Informed/Heuristic search and
Exploration

Artificial Intelligence
Slides are mostly adapted from AIMA, MIT Open Courseware and
Svetlana Lazebnik (UIUC)

uninformed search search strategy
that uses no problem-specific
knowledge

informed search search strategy
that uses problem-specific
knowledge to find solutions more
efficiently

Heuristic function?

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Heuristic function? Manhattan distance.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Review: Tree search

« [nitialize the frontier using the starting state
« While the frontier is not empty

— Choose a frontier node to expand according to search strategy
and take it off the frontier

— If the node contains the goal state, return solution
— Else expand the node and add its children to the frontier

 To handle repeated states:
— Keep an explored set; add each node to the explored set every
time you expand it

— Every time you add a node to the frontier, check whether it
already exists in the frontier with a higher path cost, and if yes,
replace that node with the new one

General Search

States ready to
be expanded
(the “fringe”

Queuing function: some function f(s) at each state/node s
- The state/node with “lowest” f is to expand next
- Insert successors of expanded node into queue

How to choose f()? We would like to find the lowest-cost path

Review: Uninformed search strategies

« Asearch strategy Is defined by picking the order of
node expansion

Uninformed search strategies use only the information
available in the problem definition

* only considers “already visited” path

without edge cost, guided by
— path length as number of nodes

— successor relationships and structure (leftmost,...)

with edge cost, guided by
— path length as cost of visited path

Uniform Cost Search

¢ UCS (Uniform Cost Search)

* g(n) - cost of each node already expanded
length of shortest path from START to n

- f(n)=g(n)

10

Informed search strategies

 Informed search strategies use problem specific
knowledge beyond the definition of the problem
Itself

 Idea: give the algorithm “hints” about the
desirability of different states

— Use an evaluation function to rank nodes and select the
most promising one for expansion

» Greedy best-first search
« A* search

Best-first search

11

 |dea: use an evaluation function f(n) to select the node for
expansion
— estimate of "desirability"
—> Expand most desirable unexpanded node

« |Implementation:
Order the nodes in fringe in decreasing order of desirability

12

Best-first search

Best-first:
Fick "hest’ (measured by heunstic value of state) element of 0

Add path extensions anywheres in L 0t may be more efficient tc keep the Q
ordered In some way 30 as to make it easier to find the "best” element).

There are many possihle approaches to finding the best node in Q.

+ Scanning Q to find lowest value

+ Sorting Q and picking the first element
+ Keeping the Q sorted by doing “sorted” insertions

+ Keeping Q as a priority queue

Informed — Estimate cost to the goal

13

* Introduce a function h(s) to estimate
the unknown distance from
state s to the goal

Heuristic Function

14

Heuristic — several meanings

- To find, or discover (Heureka, Archimedes)

- Computers, Mathematics. pertaining to a trial-and-error
method of problem solving used when an algorithmic
approach is impractical.

h cannot be computed solely from the states and transitions
In the current problem -> If we could, we would already
know the optimal path!

h(.) Is based on external knowledge about the problem ->
Informed search

Greedy best-first search

15

» Greedy best-first search expands the node that
appears to be closest to goal

 Evaluation function f(n) = h(n) (heuristic)
« = estimate of cost from n to goal

* e.g., hg p(n) = straight-line distance from n to
Bucharest

 Note that, he, ; cannot be computed from the problem
description itself. It takes a certain amount of
experience to know that it is correlated with actual
road distances, and therefore it is a useful heuristic

Greedy Best-First Search

11 9 7
12 10 3 6
13 |12 | 11 9 /7 | 6
13 10 8
14 |13 |12 | 11 9
13 10
A 16 | 15| 14 11 | 10

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Greedy Best-First Search

11 9

12 10

13

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Greedy Best-First Search

11 9

12 10

13

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Greedy Best-First Search

10

11

12

13

14

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Heuristic function

20

» Heuristic function h(n) estimates the cost of
reaching goal from node n

« Example:
Stirt state

L,

“ Goal state

Romania with step costs in km

21

e.g. For Romania, cost of the cheapest path from Arad to
Bucharest can be estimated via the straight line distance

