathrm{p}_{1} \wedge \ldots \wedge \mathrm{p}_{\mathrm{n}} \Rightarrow \mathrm{q}\right) \vDash\left(\mathrm{p}_{1} \wedge \ldots \wedge \mathrm{p}_{\mathrm{n}} \Rightarrow \mathrm{q}\right) \theta=\left(\mathrm{p}_{1} \theta \wedge \ldots \wedge \mathrm{p}_{\mathrm{n}} \theta \Rightarrow \mathrm{q} \theta\right)$
2. $\mathrm{p}_{1}{ }^{\prime}, \backslash ; \ldots, \backslash ; \mathrm{p}_{\mathrm{n}}{ }^{\prime} \neq \mathrm{p}_{1}{ }^{\prime} \wedge \ldots \wedge \mathrm{p}_{\mathrm{n}}{ }^{\prime} \vDash \mathrm{p}_{1}{ }^{\prime} \theta \wedge \ldots \wedge \mathrm{p}_{\mathrm{n}}{ }^{\prime} \theta$
3. From 1 and 2 , $q \theta$ follows by ordinary Modus Ponens

GMP is complete for a KB consisting of definite clauses

- Complete: derives all sentences that entailed
- OR...answers every query whose answers are entailed by such a KB
- Definite clause: disjunction of literals of which exactly 1 is positive,
e.g., King(x) AND Greedy(x) -> Evil(x)

NOT(King(x)) OR NOT(Greedy(x)) OR Evil(x)

Generalized Modus Ponens (GMP)

$$
\left.\frac{\mathrm{p}_{1}^{\prime}, \mathrm{p}_{2}^{\prime}, \ldots, \mathrm{p}_{\mathrm{n}}^{\prime},\left(\mathrm{p}_{1} \wedge \mathrm{p}_{2} \wedge \ldots \wedge \mathrm{p}_{\mathrm{n}}\right.}{\operatorname{Subst}(\theta, \mathrm{q})} \Rightarrow \mathrm{q}\right)
$$

Substitution that satisfies the generalized inference rule can be build via unification process
Advantage of the generalized rules: thev are focused

- only substitutions that allow the inferences to proceed are tried

Use substitutions that let us make inferences

Convert each sentence into cannonical form prior to inference: Either an atomic sentence or an implication with a conjunction of atomic sentences on the left hand side and a single atom on the right (Horn clauses)

Unification

- Problem in inference: Universal elimination gives us many opportunities for substituting variables with ground terms

$$
\frac{\forall x \phi(x)}{\phi(a)} \quad a \text { - is a constant symbol }
$$

- Solution: make only substitutions that may help
- Use substitutions of "similar" sentences in KB
- Unification - takes two similar sentences and computes the substitution that makes them look the same, if it exists

$$
\operatorname{UNIFY}(p, q)=\sigma \text { s.t. } \operatorname{SUBST}(\sigma, p)=\operatorname{SUBST}(\sigma, q)
$$

Unification

- Unification:
$\operatorname{UNIFY}(p, q)=\sigma$ s.t. $\operatorname{SUBST}(\sigma, p)=\operatorname{SUBST}(\sigma, q)$
- Examples:
$\operatorname{UNIFY}($ Knows $($ John, $x), \operatorname{Knows}($ John, Jane $))=\{x /$ Jane $\}$
$\operatorname{UNIFY}(\operatorname{Knows}(J o h n, x), \operatorname{Knows}(y, A n n))=\{x /$ Ann, $y /$ John $\}$
UNIFY (Knows (John, x), Knows (y, MotherOf (y)))

$$
=\{x / \text { MotherOf }(\text { John }), y / \text { John }\}
$$

$\operatorname{UNIFY}(\operatorname{Knows}($ John,$x), \operatorname{Knows}(x$, Elizabeth $))=$ fail

Unification

- We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and Greedy(x) match King(John) and Greedy(y)
$\theta=\{\mathrm{x} / \mathrm{John}, \mathrm{y} / \mathrm{John}\}$ works
- Unify $(\alpha, \beta)=\theta$ if $\alpha \theta=\beta \theta$

p	q	θ
Knows(John,x)	Knows(John,Jane)	$\{\mathrm{x} /$ Jane $\}\}$
Knows(John,x)	Knows(y, Elizabeth)	$\{\mathrm{x} /$ Elizabeth,y/John $\}\}$
Knows(John,x)	Knows(y,Mother(y))	$\{y / J o h n, \mathrm{x} /$ Mother(John) $\}\}$
Knows(John,x)	Knows(x, Elizabeth)	$\{$ fail $\}$

