
1

Spring
2008

Informed/Heuristic search and

Exploration

Artificial Intelligence

Slides are mostly adapted from AIMA, MIT Open Courseware and

Svetlana Lazebnik (UIUC)

2

uninformed search search strategy
that uses no problem-specific
knowledge

informed search search strategy
that uses problem-specific
knowledge to find solutions more
efficiently

3

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

4

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

5

Review: Tree search

• Initialize the frontier using the starting state

• While the frontier is not empty

– Choose a frontier node to expand according to search strategy

and take it off the frontier

– If the node contains the goal state, return solution

– Else expand the node and add its children to the frontier

• To handle repeated states:

– Keep an explored set; add each node to the explored set every

time you expand it

– Every time you add a node to the frontier, check whether it

already exists in the frontier with a higher path cost, and if yes,

replace that node with the new one

7

General Search

8

Review: Uninformed search strategies

• A search strategy is defined by picking the order of

node expansion

• Uninformed search strategies use only the information

available in the problem definition

• only considers “already visited” path

• without edge cost, guided by

– path length as number of nodes

– successor relationships and structure (leftmost,…)

• with edge cost, guided by

– path length as cost of visited path

9

Uniform Cost Search

10

Informed search strategies

• Informed search strategies use problem specific

knowledge beyond the definition of the problem

itself

• Idea: give the algorithm “hints” about the

desirability of different states

– Use an evaluation function to rank nodes and select the

most promising one for expansion

• Greedy best-first search

• A* search

11

Spring
2008

Best-first search

• Idea: use an evaluation function f(n) to select the node for
expansion

– estimate of "desirability"

→Expand most desirable unexpanded node

• Implementation:

Order the nodes in fringe in decreasing order of desirability

12

Spring
2008

Best-first search

13

Informed – Estimate cost to the goal

14

Heuristic Function

Heuristic – several meanings

- To find, or discover (Heureka, Archimedes)

- Computers, Mathematics. pertaining to a trial-and-error

method of problem solving used when an algorithmic

approach is impractical.

h cannot be computed solely from the states and transitions

in the current problem -> If we could, we would already

know the optimal path!

h(.) is based on external knowledge about the problem ->

informed search

15

Spring
2008

Greedy best-first search

• Greedy best-first search expands the node that

appears to be closest to goal

• Evaluation function f(n) = h(n) (heuristic)

• = estimate of cost from n to goal

• e.g., hSLD(n) = straight-line distance from n to

Bucharest

• Note that, hSLD cannot be computed from the problem

description itself. It takes a certain amount of

experience to know that it is correlated with actual

road distances, and therefore it is a useful heuristic

16

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

17

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

18

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

19

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

20

Heuristic function

• Heuristic function h(n) estimates the cost of

reaching goal from node n

• Example:
Start state

Goal state

21

Spring
2008

Romania with step costs in km

e.g. For Romania, cost of the cheapest path from Arad to
Bucharest can be estimated via the straight line distance

22

Greedy best-first search example

23

Greedy best-first search example

24

Greedy best-first search example

25

Greedy best-first search example

26

Spring
2008

Greedy best-first search – Another example

27

Spring
2008

Greedy best-first search – Another example

28

Spring
2008

Greedy best-first search – Another example

29

Spring
2008

Greedy best-first search – Another example

30

Spring
2008

Greedy best-first search – Another example

31

Spring
2008

Greedy best-first search – Another example

32

Spring
2008

Greedy best-first search – Another example

33

Properties of greedy best-first search

• Complete?
No – can get stuck in loops

start
goal

Path through Faragas is not the optimal

In getting Iasi to Faragas, it will expand Neamt first but it is a dead end

34

Properties of greedy best-first search

• Complete?

No – can get stuck in loops

• Optimal?

No

35

Properties of greedy best-first search

• Complete?

No – can get stuck in loops

• Optimal?

No

• Time?

Worst case: O(bm)

Can be much better with a good heuristic

• Space?

Worst case: O(bm)

keeps all nodes in memory

36

How can we fix the greedy problem?

• How about keeping track of the distance already

traveled in addition to the distance remaining?