Straight-line distance

o Buchamst
Arad
Bucha rest
Crawovs
Dobrets
Eforie
IFagaras
Giurgiu
Hirsova
Ia=

Lugoj
MhMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikes
Sibiu
Timisoara
Urzicem
Vashn

Zerind

ks

0
Lad
42
lal
17&
151
224
14
241
s

L
193
153
329

195
A4

Greedy best-first search example

22

366

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Pitesti

Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui

Zerind

156

0
160
242
151
176
151
28
244
241
234

10
193
253
e

1o
T4

Greedy best-first search example

23

253

g

imizoara

ax

a4

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Pitesti

Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui

Zerind

156

0
160
242
151
176
151
28
244
241
234

10
193
253
e

1o
T4

Greedy best-first search example

24

-

-ﬂ | e - ;
_
36 o

™, — _
‘.@laﬂaa
380 o

——

32

4

Straight-ine distance

& Buchamst
Arad
Bucharest
C'ralova

hrei'l‘a
Tlorie
Fagaras
Giurgiu
Hirsova
Tasi

Pitest
Rimnicu Vilcea
Sibiu
T
ool
Volui

Zorind

]

Q
180
242
L&l
L7&
151
226
H
241
s

1o
193
153
L]

159
174

Greedy best-first search example

25

366

-

o

N,

-

",

380 193

 Sbiu_OpGuchars=D

253

a

g

imizoara

ax

a4

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Pitesti

Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui

Zerind

156

0
160
242
151
176
151
28
244
241
234

10
193
253
e

1o
T4

Greedy best-first search — Another example

26

Fick "best’ {by heunstic value) element of (2 Add path extensions anywhere in (

Visited

(105)

S

o | e | LD P |

Heuristic Yalues
A=2 c=1 5=10
B=3 D=4 G=0

Added paths in blug; heuristic value of node's state is in front.

We show the paths in reversed order; the node's state is the first entry.

Greedy best-first search — Another example

27

Q Visited
(105) 5
QAS)3BS) ABS

R | e | LD | P |

Heuristic Values
A=2 c=1 5=10
B=3 D=4 G=0

Greedy best-first search — Another example

28

Q Visited
(105) S

QA 3BS ABS
(CAS)(3BS)4DAS) |CDBAS

R | e | G | D |

Heuristic Values
A=2 c= 5=10
B=3 D=4 G=0

Greedy best-first search — Another example

29

Q Visited
1 |105) S
2 |QAS)EBS) ABS
3 |1CAS)3BS)@DAS) |CDBAS
4 |3BS){4DAS) CDBAS
5

Heuristic Values
A=2 c=1 5=10
B=3 D=4 G=0

Greedy best-first search — Another example

30

Q Visited
1 [¢0s) S
2 [QAS)BBS) ABS
3 |[1CAS)BBS)(EDAS) |CDBAS
4 |3BS){4DAS) CDBAS
5 |(0GBS)#DAS) G,CDBAS

A=2
B=3

Heuristic Values

C=1
D=4

$=10
G=0

Greedy best-first search — Another example

31

Q Visited
1 {10 5
2 2AS)(3BS ABS
3 (ICAS)(3BS)4DAS) |CDBAS
4 (3BS){4DAS) CDBAS
5 0GBS)#DAS) 6,CDBAS

A=2
B=3

Heuristic Yalues

c=1
D=4

5=10
G=0

Greedy best-first search — Another example

32

Q Visited
1 |(08) 5
2 |[2AS)(3BS) ABS
3 |HCAS)(3BS){4DAS) |CDBAS
4 |(3BS)(4DAS) CDBAS
5 [0GBS 4DAS) GCDBAS

A=2
B=3

Heuristic Yalues

c=1
D=4

3=10
G=0

Properties of greedy best-first search

33

« Complete? _
No — can get stuck in loops

Path through Faragas is not the optimal
In getting lasi to Faragas, it will expand Neamt first but it is a dead end

Properties of greedy best-first search

34

« Complete?
No — can get stuck in loops
« Optimal?

