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uninformed search search strategy 
that uses no problem-specific 
knowledge 

informed search search strategy 
that uses problem-specific 
knowledge to find solutions more 
efficiently 
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 
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Review: Tree search

• Initialize the frontier using the starting state

• While the frontier is not empty

– Choose a frontier node to expand according to search strategy 

and take it off the frontier

– If the node contains the goal state, return solution

– Else expand the node and add its children to the frontier

• To handle repeated states:

– Keep an explored set; add each node to the explored set every 

time you expand it

– Every time you add a node to the frontier, check whether it 

already exists in the frontier with a higher path cost, and if yes, 

replace that node with the new one
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General Search
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Review: Uninformed search strategies

• A search strategy is defined by picking the order of 

node expansion

• Uninformed search strategies use only the information 

available in the problem definition

• only considers “already visited” path

• without edge cost, guided by

– path length as number of nodes

– successor relationships and structure (leftmost,…)

• with edge cost, guided by

– path length as cost of visited path
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Uniform Cost Search
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Informed search strategies

• Informed search strategies use problem specific 

knowledge beyond the definition of the problem 

itself

• Idea: give the algorithm “hints” about the 

desirability of different states 

– Use an evaluation function to rank nodes and select the 

most promising one for expansion

• Greedy best-first search

• A* search
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Best-first search

• Idea: use an evaluation function f(n) to select the node for 
expansion

– estimate of "desirability"

→Expand most desirable unexpanded node

• Implementation:

Order the nodes in fringe in decreasing order of desirability
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Best-first search
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Informed – Estimate cost to the goal



14

Heuristic Function

Heuristic – several meanings

- To find, or discover (Heureka, Archimedes)

- Computers, Mathematics. pertaining to a trial-and-error

method of problem solving used when an algorithmic

approach is impractical.

h cannot be computed solely from the states and transitions 

in the current problem -> If we could, we would already 

know the optimal path!

h(.) is based on external knowledge about the problem -> 

informed search
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Greedy best-first search

• Greedy best-first search expands the node that 

appears to be closest to goal

• Evaluation function f(n) = h(n) (heuristic)

• = estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n to 

Bucharest

• Note that, hSLD cannot be computed from the problem 

description itself. It takes a certain amount of 

experience to know that it is correlated with actual 

road distances, and therefore it is a useful heuristic
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Heuristic function

• Heuristic function h(n) estimates the cost of 

reaching goal from node n

• Example:
Start state

Goal state
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Romania with step costs in km

e.g. For Romania, cost of the cheapest path from Arad to 
Bucharest can be estimated via the straight line distance 
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Greedy best-first search example
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Greedy best-first search example
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Greedy best-first search example
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Greedy best-first search example
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Greedy best-first search – Another example
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Greedy best-first search – Another example
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Greedy best-first search – Another example
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Greedy best-first search – Another example
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Greedy best-first search – Another example
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Greedy best-first search – Another example
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Greedy best-first search – Another example
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Properties of greedy best-first search

• Complete?
No – can get stuck in loops

start
goal

Path through Faragas is not the optimal

In getting Iasi to Faragas, it will expand Neamt first but it is a dead end
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Properties of greedy best-first search

• Complete?

No – can get stuck in loops

• Optimal? 

No
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Properties of greedy best-first search

• Complete?

No – can get stuck in loops

• Optimal? 

No

• Time? 

Worst case: O(bm)

Can be much better with a good heuristic

• Space?

Worst case: O(bm) 

keeps all nodes in memory
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How can we fix the greedy problem?

• How about keeping track of the distance already 

traveled in addition to the distance remaining?
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Fixing the problem



38

Spring 
2008

A* search

• Idea: avoid expanding paths that are already 

expensive

• The evaluation function f(n) is the estimated total 

cost of the path through node n to the goal:

f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost from n to goal
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Can A* fix the problem?
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A* search example
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A* search example
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A* search example
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A* search example
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A* search example
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A* search example
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When terminate?
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A* search – Another example
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A* search – Another example
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A* search – Another example
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A* search – Another example
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Revisiting states (in queue)
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Revisiting states (already expanded)
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Uniform cost search vs. A* search

Source: Wikipedia

http://en.wikipedia.org/wiki/File:Astar_progress_animation.gif
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Uniform Cost (UC) versus A*
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Why use estimate of goal distance



61

Spring 
2008

Why use estimate of goal distance
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Classes of search
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A* gone wrong?