- Standardizing apart eliminates overlap of variables, e.g., Knows(z_{17}, Elizabeth)

Unification

- To unify Knows(John,x) and Knows(y,z), $\theta=\{\mathrm{y} / \mathrm{John}, \mathrm{x} / \mathrm{z}\}$ or $\theta=\{\mathrm{y} / \mathrm{John}, \mathrm{x} / \mathrm{John}, \mathrm{z} / \mathrm{John}\}$
- The first unifier is more general than the second.
- Most general unifier is the substitution that makes the least commitment about the bindings of the variables
- There is a single most general unifier (MGU) that is unique up to renaming of variables.
MGU $=\{y / J o h n, x / z\}$

The unification algorithm

function $\operatorname{UNIFY}(x, y, \theta)$ returns a substitution to make x and y identical inputs: x, a variable, constant, list, or compound y, a variable, constant, list, or compound θ, the substitution built up so far
if $\theta=$ failure then return failure else if $x=y$ then return θ
else if $\operatorname{Variable} ?(x)$ then return $\operatorname{Unify}-\operatorname{Var}(x, y, \theta)$
else if $\operatorname{Variable} ?(y)$ then return $\operatorname{Unify}-\operatorname{Var}(y, x, \theta)$
else if Compound? (x) and Compound? (y) then
return Unify(Args $[x], \operatorname{Args}[y], \mathrm{Unify}(\mathrm{Op}[x], \operatorname{Op}[y], \theta)$)
else if $\operatorname{List} ?(x)$ and List? (y) then
return $\operatorname{Unify}(\operatorname{Rest}[x], \operatorname{Rest}[y], \operatorname{Unify}(\operatorname{First}[x], \operatorname{First}[y], \theta))$
else return failure

The unification algorithm

function UnIFY-VAR $(v a r, x, \theta)$ returns a substitution
inputs: var, a variable
x, any expression
θ, the substitution built up so far
if $\{$ var $/$ val $\} \in \theta$ then return $\operatorname{Unify}($ val $, x, \theta)$
else if $\{x /$ val $\} \in \theta$ then return $\operatorname{Unify}(v a r$, val, $\theta)$ else if OCCUR-CHECK? (var, x) then return failure else return add $\{v a r / x\}$ to θ

Example knowledge base revisited

1. $\forall \mathrm{x}, \mathrm{y}, \mathrm{z}$ American $(x) \wedge \operatorname{Weapon}(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Nation}(z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
2. $\exists x$ Owns $($ Nono,x) $\wedge \operatorname{Missile}(x):$
3. $\forall \mathrm{x} \operatorname{Missile}(x) \wedge$ Owns(Nono, $x) \Rightarrow \operatorname{Sells}($ West, x, Nono $)$
4. $\quad \forall \mathrm{x} \operatorname{Missile}(x) \Rightarrow \operatorname{Weapon}(x)$
5. $\forall \mathrm{x}$ Enemy $(x$, America $) \Rightarrow \operatorname{Hostile}(x)$
6. American(West)
7. Nation(Nono)
8. Enemy(Nono,America)
9. Nation(America)

Convert the sentences into Horn form

1. American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Nation}(z) \wedge \operatorname{Hostile}(z) \Rightarrow \operatorname{Criminal}(x)$
2. $O w n s\left(N o n o, M_{l}\right)$
3. $\operatorname{Missile}\left(M_{1}\right)$
4. Missile $(x) \wedge$ Owns(Nono, $x) \Rightarrow$ Sells(West, x, Nono)
5. $\operatorname{Missile}(x) \Rightarrow \operatorname{Weapon}(x)$
6. Enemy (x,America) \Rightarrow Hostile(x)
7. American(West)
8. Nation(Nono)
9. Enemy(Nono,America)
10. Nation(America)
11. Proof
12. Weapon(M1)
13. Hostile(Nono)
14. Sells(West,M1,Nono)
15. Criminal(West)

Inference appoaches in FOL

- Forward-chaining
- Uses GMP to add new atomic sentences
- Useful for systems that make inferences as information streams in
- Requires KB to be in form of first-order definite clauses
- Backward-chaining
- Works backwards from a query to try to construct a proof
- Can suffer from repeated states and incompleteness
- Useful for query-driven inference
- Note that these methods are generalizations of their propositional equivalents

