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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

e.g. turning on computer to start lecture
e.g. biking, driving

e.g. supermarket shop

e.g. moving a house
e.g. preparing a course

e.g. nuclear power
e.g. coordination forbuilding a house

Costly
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

We consciously think about planning to choose among different option.

What will the world be like?  
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/
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Shakey made use of STRIPS

• Shakey the Robot was the first 

general-purpose mobile robot to be 

able to reason about its own 

actions.

• Shakey was developed at 

the Artificial Intelligence Center of 

Stanford Research Institute (now 

called SRI 

https://en.wikipedia.org/wiki/Shakey_the_robot

https://www.youtube.com/watch?v=7bsEN8mwUB8

https://www.youtube.com/watch?v=GmU7SimFkpU

https://en.wikipedia.org/wiki/Shakey_the_robot
https://www.youtube.com/watch?v=7bsEN8mwUB8
https://www.youtube.com/watch?v=GmU7SimFkpU


26

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-

+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a

https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a
https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU



30

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/
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Search vs Planning

Consider the task of getting milk, bananas, and a cordless drill

Really want to go to supermarket and then go to the hardware store

But we could get sidetracked! by irrelevant actions



32

Search vs. Planning

Planning Systems do the following:

Open up action and goal representation to allow selection

Divide-and-conquer by sub-goaling

Relax requirement for sequential construction of solutions

• Search

– States: program data structures

– Actions: program code

– Goal: program code

– Plan: sequence from S0

• Planning

– States: logical sentences

– Actions: preconditions and outcomes

– Goal: logical sentences (conjunction)

– Plan: constraints on actions



33



34



36



37



38



39



40



41



42



43



44

Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Planning Languages

• Languages must represent..

– States

– Goals 

– Actions

• Languages must be

– Expressive for ease of representation

– Flexible for manipulation by algorithms
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Goal representation

• Goal is a partially specified state

– Represented as a conjunction of ground literals

– Examples

• At( Plane1, LAS )
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Action representation

– Specified in terms of the preconditions that must 

hold before it can be executed and the effects that 

ensue when it is executed

– Action( Fly( p, from, to ))

• Precond: At(p, from)  Plane(p) 

Airport(from) Airport(to)

• Effect: ¬ At(p, from) At(p, to)

– This is also known as an action schema
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The Language of Planning Problems

• Suppose our current state is:

– At(P1, CLE)  At(P2, LAS)  Plane(P1)  Plane(P2) 
Airport(CLE)  Airport(LAS)

• This state satisfies the precondition

– At(p, from)  Plane(p)  Airport(from)  Airport(to)

• Using the substitution

– {p/P1, from/CLE, to/LAS}

• The following concrete action is applicable

– Fly( P1, CLE, LAS)
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Action Representation

• Action Schema

– Action name

– Preconditions

– Effects

• Example

Action(Fly(p,from,to),

PRECOND: At(p,from)  Plane(p) 

Airport(from) Airport(to)

EFFECT: At(p,from) At(p,to))

• Sometimes, Effects are split into ADD list and 

DELETE list

Fly(WHI,LNK,O

HA)

At(WHI,LNK),Plane(WHI), 

Airport(LNK), Airport(OHA)

At(WHI,OHA),  At(WHI,LNK)
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Applying an Action

• Find a substitution list  for the variables 

– of all the precondition literals 

– with (a subset of) the literals in the current state description

• Apply the substitution to the propositions in the effect list

• Add the result to the current state description to generate the new state

• Example:

– Current  state: At(P1,JFK) At(P2,SFO)  Plane(P1)  Plane(P2) 

Airport(JFK) Airport(SFO)

– It satisfies the precondition with ={p/P1,from/JFK, to/SFO)

– Thus the action Fly(P1,JFK,SFO) is applicable

– The new current state is: At(P1,SFO) At(P2,SFO)  Plane(P1) 

Plane(P2) Airport(JFK) Airport(SFO)
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Languages for Planning Problems

• STRIPS 

– STanford Research Institute Problem Solver

– Historically important

• ADL

– Action Description Languages

• PDDL

– Planning Domain Definition Language

– Revised & enhanced for the needs of the International 

Planning Competition
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STRIPS (STanford Research Institute Problem Solver)
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State-Space Search

• Search the space of states 

– Initial state, goal test, step cost, etc.