Source: Berkeley CS188x

https://courses.edx.org/static/content-berkeley-cs188x~fa12/handouts/slides/FA12 cs188 lecture 3 -- a-star search (2PP).pdf
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Admissible heuristics

• An admissible heuristic never overestimates the 

cost to reach the goal, i.e., it is optimistic

• A heuristic h(n) is admissible if for every node n, 

h(n) ≤ h*(n), where h*(n) is the true cost to reach 

the goal state from n

• Consequence: f(n) never over estimates the true 

cost of a solution through n since g(n) is the exact 

cost to reach n

• Example: straight line distance never 

overestimates the actual road distance

• Theorem: If h(n) is admissible, A* is optimal
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Not all heuristics are addmissible
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Consistency of heuristics

Source: Berkeley CS188x

h=4

https://courses.edx.org/static/content-berkeley-cs188x~fa12/handouts/slides/FA12 cs188 lecture 3 -- a-star search (2PP).pdf
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Consistent heuristics
• A heuristic is consistent if for every node n, every successor n' of n

generated by any action a, 

h(n) ≤ c(n,a,n') + h(n')

n' = successor of n generated by action a

• The estimated cost of reaching the goal from n is no greater than the step 
cost of getting to n' plus the estimated cost of reaching the goal from n'

• If h is consistent, we have

f(n') = g(n') + h(n') 

= g(n) + c(n,a,n') + h(n') 

≥ g(n) + h(n) 

≥ f(n)

• if h(n) is consistent then the values of f(n) along any path are non-
decreasing 

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal
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Optimality of A*

• Tree search (i.e., search without repeated state 

detection):

– A* is optimal if heuristic is admissible (and non-

negative) 

• Graph search (i.e., search with repeated state 

detection)

– A* optimal if heuristic is consistent

• Consistency implies admissibility 

– In general, most natural admissible heuristics tend to be 

consistent, especially if they come from relaxed 

problems 

Source: Berkeley CS188x

https://courses.edx.org/static/content-berkeley-cs188x~fa12/handouts/slides/FA12 cs188 lecture 3 -- a-star search (2PP).pdf
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Optimality of A*

• Monotonicity: A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes 

• Contour i has all nodes with f=fi, where fi < fi+1

• A* expands all nodes with f(n) < C*

• A* might then expand some of the nodes right on the goal contour (where 

f(n) = C*) before selecting a goal state

• A* expands no nodes with f(n) > C* (e.g. the subtree under Timisoara)
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Optimality of A* (proof)
• Suppose some suboptimal goal G2 has been generated and is in the fringe. 

Let the cost of the optimal solution to goal G is C*

f = g + h

• f(G2)  = g(G2) since h(G2) = 0 

• g(G2) > C* since G2 is suboptimal 

• f(G)   = g(G) since h(G) = 0 

• f(G2)  > f(G) from above 

Let n be an unexpanded node in the fringe such that n is on a shortest 

path to an optimal goal G (e.g. Pitesti).

• If h(n) does not overestimate the cost of completing the solution path, then

• f(n) = g(n) + h(n) ≤ C* 

• f(n) ≤ f(G)

• f(G2) > f(G) from above 

• Hence f(G2) > f(G) >= f(n) , and A* will never select G2 for expansion
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Optimality of A*

• A* is optimally efficient – no other tree-based 

algorithm that uses the same heuristic can expand 

fewer nodes and still be guaranteed to find the 

optimal solution

– A* expands all nodes for which f(n) ≤ C*. Any 

algorithm that does not risks missing the optimal 

solution
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Properties of A*

• Complete? Yes (unless there are infinitely many 

nodes with f ≤ f(G)

• Time? Exponential

• Space? Keeps all nodes in memory

• Optimal? Yes

• Alternative:

• Memory bounded heuristic search : 

• IDA*: adapt the idea of iterative deepening search, use cut-off as f-

cost rather than the depth.