Forward chaining algorithm

function FOL-FC-Ask $(K B, \alpha)$ returns a substitution or false
repeat until new is empty
new $\leftarrow\}$
for each sentence r in $K B$ do

$$
\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow \operatorname{STANDARDIZE-APART}(r)
$$

$$
\text { for each } \theta \text { such that }\left(p_{1} \wedge \ldots \wedge p_{n}\right) \theta=\left(p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right) \theta
$$

$$
\text { for some } p_{1}^{\prime}, \ldots, p_{n}^{\prime} \text { in } K B
$$

$$
q^{\prime} \leftarrow \operatorname{SUBST}(\theta, q)
$$

if q^{\prime} is not a renaming of a sentence already in $K B$ or new then do
add q^{\prime} to new
$\phi \leftarrow \operatorname{UNIFY}\left(q^{\prime}, \alpha\right)$
if ϕ is not fail then return ϕ
add new to $K B$
return false

Forward chaining proof

Forward chaining proof

Forward chaining proof

Properties of forward chaining

- Sound and complete for first-order definite clauses
- Datalog = first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations
- May not terminate in general if α is not entailed
- This is unavoidable: entailment with definite clauses is semidecidable

Efficiency of forward chaining

Incremental forward chaining: no need to match a rule on iteration k if a premise wasn't added on iteration $k-1$
\Rightarrow match each rule whose premise contains a newly added positive literal

Matching itself can be expensive:
Database indexing allows $\mathrm{O}(1)$ retrieval of known facts

- e.g., query $\operatorname{Missile}(x)$ retrieves $\operatorname{Missile}\left(M_{1}\right)$

Forward chaining is widely used in deductive databases

Backward chaining algorithm

```
function FOL-BC-Ask( }KB\mathrm{ , goals, }0\mathrm{ ) returns a set of substitutions
    inputs: }KB\mathrm{ , a knowledge base
        goals, a list of conjuncts forming a query
    0, the current substitution, initially the empty substitution { }
    local variables: ans, a set of substitutions, initially empty
    if goals is empty then return {0}
    q}\mp@subsup{}{}{\prime}\leftarrow\operatorname{SUBST}(0,\operatorname{FIRST}(\mathrm{ goals)}
```



```
            and }\mp@subsup{0}{}{\prime}\leftarrow\operatorname{UNIFY}(q,\mp@subsup{q}{}{\prime})\mathrm{ succeeds
        ans}\leftarrow\operatorname{FOL-BC-ASk}(KB,[\mp@subsup{p}{1}{},\ldots,\mp@subsup{p}{n}{}|\operatorname{Rest}(\mathrm{ goals })],\operatorname{Compose}(0,\mp@subsup{0}{}{\prime}))\cup\mathrm{ ans
    return ans
```

$\operatorname{SUBST}\left(\operatorname{COMPOSE}\left(\theta_{1}, \theta_{2}\right), \mathrm{p}\right)=$ $\operatorname{SUBST}\left(\theta_{2}, \operatorname{SUBST}\left(\theta_{1}, \mathrm{p}\right)\right)$

Backward chaining example

Properties of backward chaining

- Depth-first recursive proof search: space is linear in size of proof
- Incomplete due to infinite loops
$-\Rightarrow$ fix by checking current goal against every goal on stack
- Inefficient due to repeated subgoals (both success and failure)
$-\Rightarrow$ fix using caching of previous results (extra space)
- Widely used for logic programming

Logic programming: Prolog

- Algorithm = Logic + Control
- Basis: backward chaining with Horn clauses + bells \& whistles
- \quad Program $=$ set of clauses $=$ head $:-$ literal $_{1}, \ldots$ literal ${ }_{n}$.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
- Depth-first, left-to-right backward chaining
- Built-in predicates for arithmetic etc., e.g., X is $Y * Z+3$
- Built-in predicates that have side effects (e.g., input and output
- predicates, assert/retract predicates)
- Closed-world assumption ("negation as failure")
- e.g., given alive (X) :- not $\operatorname{dead}(X)$.
- alive(joe) succeeds if dead (joe) fails

Resolution in First Order Logic

Artificial Intelligence

Slides are mostly adapted from AIMA and MIT Open Courseware
and Milos Hauskrecht (U. Pittsburgh)