L —
No e
- — -~ y . - ey _
C Oradsa) {Ernri-;u'l.l'in:ea}l
3568 y E . 380 193

" ™,

253 a

g

imizoara

a3z

w4

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Pitesti

Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui

Zerind

355

0
150
242
161
176
151
235
244
241
234

10
193
253
e

1o
a4

35

Properties of greedy best-first search

Complete?
No — can get stuck in loops
Optimal?
No
Time?
Worst case: O(b™)
Can be much better with a good heuristic
e Space?
Worst case: O(b™)
keeps all nodes in memory

How can we fix the greedy problem?

36

4
h=4 h=3 h=2 h=1 h=0

= What solution do we find in this case?
= (START,4)
= (A3)
= (C,1), (B,2)
= (Goal,0) START-A-C-Goal
= Greedy search clearly not optimal, even though the
heuristic function is “good.”

« How about keeping track of the distance already
traveled in addition to the distance remaining?

Fixing the problem

37

f(A) = g(A) + h(A) = 13

f(B) = g(B) + h(B) = 11

h(C) =10

f(C) = g(C) + h(C) = 18

= g(9) is the (shortest cost so far) from START to s only
= h(s) estimates the cost from sto GOAL

= Key insight: g(s) + h(s) estimates the total cost of the
cheapest path from START to GOAL going through s

s =2 A* algorithm

A” search

38

* |dea: avoid expanding paths that are already
expensive

» The evaluation function f(n) iIs the estimated total
cost of the path through node n to the goal:

f(n) =g(n) + h(n)

g(n) = cost so far to reach n
h(n) = estimated cost from n to goal

39

Can A* fix the problem?

4
h=3 h=2 h=1 h=0

h=4
{(START,4)}
{(A,5)}
(f(A)=g(A)+h(A) = g(START) + cost(START,A) + 3 =0 + 2 + 3)
{(B,5) (G7)}
(F(O)=g(O)+h(C) =g(A) + cost(A0O)+1=2+4+1)
{(G5)}

(F(O=g(O)+h(O) =g(B) +cost(BO)+1=3+1+1)
{(GOAL,6)}

A* Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

A* Search

1+16 2+15 3+14

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

A* Search

9+8 10+7 11+6 12+5 13+4

1+16 2+15 3+14

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

A* Search

10| 9 | 8

11

12

13

IV 6+13 5+12

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

1+16 2+15 3+14

9+8

16+7 11+6 12+5 13+4

A* Search

11+18 1249 13+8 14+7 15+6 1645 17+4 18+3 19+2 26+1

9+12 7+10 8+9 9+8 16+7 11+6 12+5 13+4

8+13 . 6+11

7+14 6+13 5+12

1+16 2+15 3+14

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

A" search example

45

366=0+366

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui
Zerind

]

a
L&0
242
lal
-]

151
28
244
241
234

10
193
253
e

1o
T4

A" search example

46

—

H7=118+329

imisoara

4489=75+374

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui
Zerind

]

a
L&0
242
lal
-]

151
28
244
241
234

10
193
253
e

1o
T4

A" search example

47

_--"__----- /"'/ \\'\\ ---__"--_______

G46=280+366 415=239+176 671=291+380 413=220+193

imisoara

H7=118+329

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui
Zerind

156
0
160
242
151
176
TI
151
28
244
241
234

10
193
253
e

1o
T4

A" search example

48

imisoara

H7=118+329

G46=280+366 415=239+176 &71= 2‘31-!-350 ,r' -C;- -

{Clalcwa) (F'IIBEU ¥ { Sblu]