37

Fixing the problem

38

Spring
2008

A* search

• Idea: avoid expanding paths that are already

expensive

• The evaluation function f(n) is the estimated total

cost of the path through node n to the goal:

f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost from n to goal

39

Can A* fix the problem?

40

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

41

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

42

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

43

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

44

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

45

A* search example

46

A* search example

47

A* search example

48

A* search example

49

A* search example

50

A* search example

51

When terminate?

52

Spring
2008

A* search – Another example

53

Spring
2008

A* search – Another example

54

Spring
2008

A* search – Another example

55

Spring
2008

A* search – Another example

56

Revisiting states (in queue)

57

Revisiting states (already expanded)

58

Uniform cost search vs. A* search

Source: Wikipedia

http://en.wikipedia.org/wiki/File:Astar_progress_animation.gif

59

Spring
2008

Uniform Cost (UC) versus A*

60

Spring
2008

Why use estimate of goal distance

61

Spring
2008

Why use estimate of goal distance

62

Spring
2008

Classes of search

64

A* gone wrong?

Source: Berkeley CS188x

https://courses.edx.org/static/content-berkeley-cs188x~fa12/handouts/slides/FA12 cs188 lecture 3 -- a-star search (2PP).pdf

65

Admissible heuristics

• An admissible heuristic never overestimates the

cost to reach the goal, i.e., it is optimistic

• A heuristic h(n) is admissible if for every node n,

h(n) ≤ h*(n), where h*(n) is the true cost to reach

the goal state from n

• Consequence: f(n) never over estimates the true

cost of a solution through n since g(n) is the exact

cost to reach n

• Example: straight line distance never

overestimates the actual road distance

• Theorem: If h(n) is admissible, A* is optimal

66

Spring
2008

Not all heuristics are addmissible

67

Consistency of heuristics

Source: Berkeley CS188x

h=4

https://courses.edx.org/static/content-berkeley-cs188x~fa12/handouts/slides/FA12 cs188 lecture 3 -- a-star search (2PP).pdf

68

Spring
2008

Consistent heuristics
• A heuristic is consistent if for every node n, every successor n' of n

generated by any action a,

h(n) ≤ c(n,a,n') + h(n')

n' = successor of n generated by action a

• The estimated cost of reaching the goal from n is no greater than the step
cost of getting to n' plus the estimated cost of reaching the goal from n'

• If h is consistent, we have

f(n') = g(n') + h(n')

= g(n) + c(n,a,n') + h(n')

≥ g(n) + h(n)

≥ f(n)

• if h(n) is consistent then the values of f(n) along any path are non-
decreasing

• Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

69

Optimality of A*

• Tree search (i.e., search without repeated state

detection):

– A* is optimal if heuristic is admissible (and non-

negative)

• Graph search (i.e., search with repeated state

detection)

– A* optimal if heuristic is consistent

• Consistency implies admissibility

– In general, most natural admissible heuristics tend to be

consistent, especially if they come from relaxed

problems

Source: Berkeley CS188x

https://courses.edx.org/static/content-berkeley-cs188x~fa12/handouts/slides/FA12 cs188 lecture 3 -- a-star search (2PP).pdf

70

Spring
2008

Optimality of A*

• Monotonicity: A* expands nodes in order of increasing f value

• Gradually adds "f-contours" of nodes

• Contour i has all nodes with f=fi, where fi < fi+1

• A* expands all nodes with f(n) < C*

• A* might then expand some of the nodes right on the goal contour (where

f(n) = C*) before selecting a goal state

• A* expands no nodes with f(n) > C* (e.g. the subtree under Timisoara)

72

Spring
2008

Optimality of A* (proof)
• Suppose some suboptimal goal G2 has been generated and is in the fringe.

Let the cost of the optimal solution to goal G is C*

f = g + h

• f(G2) = g(G2) since h(G2) = 0

• g(G2) > C* since G2 is suboptimal

• f(G) = g(G) since h(G) = 0

• f(G2) > f(G) from above

Let n be an unexpanded node in the fringe such that n is on a shortest

path to an optimal goal G (e.g. Pitesti).