Resolution Inference Rule

- Recall: Resolution inference rule is sound and complete (refutation-complete) for the propositional logic and CNF

$$
\frac{A \vee B, \quad \neg A \vee C}{B \vee C}
$$

- Generalized resolution rule is sound and refutation complete for the first-order logic and CNF w/o equalities (if unsatisfiable the resolution will find the contradiction)

$$
\begin{gathered}
\sigma=\operatorname{UNIFY}\left(\phi_{i}, \neg \psi_{j}\right) \neq \text { fail } \\
\frac{\phi_{1} \vee \phi_{2} \ldots \vee \phi_{k}, \quad \psi_{1} \vee \psi_{2} \vee \ldots \psi_{n}}{\operatorname{SUBST}\left(\sigma, \phi_{1} \vee \ldots \vee \phi_{i-1} \vee \phi_{i+1} \ldots \vee \phi_{k} \vee \psi_{1} \vee \ldots \vee \psi_{j-1} \vee \psi_{j+1} \ldots \psi_{n}\right)}
\end{gathered}
$$

Example: $\quad P(x) \vee Q(x), \quad \neg Q($ John $) \vee S(y)$ $P($ John $) \vee S(y)$

First Order Resolution

$\forall x \cdot P(x) \rightarrow Q(x)$
$P(A)$
$Q(A)$

$\forall x . \neg P(x) \vee Q(x)$
$P(A)$
$Q(A)$

Syllogism:
All men are mortal Socrates is a man Socrates is morlal
uppercase letters: constants
lowercase letters: variables

Two new things:

Equivalent by - converting FOL to definition of implication clausal form

- resolution with variable substitution

Substitute A for x, still true
then
Propositional resolution

Clausal Form

- like CNF in outer structure
- no quantifiers

$$
\forall x . \exists y . \mathrm{P}(x) \rightarrow \mathrm{R}(x, y)
$$

Converting to Clausal Form

1. Eliminate arrows

$$
\begin{aligned}
& \alpha \leftrightarrow \beta \Rightarrow(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha) \\
& \alpha \rightarrow \beta \Rightarrow \neg \alpha \vee \beta
\end{aligned}
$$

2. Drive in negation

$$
\begin{aligned}
-(\alpha \vee \beta) & \Rightarrow \neg \alpha \wedge \neg \beta \\
-(\alpha \wedge \beta) & \Rightarrow \neg \alpha \vee \neg \beta \\
\neg \neg \alpha & \Rightarrow \alpha \\
\neg \forall x \cdot \alpha & \Rightarrow \exists x . \neg \alpha \\
\neg \exists x \cdot \alpha & \Rightarrow \forall x . \neg \alpha
\end{aligned}
$$

3. Rename variables apart
$\forall x . \exists y .(\neg \mathrm{P}(x) \vee \exists x, \mathrm{Q}(x, y)) \Rightarrow$

$$
\forall x_{1} \cdot \exists y_{2} \cdot\left(\neg \mathrm{P}\left(x_{1}\right) \vee \exists x_{3} \cdot \mathrm{Q}\left(x_{3}, y_{2}\right)\right)
$$

Also move all quantifiers left $(\forall x P(x)) \vee(\exists y Q(y)) \rightarrow \forall x \exists y P(x) \vee Q(y)$

Converting to Clausal Form - Skolemization

Skolemization (removal of existential quantifiers through elimination)
If no universal quantifier occurs before the existential quantifier, replace the variable with a new constant symbol also called Skolem constant

$$
\exists y P(A) \vee Q(y) \rightarrow P(A) \vee Q(B)
$$

If a universal quantifier precedes the existential quantifier replace the variable with a function of the "universal" variable

$$
\begin{aligned}
& \forall x \exists y P(x) \vee Q(y) \rightarrow \forall x \quad P(x) \vee Q(F(x)) \\
& F(x) \quad \text { - a special function } \\
& \text { - called Skolem function }
\end{aligned}
$$

Converting to Clausal Form - Skolemization

4. Skolemize

- substitute new name for each existential var

$$
\begin{gathered}
\exists x \cdot \mathrm{P}(x) \Rightarrow \mathrm{P}(\text { Fred }) \\
\exists x, y \cdot \mathrm{R}(x, y) \Rightarrow \mathrm{R} \text { (Thing1, Thing } 2) \\
\exists x \cdot \mathrm{P}(x) \wedge \mathrm{Q}(x) \Rightarrow \mathrm{P}(\text { Fleep }) \wedge \mathrm{Q} \text { (Fleep }) \\
\exists x \cdot \mathrm{P}(x) \wedge \exists x \cdot \mathrm{Q}(x) \Rightarrow \mathrm{P}(\text { Frog }) \wedge \mathrm{Q}(\text { Grog }) \\
\exists y . \forall x . \text { Loves }(x, y) \Rightarrow \forall x . \text { Loves }(x, \text { Englebert })
\end{gathered}
$$