526=366+180 417=317+100 553=300+253

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui
Zerind

355
0
150
242
161
176
T
151
235
244
241
234

10
193
253
e

1o
T4

A" search example

49

c::si?i'uib
"'x 447=118+329 449=T5+4374

-—-

G46=280+3566 _,’ \\ G71= 231-!-350

> @

591=338+253 450=450+0 526=366+160 *1-1 T=37+100 553=300+253

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui
Zerind

156
0
160
242
151
176
TI
151
28
244
241
234

10
193
253
e

1o
T4

A" search example

50

c::si?i'uib
-'\. H7=118+329 H49=T5+3T4

5'31_333+253 4-50:4-53-!-0 525—EEB+1EU .---"' ""'--.h_ _933=300+253

PTTD o> D

418=418+0 G15=455+160 G07=414+193

m

G46=280+3566 / '\N 5?1 231-!-350

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui
Zerind

156
0
160
242
151
176
TI
151
28
244
241
234

10
193
253
e

1o
T4

When terminate?

51

h=38

Queue:
h=3
{(B,4), (A,8)}
/—2<@ {(C4), (A8)}
1
(D4), (A,B’
1

{(A8), (G10);

= Stop only when GOAL is popped (lowest f) from
the queue

A” search — Another example

52

Pick best (by path length+heunistic) element of Q Add path extensions anywhere in Q

o

Heuristic Values
A=l c=1 5=0
B=3 D=1 G=0

Added paths in blue; underlined paths are chosen for extension.
We show the paths in reversed order; the node's state is the first entry.

A" search — Another example

53

Q

1 09

2 |(4AS)BBY)

Heuristic Valuss
A=2 c=1 5=0
B=3 D=1 G=0

A" search — Another example

54

Q

1 |08)

2 |4ASIBBY

3 |GCAS)TDAS)BBS)

A=2
B=3

Heuristic Values
c=1 5=0
D=1 =0

A" search — Another example

55

Q

08

[4AS)BBS)

GCAS)(TDAS)(EBS)

L4 B I R T O LS)

(fDAS)8BES)

BGDAS)(10CDAS)BBS)

Heuristic Yalues

c=
D=1

3=0
=0

Revisiting states (in queue)

56

(Start,8)
(A,8), (B,4)
(C,10), (A,8)
-2 (C,9.5) (C,10) new C and also C in
queue: update f(C) and backpointe
(C,9.9) — backpointer to Ag(C) = 1.5
(D;3.5) @
(G,9.9) — path: Start, A, C, D, Goal

Revisiting states (already expanded)

57

4), (A,

(G,10) (A,8)

- (C,3.5) C already visited: reinsert C
and update backpointer from C to A

(C,3.9) (G,10)

(D,3.5) (G,10)

(G,9.9) —replace (G,10)

Uniform cost search vs. A* search

58

http://en.wikipedia.org/wiki/File:Astar_progress_animation.gif

Uniform Cost (UC) versus A*

59

UC is really trying to identify the shortest path to every state in the graph in

order. It has no particular bias te finding a path to a goal early in the search.

We can introduce such a bias by means of heuristic function h{N), which is
an estimate (h) of the distance from a state n to a goal.

Instead of enumerating paths in order of just length (g), enumerate paths in
terms of f = estimated total path length =g+ h.

An estimate that always underestimates the real path length to the goal is

called admissible. For example, an estimate of 0 is admissible (but useless).

Straight line distance is admissible estimate for path length in Euclidean
space.

Use of an admissible estimate guarantees that UC will still find the shortest
path.

UC with an admissible estimate is known as A" (pronounced “A star”)
search.

Why use estimate of goal distance

60

Order in which UC looks at

/_ states. A and B are same
distance from start, so will
he looked at before any

longer paths. No “hias”
/-\ towards goal.
2 &

Assume states are points
in the Euclidean plane.

Why use estimate of goal distance

Order in which UC looks at
/5 states. A and B are same
distance from start, so will
be looked at before any
longer paths. No “bias”

towards goal.

sta

Assume states are points
in the Euclidean plane.

B goal

Order of examination using
dist. from start + estimate of
dist. to goal. Note “bias”
toward the goal; points away
from goal look worse.

Classes of search

62

Class Name Operation

Any Path Depth-First Systematic exploration of whole tree
Uninformed Breadth-First untl a goal node 15 found.