• Recursive best-first search
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Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance – the sum of the distances of the tiles from 
their goal positions

• h1(S) = ? 

• h2(S) = ?
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Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18
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Quality of a heuristic

• Effective branching factor b*

• If N is the number of nodes generated by A*, and the solution depth is d, then

– N+1 = 1 + b* + (b*)^2 + … + (b*)^d

• E.g. If A* finds a solution at depth 5 using 52 nodes, then b* = 1.92

• The average solution cost for randomly generated 8-puzzle instance is about 22 
steps. The branching factor is 3 (when the tile is in middle it is 4, when in the 
corner it is 2, when it is along the edge it is 3)

• Typical search costs (average number of nodes expanded):

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes, b* =1,42
A*(h2) = 73 nodes, b* = 1.24

• d=24 IDS = too many nodes
A*(h1) = 39,135 nodes, b* = 1.48
A*(h2) = 1,641 nodes, b* = 1.26



78

Spring 
2008

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)

• then h2 dominates h1

• h2 is better for search

• It is always better to use a heuristic function with 
higher values, provided it does not overestimate and 
that the computation time for the heuristic is not too 
large

Why?

Every node with f(n) < C* will be expanded

i.e. every node with h(n) < C* - g(n) will be expanded

Since h2 is at least as big as h1 for all nodes, every node that is 
expanded by h2, will be also expanded by h1, and h1 may also 
cause other nodes to be expanded
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Inventing admissible heuristic functions

• h1 and h2 estimates perfectly accurate path length for 

simplified versions of 8-puzzle

• If a tile can move anywhere, then h1 would give the exact 

number of steps in the shortest solution.

• If a tile can move to any adjacent square, even onto an 

occupied square, then h2 would give the exact number of 

steps in the shortest solution.
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Relaxed problems

• A problem with fewer restrictions on the actions is 

called a relaxed problem

• The cost of an optimal solution to a relaxed problem 

is an admissible heuristic for the original problem

• The heuristic is admissible because the optimal 

solution in the original problem is also a solution in 

the relaxed problem and therefore must be at least as 

expensive as the optimal solution in the relaxed 

problem
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Inventing admissible heuristic functions

• If a problem definition is written down in a formal language, it is possible to 

construct relaxed problems automatically (ABSOLVER)

– If 8-puzzle is described as

• A tile can move from square A to square B if

– A is horizontally or vertically adjacent to B and B is blank

– A relaxed problem can be generated by removing one or both of the conditions

• (a) A tile can move from square A to square B if A is adjacent to B

• (b) A tile can move from square A to square B if B is blank

• (c) A tile can move from square A to square B

– h2 can be derived from (a) – h2 is the proper score if we move each tile into its 

destination

– h1 can be derived from (c) – it is the proper score if tiles could move to their 

intended destination in one step

• Admissible heuristics can also be derived from the solution cost of a subproblem of 

a given problem 
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Combining heuristics

• Suppose we have a collection of admissible 

heuristics h1(n), h2(n), …, hm(n), but none of them 

dominates the others

• How can we combine them?

h(n) = max{h1(n), h2(n), …, hm(n)}
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Weighted A* search

• Idea: speed up search at the expense of optimality

• Take an admissible heuristic, “inflate” it by a 

multiple α > 1, and then perform A* search as 

usual

• Fewer nodes tend to get expanded, but the 

resulting solution may be suboptimal (its cost will 

be at most α times the cost of the optimal solution)



85

Example of weighted A* search

Heuristic: 5 * Euclidean distance 
from goal

Source: Wikipedia

Compare: Exact A*

http://en.wikipedia.org/wiki/File:Weighted_A_star_with_eps_5.gif
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All search strategies

Algorithm Complete? Optimal?
Time 

complexity

Space 

complexity

BFS

DFS

IDS

UCS

Greedy

A*

No No
Worst case: O(bm)

Yes
Yes

(if heuristic is 
admissible)

Best case: O(bd)

Number of nodes with 
g(n)+h(n) ≤ C*

Yes

Yes

No

Yes

If all step 
costs are equal

If all step 
costs are equal

Yes

No

O(bd)

O(bm)

O(bd)

O(bd)

O(bm)

O(bd)

Number of nodes with 
g(n) ≤ C*
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