- substitute new function of all universal vars in outer scopes
$\forall x$. $\exists y$. Loves $(x, y) \Rightarrow \forall x$. Loves $(x, \operatorname{Beloved}(x))$
$\forall x . \exists y . \forall z . \exists w . P(x, y, z) \wedge R(y, z, w) \Rightarrow$

$$
P(x, F(x), z) \wedge R(F(x), z, G(x, z))
$$

Converting to Clausal Form

5. Drop universal quantifiers
$\forall x$. Loves $(x, \operatorname{Beloved}(x)) \Rightarrow \operatorname{Loves}(x, \operatorname{Beloved}(x))$
6. Distribute or over and; return clauses

$$
\begin{aligned}
& P(z) \vee(Q(z, w) \wedge R(w, z)) \Rightarrow \\
&\{\{P(z), Q(z, w)\},\{P(z), R(w, z)\}\}
\end{aligned}
$$

7. Rename the variables in each clause
$\{\{\mathrm{P}(z), \mathrm{Q}(z, w)\},\{\mathrm{P}(z), \mathrm{R}(w, z)\}\} \Rightarrow$ $\left\{\left\{\mathrm{P}\left(z_{1}\right), \mathrm{Q}\left(z_{1}, w_{1}\right)\right\},\left\{\mathrm{P}\left(z_{2}\right), \mathrm{R}\left(w_{2}, z_{2}\right)\right\}\right\}$

Inference with resolution rule

- Proof by refutation:
- Prove that $K B, \neg \alpha$ is unsatisfiable
- resolution is refutation-complete
- Main procedure (steps):

1. Convert $K B, \neg \alpha$ to CNF with ground terms and universal variables only
2. Apply repeatedly the resolution rule while keeping track and consistency of substitutions
3. Stop when empty set (contradiction) is derived or no more new resolvents (conclusions) follow

KB

$$
\neg P(w) \vee Q(w), \neg Q(y) \vee S(y), P(x) \vee R(x), \neg R(z) \vee S(z), \neg S(A)
$$

$K B \mid=\alpha$
Empty resolution
\rightarrow Contradiction

Dealing with Equality

- Resolution works for the first-order logic without equalities
- To incorporate equalities we need an additional inference rule
- Demodulation rule

$$
\begin{aligned}
\sigma= & \operatorname{UNIFY}\left(z_{i}, t_{1}\right) \neq \text { fail } \quad \text { where } z_{i} \text { occurs in } \phi_{i} \\
& \frac{\phi_{1} \vee \phi_{2} \ldots \vee \phi_{k}, \quad t_{1}=t_{2}}{\operatorname{SUB}\left(\operatorname{SUBST}\left(\sigma, t_{1}\right), \operatorname{SUBST}\left(\sigma, t_{2}\right), \phi_{1} \vee \phi_{2} \ldots \vee \phi_{k}\right)}
\end{aligned}
$$

- Example:

$$
\frac{P(f(a)), f(x)=x}{P(a)}
$$

- Paramodulation rule: more powerful
- Resolution+paramodulation give a refutation-complete proof theory for FOL

Example

a. John owns a dog
$\exists x . D(x) \wedge O(1, x)$
$D($ Fido $) \wedge O(J$, Fido $)$

b. Anyone who owns a dog is a lover-of-animals

$\begin{array}{\|l} \hline \vee x \cdot(\exists y \cdot D(y) \wedge O(x, y)) \rightarrow L(x) \\ \forall x \cdot(\exists y \cdot(D(y) \wedge O(x, y)) \vee L(x) \end{array}$	
$\forall x . \forall \gamma . \neg(\mathrm{D}(\mathrm{y}) \wedge \mathrm{O}(\mathrm{x}, \mathrm{y})) \vee \mathrm{L}(\mathrm{x})$	
$\forall x . \forall y . \neg \mathrm{D}(\mathrm{y}) \vee \neg \mathrm{O}(\mathrm{x}, \mathrm{y}) \vee \mathrm{L}(\mathrm{x}$	
$\neg \mathrm{D}(\mathrm{y}) \mathrm{v} \neg \mathrm{O}(\mathrm{x}, \mathrm{y}) \vee \mathrm{L}(\mathrm{x})$	