Any Path Best-First Uses heunstic measure of goodness
Informed of a node, e.g. estimated distance to goal
Optimal Uniform-Cost Uses path “length” measure.
Uninformed Finds "shortest’ path.

Optimal A’ Uses path “length” measure and heuristic
Informed Finds "shortest’ path

A* gone wrong?

64

State space graph

Search tree

S (0+2)

— O\

A(1+4) B(1+1)

! '

C (2+1) C (3+1)

! !

G (5+0) G (6+0)

https://courses.edx.org/static/content-berkeley-cs188x~fa12/handouts/slides/FA12 cs188 lecture 3 -- a-star search (2PP).pdf

Admissible heuristics

65

e An admissi
cost to reac

e A heuristic

nle heuristic never overestimates the
n the goal, 1.e., It Is optimistic

n(n) 1s admissible if for every node n,

h(n) <h™(n), where h™(n) is the true cost to reach
the goal state from n

» Consequence: f(n) never over estimates the true
cost of a solution through n since g(n) is the exact
cost to reach n

« Example: straight line distance never
overestimates the actual road distance

« Theorem: If h(n) is admissible, A™ is optimal

Not all heuristics are addmissible

66

Given the link lengths in the figure, is the table
of heuristic values that we used in our earlier
hest-first example an admissible heuristic?

Nol
Ais ok
Bis ok
Cis ok
D is too big, needs to be <=2
S is too big, can always use 0 for start

A=?
B=3

Heuristic Values
C=1 $=10
D=4 G=0

Consistency of heuristics

67

Consistency: Stronger than admissibility
Definition:

cost(A to C) + h(C) = h(A)

cost(A to C) 2 h(A) - h(C)

real cost 2 cost implied by heuristic
Consequences:

= The fvalue along a path never decreases

= A* graph search is optimal

https://courses.edx.org/static/content-berkeley-cs188x~fa12/handouts/slides/FA12 cs188 lecture 3 -- a-star search (2PP).pdf

68

Consistent heuristics

A heuristic is consistent if for every node n, every successor n' of r
generated by any action a,

c(n,a,n’)

h(n) <c(n,a,n’) + h(n")
n' = successor of n generated by action a

The estimated cost of reaching the goal from n Is no greater than tt
cost of getting to n' plus the estimated cost of reaching the goal from n'

If h is consistent, we have
f(n’) =g(n’) + h(n)
=g(n) + c(n,a,n") + h(n"
>g(n) +h(n)
> f(n)
If h(n) is consistent then the values of f(n) along any path are non-
decreasing

Theorem: If h(n) Is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A*

69

» Tree search (1.e., search without repeated state
detection):

— A* Is optimal If heuristic is admissible (and non-
negative)
» Graph search (i.e., search with repeated state
detection)
— A* optimal If heuristic Is consistent
 Consistency implies admissibility

— In general, most natural admissible heuristics tend to be
consistent, especially if they come from relaxed
problems

https://courses.edx.org/static/content-berkeley-cs188x~fa12/handouts/slides/FA12 cs188 lecture 3 -- a-star search (2PP).pdf

70

Optimality of A™

Monotonicity: A™ expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes
Contour i has all nodes with f=f;, where f; <f.,,

B -
A* expands all nodes with f(n) < C*

A* might then expand some of the nodes right on the goal contour (where
f(n) = C*) before selecting a goal state

A* expands no nodes with f(n) > C* (e.g. the subtree under Timisoara)

72

Optimality of A™ (proof)

Suppose some suboptimal goal G, has been generated and is in the fringe.
Let the cost of the optimal solution to goal G is C*

f=g+h Start
f(G,) =g(G,) since h(G,)=0 A
9(G,) > C* since G, is suboptimal ;
f(G) =9(G) since h(G) =0
f(G,) >f(G) from above @ g,

Let n be an unexpanded node in the fringe such that n is on a shortest
path to an optimal goal G (e.g. Pitesti).