– Actions are the transitions between state

• Actions are invertible

– Move forward from the initial state: Forward State-

Space Search or Progression Planning

– Move backward from goal state: Backward State-Space 

Search or Regression Planning
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Planning forward and backward
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Forward Search methods
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SRIPS in State-Space Search

• STRIPS representation makes it easy to focus on ‘relevant’ 

propositions and 

– Work backward from goal (using EFFECTS)

– Work forward from initial state (using 

PRECONDITIONS)

– Facilitating bidirectional search
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Relevant Action

• An action is relevant

– In Progression planning when its preconditions 

match a subset of the current state

– In Regression planning, when its effects match 

a subset of the current goal state
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Consistent Action

• The purpose of applying an action is to ‘achieve a 

desired literal’

• We should be careful that the action does not undo 

a desired literal (as a side effect)

• A consistent action is an action that does not undo 

a desired literal
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Backward State-Space Search

• Given 

– A goal G description

– An action A that is relevant and consistent

• Generate a predecessor state where

– Positive effects (literals) of A in G are deleted

– Precondition literals of A are added unless they already 

appear

– Substituting any variables in A’s effects to match literals 

in G 

– Substituting any variables in A’s preconditions to match 

substitutions in A’s effects

• Repeat until predecessor description matches initial state
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State-Space Search

• Remember that the language has no functions symbols

• Thus number of states is finite (but could be very large)

• And we can use any complete search algorithm (e.g., A*)

– We need an admissible heuristic

– The solution is a path, a sequence of actions: total-order 

planning

• Problem: Space and time complexity

– STRIPS-style planning is PSPACE-complete 

– Becomes tractable when actions have 

• only positive preconditions and 

• only one literal effect
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Partial Order Planning (POP)

• State-space search

– Yields totally ordered plans (linear plans)

• POP 

– Works on subproblems independently, then combines subplans

– Example

• Goal state: (RightShoeOn  LeftShoeOn)

• Initial state: Init()

• Actions:

Action(RightShoe, PRECOND: RightSockOn, EFFECT: 

RightShoeOn)

Action(RightSock, EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: 

LeftShoeOn)

Action(LeftSock, EFFECT: LeftSockOn)
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Partially Ordered Plans

• Partially Ordered Plan

– A partially ordered collection of steps

• Start step has the initial state description and 

its effect

• Finish step has the goal description as its 

precondition

• Causal links from outcome of one step to 

precondition of another step

• Temporal ordering between pairs of steps
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Components of a Plan

1. A set of actions

2. A set of ordering constraints 

– A p B reads “A before B” but not necessarily immediately 

before B

– Alert: caution to cycles A p B and B p A

3. A set of causal links (protection intervals) between actions

– A           B reads “A achieves p for B” and p must  remain true 

from the time A is applied to the time B is applied

– Example “RightSock                      RightShoe

4. A set of open preconditions

– Planners work to reduce the set of open preconditions to the 

empty set w/o introducing contradictions

p

RightSockOn
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Partial Ordered Plans

• An open condition is a precondition of a step not 
yet causally linked

• A plan is complete iff every precondition is 
achieved

• A precondition is achieved iff it is the effect if an 
earlier step and no possibly intervening step 
undoes it
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Consistent Plan (POP)

• Consistent plan is a plan that has

– No cycle in the ordering constraints

– No conflicts with the causal links

• Solution

– Is a consistent plan with no open preconditions

• To solve a conflict between a causal link A         B 

and an action C (that clobbers, threatens the causal 

link), we force C to occur outside the “protection 

interval”  by adding

– the constraint  C p A  (demoting C) or 

– the constraint  B p C (promoting C)

p
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Setting up the PoP

• Add dummy states 

– Start

• Has no preconditions

• Its effects are the literals of the initial state

– Finish

• Its preconditions are the literals of the goal state

• Has no effects

• Initial Plan:

– Actions: {Start, Finish}

– Ordering constraints: {Start p Finish}

– Causal links: {}

– Open Preconditions: {LeftShoeOn,RightShoeOn}

Start

Finish

Start

Finish

LeftShoeOn, RightShoeOn

Literal1, Literal2, …

Literala, Literalb, …
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POP as a Search Problem

• The successor function arbitrarily picks one open precondition p on 

an action B

• For every possible consistent action A that achieves p

– It generates a successor plan adding the causal link  A          B 
and the ordering constraint  A p B

– If A was not in the plan, it adds  Start p A and  A p Finish

– It resolves all conflicts between 

• the new causal link and all existing actions 

• between A and all existing causal links

– Then it adds the successor states for  combination of resolved 

conflicts

• It repeats until no open precondition exists

p



147

Partially Ordered Plans

Start

Finish

Right Sock

Right Shoe

Left Sock

Left Shoe
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Clobbering

• A clobberer is a 
potentially intervening 
step that destroys the 
condition achieved by a 
causal link

– Example Go(Home) 
clobbers At(Supermarket)