c. Lovers-of-animals do not kill animals

$$
\begin{aligned}
& \forall x . L(x) \rightarrow(\forall y . A(y) \rightarrow \neg K(x, y)) \\
& \forall \forall x . \neg L(x) \vee(\forall y . A(y) \rightarrow \neg K(x, y)) \\
& \forall x \cdot \neg L(x) \vee(\forall y . \neg A(y) \vee \neg K(x, y)) \\
& \hline \neg L(x) \vee \neg A(y) v \neg K(x, y)
\end{aligned}
$$

More examples

```
d. Either Jack killed Tuna or curiosity killed Tuna \(\mathrm{K}(\mathrm{J}, \mathrm{T}) \vee \mathrm{K}(\mathrm{C}, \mathrm{T})\)
```

```
e. Tuna is a cat
C(T)
```

f. All cats are animals
$\neg C(x)$ v $A(x)$

First Order Resolution

$P(A)$
Q(A)
$\neg P(A) \vee Q(A)$
$P(A)$
Q(A)

Syllogism:
All men are mortal
Socrates is a man
Socrates is mortal

Equivalent by definition of implication

Substitute A for x, still true
then
Propositional resolution
uppercase letters: constants
lowercase letters: variables

The key is finding the correct substitutions for the variables.

Substitutions

$P(x, f(y), B)$: an atomic sentence

Substitution instances	Substitution $\left\{v_{1} / t_{1}, \ldots, v_{n} / t_{n}\right\}$	Comment
$P(z, f(w), B)$	$\{x / z, y / w\}$	Alphabetic variant
$P(x, f(A), B)$	$\{y / A\}$	
$P(g(z), f(A), B)$	$\{x / g(z), y / A\}$	
$P(C, f(A), B)$	$\{x / C, y / A\}$	Ground instance

Applying a substitution:

$$
\begin{aligned}
& P(x, f(y), B)\{y / A\}=P(x, f(A), B) \\
& P(x, f(y), B)\{y / A, x / y\}=P(A, f(A), B)
\end{aligned}
$$

Unification

- Expressions ω_{1} and ω_{2} are unifiable iff there exists a substitution s such that $\omega_{1} \mathbf{s}=\omega_{2} \mathbf{s}$
- Let $\omega_{1}=x$ and $\omega_{2}=y$, the following are unifiers

s	$\omega_{1} s$	$\omega_{2} s$
$\{y / x\}$	x	x
$\{x / y\}$	y	y
$\{x / f(f(A)), y / f(f(A))\}$	$f(f(A))$	$f(f(A))$
$\{x / A, y / A\}$	A	A

Most General Unifier
g is a most general unifier of ω_{1} and ω_{2} iff for all unifiers s , there exists s^{\prime} such that $\omega_{1} \mathrm{~s}=\left(\omega_{1} \mathrm{~g}\right) \mathrm{s}^{\prime}$ and $\omega_{2} \mathrm{~S}=\left(\omega_{2} \mathrm{~g}\right) \mathrm{S}^{\prime}$

ω_{1}	ω_{2}	$M G U$
$P(x)$	$P(A)$	$\{x / A\}$
$P(f(x), y, g(x))$	$P(f(x), x, g(x))$	$\{y / x\}$ or $\{x / y\}$
$P(f(x), y, g(y))$	$P(f(x), z, g(x))$	$\{y / x, z / x\}$
$P(x, B, B)$	$P(A, y, z)$	$\{x / A, y / B, z / B\}$
$P(g(f(v)), g(u))$	$P(x, x)$	$\{x / g(f(v)), u / f(v)\}$
$P(x, f(x))$	$P(x, x)$	No $M G U!$

Unification Algorithm

```
unify(Expr x, Expr y, Subst s) {
    if s}=f\mathrm{ fail, return fail
    else if }\textrm{X}=\textrm{Y}\mathrm{ , return s
    else if }x\mathrm{ is a variable, return unify-var(x, y, s)
    else if }Y\mathrm{ is a variable, return unify-var(y, x, s)
    else if }x\mathrm{ is a predicate or function application,
    if }Y\mathrm{ has the same operator,
        return unify(args (x), args (y), s)
    else return fail
    else
                ; }x\mathrm{ and y have to be lists
    return unify(rest(x), rest(y),
    unify(first(x), first(y), s))
}
```