If h(n) does not overestimate the cost of completing the solution path, then
f(n)=g(n) +h(n) < C*

f(n) <f(G)

f(G,) > f(G) from above

Hence f(G,) > f(G) >=f(n) , and A™ will never select G, for expansion

Optimality of A*

73

« A* Is optimally efficient — no other tree-based
algorithm that uses the same heuristic can expand
fewer nodes and still be guaranteed to find the
optimal solution

— A* expands all nodes for which f(n) < C*. Any

algorithm that does not risks missing the optimal
solution

Properties of A*

74

« Complete? Yes (unless there are infinitely many
nodes with f <f(G)

» Time? Exponential
» Space? Keeps all nodes in memory
* Optimal? Yes

* Alternative:

« Memory bounded heuristic search :

« |IDA*: adapt the idea of iterative deepening search, use cut-off as f-
cost rather than the depth.

* Recursive best-first search

Admissible heuristics

E.g., for the 8-puzzle:
* hy(n) = number of misplaced tiles

* hy(n) = total Manhattan distance — the sum of the distances of the tiles from
their goal positions

71l 2 || 4 1] 2

5 6 3|[|4]] 5

* h(S)=7? 8 ||| 3 || 1 6 ||| 71| s
h

=
2 (S) . Start State Goal State

Admissible heuristics

76

E.g., for the 8-puzzle:
h,(n) = number of misplaced tiles
h,(n) = total Manhattan distance

7 2 4 1
5 6 3 4
8 3 1 6 7
+ h(S)=28 ot

© h,(S) =7 3+1+2+2+2+3+3+2 = 18

77

Quality of a heuristic

Effective branching factor b*
If N is the number of nodes generated by A*, and the solution depth is d, then
— N+1=1+b*+ (b*)"2+ ... +(b*)d

E.g. If A* finds a solution at depth 5 using 52 nodes, then b* =1.92

The average solution cost for randomly generated 8-puzzle instance is about 22
steps. The branching factor is 3 (when the tile is in middle it is 4, when in the
corner it is 2, when it is along the edge it is 3)

Typical search costs (average number of nodes expanded):

d=121DS = 3,644,035 nodes
A*(hy) = 227 nodes, b* =1,42
A*(h,) = 73 nodes, b* =1.24

d=24 IDS = too many nodes
A*(h;) = 39,135 nodes, b* = 1.48
A*(h,) = 1,641 nodes, b* = 1.26

Dominance

78

* If h,(n) >h,(n) for all n (both admissible)
e then h, dominates h,

* h, Is better for search

* It is always better to use a heuristic function with
higher values, provided it does not overestimate and

that the computation time for the heuristic is not too
large

Why?
Every node with f(n) < C* will be expanded

l.e. every node with h(n) < C* - g(n) will be expanded

Since h2 is at least as big as h1 for all nodes, every node that is

expanded by h2, will be also expanded by hl, and hl may also
cause other nodes to be expanded

Inventing admissible heuristic functions

79

« hl and h2 estimates perfectly accurate path length for
simplified versions of 8-puzzle

 |f atile can move anywhere, then h1l would give the exact
number of steps in the shortest solution.

 [fatile can move to any adjacent square, even onto an
occupied square, then h2 would give the exact number of
steps In the shortest solution.

Relaxed problems

80

A problem with fewer restrictions on the actions is
called a relaxed problem

 The cost of an optimal solution to a relaxed problem
Is an admissible heuristic for the original problem

 The heuristic 1s admissible because the optimal
solution in the original problem is also a solution in
the relaxed problem and therefore must be at least as
expensive as the optimal solution in the relaxed
problem

Inventing admissible heuristic functions

81

If a problem definition is written down in a formal language, it is possible to
construct relaxed problems automatically (ABSOLVER)

— If 8-puzzle is described as
« Atile can move from square A to square B if
— Alis horizontally or vertically adjacent to B and B is blank
— Arelaxed problem can be generated by removing one or both of the conditions
 (a) Atile can move from square A to square B if A is adjacent to B
 (b) Atile can move from square A to square B if B is blank
 (c) Atile can move from square A to square B

— h2 can be derived from (a) — h2 is the proper score if we move each tile into its
destination

— h1 can be derived from (c) — it is the proper score if tiles could move to their
Intended destination in one step