• Demotion

– Put before Go(Supermarket)

• Promotion

– Put after Buy(Milk)
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• Only one open precondition

• Only 1 applicable action

Example of POP: Flat tire problem

Start

Finish

At(Spare,Trunk), At(Flat,Axle)

At(Spare,Axle)

PutOn(Spare,Axle)

At(Spare,Ground), At(Flat,Axle)

• Pick up At(Spare,Ground)

• Choose only applicable action 

Remove(Spare,Trunk)
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POP Algorithm (1)

• Backtrack when fails to resolve a threat or find an operator

• Causal links 

– Recognize when to abandon a doomed plan without 

wasting time expanding irrelevant part of the plan

– allow early pruning of inconsistent combination of 

actions

• When actions include variables, we need to find 

appropriate substitutions

– Typically we try to delay commitments to instantiating 

a variable until we have no other choice (least 

commitment) 

• POP is sound, complete, and systematic (no repetition)
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POP Algorithm (2)

• Decomposes the problem (advantage) 

• But does not represent states explicitly: it is hard to design 

heuristic to estimate distance from goal

– Example: Number of open preconditions – those that 

match the effects of the start node.  Not perfect (same 

problems as before)

• A heuristic can be used to choose which plan to refine 

(which precondition to pick-up): 

– Choose the most-constrained precondition, the one 

satisfied by the least number of actions.  Like in CSPs! 

– When no action satisfies a precondition, backtrack!

– When only one action satisfies a precondition, pick up 

the precondiction. 
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POP Algorithm
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POP Algorithm



172

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Case Study: DWR domain 
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/
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Focus

• Building the Planning Graph

• Using it for Heuristic Estimation

• Using it for generating the plan

– GraphPlan algorithm [Blum & Furst, 95]
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Example of a Planning Graph (1)

Init(Have(Cake))

Goal(Have(Cake)Eaten(Cake))

Action(Eat(Cake)

Precond: Have(Cake)

Effect: Have(Cake)Eaten(Cake))

Action(Bake(Cake)

Precond: Have(Cake)

Effect: Have(Cake))

Propositions true at 

the initial state

Action is connected to its 

preconds & effects

Persistence Actions (noop)
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Example of a Planning Graph (2)

• At each state level, list all literals that may hold at that level

• At each action level, list all noops & all actions whose preconditions may hold at 

previous levels

• Repeat until plan ‘levels off,’ no new literals appears (Si=Si+1)

• Building the Planning Graph is a polynomial process

• Add (binary) mutual exclusion (mutex) links between conflicting actions and 

between conflicting literals

Mutual exclusion links S1 represents multiple states
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Mutex Links between Actions

1. Inconsistent effects: one action negates an effect of another

– Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake)

2. Interference: An action effect negates the precondition of another

– Eat(Cake) negates precondition of the noop of Have(Cake): 

3. Competing needs: A precondition on an action is mutex with the 

precondition of another

– Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition
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Mutex Links between Literals

1. Two literals are negation of each other

2. Inconsistent support: Each pair of actions that can 

achieve the two literals is mutex.  Examples:

– In S1, Have(Cake) & Eaten(Cake) are mutex

– In S2, they are not because Bake(Cake) & the noop of Eaten(Cake) 

are not mutex
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Planning Graph

• Is a sequence S0,A0,S1,A1,…,Si of levels

– Alternating state levels & action levels

– Levels correspond to time stamps

– Starting at initial state

– State level is a set of (propositional) literals

• All those literals that could be true at that level

– Action level is a set of (propositionalized) actions

• All those actions whose preconditions appear in the state level (ignoring all negative interactions, 

etc.)

• Is special data structure used for 

1. Deriving better heuristic estimates

2. Extract a solution to the planning problem: GRAPHPLAN algorithm

• Propositionalization may yield combinatorial explosition in the presence of a 

large number of objects
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Planning Graph for Heuristic Estimation

• A literal that does not appear in the final level cannot be achieved by 

any plan

– State-space search: Any state containing an unachievable literal has cost 

h(n)=

– POP: Any plan with an unachievable open condition has cost h(n)=

• The estimate cost of any goal literal is the first level at which it appears

– Estimate is admissible for individual literals

– Estimate can be improved by serializing the graph (serial planning graph: 

one action per level) by adding mutex between all actions in a given level

• The estimate of a conjunction of goal literals

– Three heuristics: max level, level sum, set level 
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Estimate of Conjunction of Goal Literals