Unify-var subroutine

Substitute in for var and x as long as possible, then add new binding
unify-var(Variable var, Expr x, Subst s) $\{$
if var is bound to val in s, return unify (val, x, s)
else if x is bound to val in s, return unify-var(var, val, s)
else if var occurs anywhere in (x s), return fail
else return add(\{var $/ x\}$, s)
\}

Examples

ω_{1}	ω_{2}	$M G U$
$A(B, C)$	$A(x, y)$	$\{x / B, y / C\}$
$A(x, f(D, x))$	$A(E, f(D, y))$	$\{x / E, y / E\}$
$A(x, y)$	$A(f(C, y), z)$	$\{x / f(C, y), y / z\}$
$P(A, x, f(g(y)))$	$P(y, f(z), f(z))$	$\{y / A, x / f(z), z / g(y)\}$
$P(x, g(f(A)), f(x))$	$P(f(y), z, y)$	none
$P(x, f(y))$	$P(z, g(w))$	none

Resolution with Variables

$$
\begin{aligned}
& \quad \alpha \vee \varphi \operatorname{MGU}(\varphi, \psi)=\theta \\
& \frac{\neg \varphi \vee \beta}{(\alpha \vee \beta) \theta}
\end{aligned}
$$

$\forall x, y . \quad \mathrm{P}(x) \vee \mathrm{Q}(x, y)$
$\forall x . \neg \mathrm{P}(A) \vee \mathrm{R}(B, x)$
$\forall x, y . \quad P(x) \vee Q(x, y)$
$\forall z$. $\neg P(A) \vee R(B, z)$
$(Q(x, y) \vee R(B, z)) \theta$
$Q(A, y) \vee R(B, z)$
$\theta=\{\mathrm{x} / \mathrm{A}\}$
$\mathrm{P}\left(x_{1}\right) \vee \mathrm{Q}\left(x_{1}, y_{1}\right)$
$\neg \mathrm{P}(A) \vee \mathrm{R}\left(B_{1} x_{2}\right)$
$\left(Q\left(x_{1}, y_{1}\right) \vee R\left(B, x_{2}\right)\right) 9$
$Q\left(A, y_{1}\right) \vee R\left(B, x_{2}\right)$
$\theta=\left\{\mathrm{x}_{1}, \mathrm{~A}\right\}$

Curiosity Killed the Cat

1	D(Fido)	a
2	O(J,Fido)	a
3	$\neg \mathrm{D}(\mathrm{y}) \cup \neg \mathrm{O}(\mathrm{x}, \mathrm{y}) \cup \mathrm{L}(\mathrm{x})$	b
4	$\neg \mathrm{L}(\mathrm{x}) \mathrm{v} \neg \mathrm{A}(\mathrm{y}) \mathrm{v} \neg \mathbb{K}(\mathrm{x}, \mathrm{y})$	c
5	$K(1, T) \cup K(C, T)$	d
6	C(T)	e
7	$\rightarrow C(x)$ v $A(x)$	f
8	$\neg \mathbb{K}\left(\mathrm{C}_{\boldsymbol{z}} \mathrm{T}\right)$	Neg
9	K(J, T)	5.8
10	A(T)	$6.7\{x / T\}$
11	\neg (J) $v \neg A(T)$	4,9 (x/J, y/T)
12	\neg (J)	10,11
13	$\neg \mathrm{D}(\mathrm{y}) \mathrm{v} \neg \mathrm{O}(\mathrm{J}, \mathrm{y})$	3,12 (x/d)
14	\neg D(Fido)	13,2 (y/Fido)
15	*	14,1

Proving Validity

- How do we use resolution refutation to prove something is valid?
- Normally, we prove a sentence is entailed by the set of axioms
- Valid sentences are entailed by the empty set of sentences
- To prove validity by refutation, negate the sentence and try to derive contradiction.