Admissible heuristics can also be derived from the solution cost of a subproblem of
a given problem

Combining heuristics

83

« Suppose we have a collection of admissible

heuristics h,(n), h,(n), ..., h_(n), but none of them
dominates the others

« How can we combine them?

h(n) = max{h,(n), h,(n), ..., h.(n)}

Weighted A* search

84

 |dea: speed up search at the expense of optimality

« Take an admissible heuristic, “inflate™ it by a

multiple o > 1, and then perform A* search as
usual

* Fewer nodes tend to get expanded, but the
resulting solution may be suboptimal (its cost will
be at most o times the cost of the optimal solution)

Example of weighted A* search

85

http://en.wikipedia.org/wiki/File:Weighted_A_star_with_eps_5.gif

86

All search strategies

cosI saaltlreS tee ual O(be) O(b°)

DFS e No O(b™) O(bm)

IDS Yes codlstlSSRial O(Y) O(bd)

UCS Yes Yes Number oSf n%j,gs with
oy Mo M

Yes

A Yes (igcrllr%lfgéslgfeis NuraPr%rJr%f(H)ogeé with

	Slide 1: Informed/Heuristic search and Exploration
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Review: Tree search
	Slide 7: General Search
	Slide 8: Review: Uninformed search strategies
	Slide 9: Uniform Cost Search
	Slide 10: Informed search strategies
	Slide 11: Best-first search
	Slide 12: Best-first search
	Slide 13: Informed – Estimate cost to the goal
	Slide 14: Heuristic Function
	Slide 15: Greedy best-first search
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Heuristic function
	Slide 21: Romania with step costs in km
	Slide 22: Greedy best-first search example
	Slide 23: Greedy best-first search example
	Slide 24: Greedy best-first search example
	Slide 25: Greedy best-first search example
	Slide 26: Greedy best-first search – Another example
	Slide 27: Greedy best-first search – Another example
	Slide 28: Greedy best-first search – Another example
	Slide 29: Greedy best-first search – Another example
	Slide 30: Greedy best-first search – Another example
	Slide 31: Greedy best-first search – Another example
	Slide 32: Greedy best-first search – Another example
	Slide 33: Properties of greedy best-first search
	Slide 34: Properties of greedy best-first search
	Slide 35: Properties of greedy best-first search
	Slide 36: How can we fix the greedy problem?
	Slide 37: Fixing the problem
	Slide 38: A* search
	Slide 39: Can A* fix the problem?
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: A* search example
	Slide 46: A* search example
	Slide 47: A* search example
	Slide 48: A* search example
	Slide 49: A* search example
	Slide 50: A* search example
	Slide 51: When terminate?
	Slide 52: A* search – Another example
	Slide 53: A* search – Another example
	Slide 54: A* search – Another example
	Slide 55: A* search – Another example
	Slide 56: Revisiting states (in queue)
	Slide 57: Revisiting states (already expanded)
	Slide 58: Uniform cost search vs. A* search
	Slide 59: Uniform Cost (UC) versus A*
	Slide 60: Why use estimate of goal distance
	Slide 61: Why use estimate of goal distance
	Slide 62: Classes of search
	Slide 64: A* gone wrong?
	Slide 65: Admissible heuristics
	Slide 66: Not all heuristics are addmissible
	Slide 67: Consistency of heuristics
	Slide 68: Consistent heuristics
	Slide 69: Optimality of A*
	Slide 70: Optimality of A*
	Slide 72: Optimality of A* (proof)
	Slide 73: Optimality of A*
	Slide 74: Properties of A*
	Slide 75: Admissible heuristics
	Slide 76: Admissible heuristics
	Slide 77: Quality of a heuristic
	Slide 78: Dominance
	Slide 79: Inventing admissible heuristic functions
	Slide 80: Relaxed problems
	Slide 81: Inventing admissible heuristic functions
	Slide 83: Combining heuristics
	Slide 84: Weighted A* search
	Slide 85: Example of weighted A* search
	Slide 86: All search strategies