• If h(n) does not overestimate the cost of completing the solution path, then

• f(n) = g(n) + h(n) ≤ C*

• f(n) ≤ f(G)

• f(G2) > f(G) from above

• Hence f(G2) > f(G) >= f(n) , and A* will never select G2 for expansion

73

Optimality of A*

• A* is optimally efficient – no other tree-based

algorithm that uses the same heuristic can expand

fewer nodes and still be guaranteed to find the

optimal solution

– A* expands all nodes for which f(n) ≤ C*. Any

algorithm that does not risks missing the optimal

solution

74

Spring
2008

Properties of A*

• Complete? Yes (unless there are infinitely many

nodes with f ≤ f(G)

• Time? Exponential

• Space? Keeps all nodes in memory

• Optimal? Yes

• Alternative:

• Memory bounded heuristic search :

• IDA*: adapt the idea of iterative deepening search, use cut-off as f-

cost rather than the depth.

• Recursive best-first search

75

Spring
2008

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance – the sum of the distances of the tiles from
their goal positions

• h1(S) = ?

• h2(S) = ?

76

Spring
2008

Admissible heuristics

E.g., for the 8-puzzle:

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance

• h1(S) = ? 8

• h2(S) = ? 3+1+2+2+2+3+3+2 = 18

77

Spring
2008

Quality of a heuristic

• Effective branching factor b*

• If N is the number of nodes generated by A*, and the solution depth is d, then

– N+1 = 1 + b* + (b*)^2 + … + (b*)^d

• E.g. If A* finds a solution at depth 5 using 52 nodes, then b* = 1.92

• The average solution cost for randomly generated 8-puzzle instance is about 22
steps. The branching factor is 3 (when the tile is in middle it is 4, when in the
corner it is 2, when it is along the edge it is 3)

• Typical search costs (average number of nodes expanded):

• d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes, b* =1,42
A*(h2) = 73 nodes, b* = 1.24

• d=24 IDS = too many nodes
A*(h1) = 39,135 nodes, b* = 1.48
A*(h2) = 1,641 nodes, b* = 1.26

78

Spring
2008

Dominance

• If h2(n) ≥ h1(n) for all n (both admissible)

• then h2 dominates h1

• h2 is better for search

• It is always better to use a heuristic function with
higher values, provided it does not overestimate and
that the computation time for the heuristic is not too
large

Why?

Every node with f(n) < C* will be expanded

i.e. every node with h(n) < C* - g(n) will be expanded

Since h2 is at least as big as h1 for all nodes, every node that is
expanded by h2, will be also expanded by h1, and h1 may also
cause other nodes to be expanded

79

Spring
2008

Inventing admissible heuristic functions

• h1 and h2 estimates perfectly accurate path length for

simplified versions of 8-puzzle

• If a tile can move anywhere, then h1 would give the exact

number of steps in the shortest solution.

• If a tile can move to any adjacent square, even onto an

occupied square, then h2 would give the exact number of

steps in the shortest solution.

80

Spring
2008

Relaxed problems

• A problem with fewer restrictions on the actions is

called a relaxed problem

• The cost of an optimal solution to a relaxed problem

is an admissible heuristic for the original problem

• The heuristic is admissible because the optimal

solution in the original problem is also a solution in

the relaxed problem and therefore must be at least as

expensive as the optimal solution in the relaxed

problem

81

Spring
2008

Inventing admissible heuristic functions

• If a problem definition is written down in a formal language, it is possible to

construct relaxed problems automatically (ABSOLVER)

– If 8-puzzle is described as

• A tile can move from square A to square B if

– A is horizontally or vertically adjacent to B and B is blank

– A relaxed problem can be generated by removing one or both of the conditions

• (a) A tile can move from square A to square B if A is adjacent to B

• (b) A tile can move from square A to square B if B is blank

• (c) A tile can move from square A to square B

– h2 can be derived from (a) – h2 is the proper score if we move each tile into its

destination

– h1 can be derived from (c) – it is the proper score if tiles could move to their

intended destination in one step

• Admissible heuristics can also be derived from the solution cost of a subproblem of

a given problem

83

Combining heuristics

• Suppose we have a collection of admissible

heuristics h1(n), h2(n), …, hm(n), but none of them

dominates the others

• How can we combine them?