• Max-level

– The largest level of a literal in the conjunction

– Admissible, not very accurate

• Level sum 

– Under subgoal independence assumption, sums the level costs of 

the literals

– Inadmissible, works well for largely decomposable problems

• Set level

– Finds the level at which all literals appear w/o any pair of them 

being mutex

– Dominates max-level, works extremely well on problems where 

there is a great deal of interaction among subplans
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GRAPHPLAN Algorithm

GRAPHPLAN (problem) returns solution or failure

graph  InitPlanningGRAPH (problem)

goals  GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do

solution  EXTRACTSOLUTION(graph,goals,LENGTH(graph))

if solution  failure then return solution

else if NoSolutionPossible(graph) then return failure

graph  ExpandGarph(graph,problem)

• Two main stages

1. Extract solution

2. Expand the graph
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Example: GRAPHPLAN Execution (1)

• At(Spare,Axle) is not in S0

• No need to extract solution

• Expand the plan
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Example: GRAPHPLAN Execution (2)

• Three actions 

are applicable

• 3 actions and 5 

noops are added

• Mutex links are 

added

• At(Spare,Axle) 

still not in S1

• Plan is expanded
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Example: GRAPHPLAN Execution (3)

• Illustrates well mutex links: inconsistent effects, interference, 

competing needs, inconsistent support
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Solution Extraction (Backward)

1. Solve a Boolean CSP:  Variables are actions, domains are 

{0=out of plan, 1=in plan), constraints are mutex

2. Search problem from last level backward
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Backtrack Search for Solution Extraction

• Starting at the highest fact level

– Each goal is put in a goal list for the current fact layer

– Search iterates thru each fact in the goal list trying to find an action to 

support it which is not mutex with any other chosen action

– When an action is chosen, its preconditions are added to the goal list of 

the lower level

– When all facts in the goal list of the current level have a consistent 

assignment of actions, the search moves to the next level

• Search backtracks to the previous level when it fails to assign an action 

to each fact in the goal list at a given level

• Search succeeds when the first level is reached.
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Termination of GRAPHPLAN

• GRAPHPLAN is guaranteed to terminate

– Literal increase monotonically

– Actions increase monotonically

– Mutexes decrease monotinically

• A solution is guaranteed not to exist when

– The graph levels off with all goals present & non-

mutex, and

– EXTRACTSOLUTION fails to find solution
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Optimality of GRAPHPLAN

• The plans generated by GRAPHPLAN

– Are optimal in the number of steps needed to execute 

the plan

– Not necessarily optimal in the number of actions in the 

plan  (GRAPHPLAN produces partially ordered plans)
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Further reading
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Situation Calculus: Ontology

• Situations

• Fluents

• Atemporal (or eternal) 

predicates & functions
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Situation Calculus: Ontology

• Situations

– Initial state: S0

– A function Result(a,s) gives the situation resulting 

from applying action a in situation s

• Fluents

– Functions & predicates whose truth values can 

change from one situation to the other

– Example: Holding(G1,S0)

• Atemporal (or eternal) predicates and functions

– Example: Gold(G1), LeftLegOf(Wumpus)
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Situation Calculus

• Sequence of actions

– Result([],s)=s

– Result([a | seq],s)=Result(seq,Result(a,s))

• Projection task

– Deducing the outcome of a sequence of actions

• Planning task

– Find a sequence of actions that achieves a 

desired effect
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Example: Wumpus World

• Fluents

– At(o,p,s), Holding(o,s)

• Agent is in [1,1], gold is in [1,2]

– At(Agent,[1,1],S0)  At(G1,[1,2],S0)

• In S0, we also need to have:

– At(o,x,S0)  [(o=Agent)  x=[1,1]]  [(o=G1)  x=[1,2]]

– Holding(o,S0)

– Gold(G1) Adjacent([1,1],[1,2]) Adjacent([1,2],[1,1])

• The query is: 

–  seq At(G1,[1,1],Result(seq,S0))

• The answer is

– At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G1),Go([1,2],[1,1]),S0))
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Importance of Situation Calculus

• Historical note

– Situation Calculus was the first attempt to 

formalizing planning in FOL

– Other formalisms include Event Calculus

– The area of using logic for planning is 

informally called in the literature “Reasoning 

About Action & Change”

• Highlighted three important problems

1.Frame problem

2.Qualification problem

3.Ramification problem
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‘Famous’ Problems

• Frame problem

– Representing all things that stay the same from one 

situation to the next

– Inferential and representational

• Qualification problem

– Defining the circumstances under which an action is 

guaranteed to work

– Example: what if the gold is slippery or nailed down, etc.

• Ramification problem

– Proliferation of implicit consequences of actions as 

actions may have secondary consequences

– Examples: How about the dust on the gold?
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