Example

- Syllogism

$$
(\forall x \cdot \mathrm{P}(x) \rightarrow \mathrm{Q}(x)) \wedge \mathrm{P}(A) \rightarrow \mathrm{Q}(A)
$$

- Negate and convert to clausal form

$$
\begin{aligned}
& -((\forall x . P(x) \rightarrow Q(x)) \wedge P(A) \rightarrow Q(A)) \\
& -((\forall x . \neg P(x) \vee Q(x)) \vee \neg P(A) \vee Q(A)) \\
& (\forall x . \neg P(x) \vee Q(x)) \wedge P(A) \wedge \neg Q(A) \\
& (P(x) \vee Q(x)) \wedge P(A) \wedge \neg Q(A)
\end{aligned}
$$

Example

- Do proof

1.	$\neg \mathrm{P}(x) \vee \mathrm{Q}(x)$	
2.	$\mathrm{P}(A)$	
3.	$\neg \mathrm{Q}(A)$	
4.	$\mathrm{Q}(A)$	1,2
5.	\square	3,4

Green's Trick

- Use resolution to get answers to existential queries $\exists x . \operatorname{Mortal}(x)$

1.	\neg Man $(x) \vee$ Mortal (x)	
2.	Man $($ Socrates $)$	
3.	\neg Mortal $(x) \vee$ Answer (x)	
4.	Mortal $($ Socrates $)$	1,2
5.	Answer $($ Socrates $)$	3,5

Equality

- Special predicate in syntax and semantics; need to add something to our proof system
- Could add another special inference rule called paramodulation
- Instead, we will axiomatize equality as an equivalence relation

$$
\begin{aligned}
& \forall x \cdot \mathrm{Eq}(x, x) \\
& \forall x, y \cdot \mathrm{Eq}(x, y) \rightarrow \mathrm{Eq}(y, x) \\
& \forall x, y, z \cdot \mathrm{Eq}(x, y) \wedge \mathrm{Eq}(y, z) \rightarrow \mathrm{Eq}(x, z)
\end{aligned}
$$

- For every predicate, allow substitutions

$$
\forall x, y \cdot \mathrm{Eq}(x, y) \rightarrow(\mathrm{P}(x) \rightarrow \mathrm{P}(y))
$$

Proof Example

- Let's go back to our old geometry domain and try to prove what the hat of A is
- Axioms in FOL (plus equality axioms)

```
Above(A,C)
Above(B,D)
\neg \exists x . \operatorname { A b o v e ( x , A ) }
\neg \exists x . \operatorname { A b o v e } ( x , B )
\forallx,y.Above}(x,y)->\mathrm{ hat (y) =x
\forallx.(\neg\existsy.Above}(y,x))->\operatorname{hat}(x)=
```

- Desired conclusion: $\exists x$. hat $(A)=x$
- Use Green's trick to get the binding of x

The Clauses

The Query

1.	Above(A, C)
2.	Above(B, D)
3.	\sim Above (x, A)
4.	\sim Above (X, B)
5.	\sim Above (x, y) \vee Eq(hat ($(\mathrm{y}), \mathrm{x}$)
6.	Above(sk(x), x) $\vee \mathrm{Eq}(\mathrm{hat}(\mathrm{x}), \mathrm{x})$
7.	$\mathrm{Eq}(\mathrm{x}, \mathrm{x})$
8.	$\sim E q(x, y) \vee \sim E q(y, z) \vee E q(x, z)$
9.	$\sim E q(x, y) \vee E q(y, x)$
10.	$\sim E q(h a t(A), x) \vee$ Answer(x)

1.	Above(A, C)	
2.	Above(B, D)	
3.	\sim Above (x, A)	
4.	\sim Above (x, B)	
5.	\sim Above (x, y) \vee Eq(hat $(\mathrm{y}), \mathrm{x})$	
6.	Above(sk(x), x) v Eq(hat (x), x)	
7.	$E q(x, x)$	
8.	$\sim E q(x, y) \vee \sim E q(y, z) \vee E q(x, z)$	
9.	$\sim E q(x, y) \vee E q(y, x)$	
10.	$\sim E q(\operatorname{hat}(A), x) \vee$ Answer(x)	conclusion
11.	Above(sk(A), A) v Answer(A)	6, 10 \{ $\mathrm{x} / \mathrm{A}\}$
12.	Answer(A)	$\begin{aligned} & 11,3 \\ & \{x / \operatorname{sk}(A)\} \\ & \hline \end{aligned}$

Hat of D

Who is Jane's Lower

- Jane's lover drives a red car
- Fred is the only person who drives a red car
- Who is Jane's lover?

1.	Drives(lover(Jane))	
2.	~Drives(X$)$ v Eq($\mathrm{x}, \mathrm{Frec}$)	
3.	\sim Eq(lover(Jane), x) v Answer(x)	
4.	Eq(lover(Jane), Fred)	1,2 \{x/lover(Jane) $\}$
5.	Answer(Fred)	3,4 \{x/Fred\}