h(n) = max{h1(n), h2(n), …, hm(n)}

84

Weighted A* search

• Idea: speed up search at the expense of optimality

• Take an admissible heuristic, “inflate” it by a

multiple α > 1, and then perform A* search as

usual

• Fewer nodes tend to get expanded, but the

resulting solution may be suboptimal (its cost will

be at most α times the cost of the optimal solution)

85

Example of weighted A* search

Heuristic: 5 * Euclidean distance
from goal

Source: Wikipedia

Compare: Exact A*

http://en.wikipedia.org/wiki/File:Weighted_A_star_with_eps_5.gif

86

All search strategies

Algorithm Complete? Optimal?
Time

complexity

Space

complexity

BFS

DFS

IDS

UCS

Greedy

A*

No No
Worst case: O(bm)

Yes
Yes

(if heuristic is
admissible)

Best case: O(bd)

Number of nodes with
g(n)+h(n) ≤ C*

Yes

Yes

No

Yes

If all step
costs are equal

If all step
costs are equal

Yes

No

O(bd)

O(bm)

O(bd)

O(bd)

O(bm)

O(bd)

Number of nodes with
g(n) ≤ C*

	Slide 1: Informed/Heuristic search and Exploration
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Review: Tree search
	Slide 7: General Search
	Slide 8: Review: Uninformed search strategies
	Slide 9: Uniform Cost Search
	Slide 10: Informed search strategies
	Slide 11: Best-first search
	Slide 12: Best-first search
	Slide 13: Informed – Estimate cost to the goal
	Slide 14: Heuristic Function
	Slide 15: Greedy best-first search
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Heuristic function
	Slide 21: Romania with step costs in km
	Slide 22: Greedy best-first search example
	Slide 23: Greedy best-first search example
	Slide 24: Greedy best-first search example
	Slide 25: Greedy best-first search example
	Slide 26: Greedy best-first search – Another example
	Slide 27: Greedy best-first search – Another example
	Slide 28: Greedy best-first search – Another example
	Slide 29: Greedy best-first search – Another example
	Slide 30: Greedy best-first search – Another example
	Slide 31: Greedy best-first search – Another example
	Slide 32: Greedy best-first search – Another example
	Slide 33: Properties of greedy best-first search
	Slide 34: Properties of greedy best-first search
	Slide 35: Properties of greedy best-first search
	Slide 36: How can we fix the greedy problem?
	Slide 37: Fixing the problem
	Slide 38: A* search
	Slide 39: Can A* fix the problem?
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: A* search example
	Slide 46: A* search example
	Slide 47: A* search example
	Slide 48: A* search example
	Slide 49: A* search example
	Slide 50: A* search example
	Slide 51: When terminate?
	Slide 52: A* search – Another example
	Slide 53: A* search – Another example
	Slide 54: A* search – Another example
	Slide 55: A* search – Another example
	Slide 56: Revisiting states (in queue)
	Slide 57: Revisiting states (already expanded)
	Slide 58: Uniform cost search vs. A* search
	Slide 59: Uniform Cost (UC) versus A*
	Slide 60: Why use estimate of goal distance
	Slide 61: Why use estimate of goal distance
	Slide 62: Classes of search
	Slide 64: A* gone wrong?
	Slide 65: Admissible heuristics
	Slide 66: Not all heuristics are addmissible
	Slide 67: Consistency of heuristics
	Slide 68: Consistent heuristics
	Slide 69: Optimality of A*
	Slide 70: Optimality of A*
	Slide 72: Optimality of A* (proof)
	Slide 73: Optimality of A*
	Slide 74: Properties of A*
	Slide 75: Admissible heuristics
	Slide 76: Admissible heuristics
	Slide 77: Quality of a heuristic
	Slide 78: Dominance
	Slide 79: Inventing admissible heuristic functions
	Slide 80: Relaxed problems
	Slide 81: Inventing admissible heuristic functions
	Slide 83: Combining heuristics
	Slide 84: Weighted A* search
	Slide 85: Example of weighted A* search
	Slide 86: All search strategies

