Planning

Fundamentals of Artificial Intelligence

Slides are taken from AIMA,
Manuela Veloso (CMU)
Sheila Mcllraith, (University of Toronto)
Michael Scherger (Kent State University)
Rina Dechter (University of Irvine)
Berthe Y. Choueiry (University of Nebraska-Lincoln)
Bill Sverdlil {(UppsalaUniversityy

http://www.it.uu.se/katalog/search.php?name=Bill%20Sverdlik&exact=yes

806

= Dictionary.com/plan

Address: [http://dictionary.reference.com/search?q=plan

- . as 5 h
<0 Dictionarycom LN

o Dictionary e Thesaurus e Web

Home

plan ». 4

1.

A scheme, program, or method
worked out beforehand for the
accomplishment of an objective: a
plan of attactk.

Ln

A proposed or tentative project or
course of action: had no plans for the
evening.

. A systematic arrangement of elements 6.

or important parts: a configuration or
outline: a seating plan, the plan of a
story.

Premium: Sign up | Login

. A drawing or diagram made to scale

showing the structure or arrangement
of something.

. In perspective rendering. one of

several imaginary planes
perpendicular to the line of vision
between the viewer and the object
being depicted.

A program or policy stipulating a
service or benefit: a pension plan.

Synonyms: blueprint, design, project,

scheme, strategy

Establish datum point a

|a representation| of future behavior ...
usually a set of actions, with temporal and
other constraints on them, for execution by
some agent or agents.

- Austin Tate
| MIT Encyclopedia of the Cognitive Sciences, 1999]

nstall 0.l15-diameter s

%c:uu%leh E]dﬁ OITU_ 11 dgﬁcbego

F'inish side-mill pocket
LR 9 ad O T19EB P
length 0.40, w1dth 0.30
fanseh ﬁlﬁ‘ﬁ‘m%tﬁgﬁk%

nstall 0.08-diameter e

00 A ECI 0.00 32.29 01

005 B EC1 30.00 0.48 8%

005 C EC1 30.00 2.00
02

005 D ECL 30.00 20.00
005 T ECL 90.00 54.77 8%

00e A MC1 30.00 4.57 B%

vua T VMCL Z.oU 4.0/ 0OL°

I . _
“Total time on VMC1

Pre—-clean board (scrub
Dry board in oven at 85

gﬁgggd photoresist from

setup

Fhotg! Shbegralyiqfvphg

setup

Ftehing: of SOPREr

etup
repare pboard for solde

006 Bl A portion of a manufacturing process plan

NNe MET 20 NN 7 LN A%

HofF =T /L TI1C E'Dlder ::_it(:)p

Human Planning and Acting

« acting without (explicit) planning:
— when purpose is immediate €.9. turning on computer to start lecture

— when performing well-trained behaviours €.9. biking, driving

— when course of action can be freely adapted €.g. supermarket shop
 acting after planning:

— when addressing a new situation €.g. moving a house

— when tasks are complex €.9. preparing a course

— when the environment imposes high risk/cost €.g9. nuclear power

— when collaborating with others €.g. coordination forbuilding a house

« people plan only when strictly necessary
Costly

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Defining Al Planning

 planning:

— explicit deliberation process that chooses and organizes
actions by anticipating their outcomes

— aims at achieving some pre-stated objectives
« Al planning:
— computational study of this deliberation process

We consciously think about planning to choose among different option.
What will the world be like?

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Why Study Planning in Al?

* scientific goal of Al:
understand intelligence

— planning is an important component of rational
(intelligent) behaviour

* engineering goal of Al:
build intelligent entities

— build planning software for choosing and
organizing actions for autonomous intelligent
machines

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Domain-Specific vs.
Domain-Independent Planning

« domain-specific planning: use specific representations and
techniques adapted to each problem

— important domains: path and motion planning, perception planning,
manipulation planning, communication planning

« domain-independent planning: use generic representations and
techniques
— exploit commonalities to all forms of planning
- leads to general understanding of planning

« domain-independent planning complements domain-specific
planning

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Toy Problems vs.
Real-World Problems

Toy Problems/Puzziles Real-World Problems
— concise and exact description — no single, agreed-upon
— used for illustration purposes description
(e.g. here) — people care about the
— used for performance solutions
comparisons

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

\Why Planning

* |ntelligent agents must operate in the world. They are not
simply passive reasoners (Knowledge Representation,
reasoning under uncertainty) or problem solvers
(Search), they must also act on the world.

* We want intelligent agents to act in “intelligent ways”.
Taking purposeful actions, predicting the expected effect
of such actions, composing actions together to achieve
complex goals.

A Planning Problem

* How to change the world to suit our needs

* Critical issue: we need to reason about what
the world will be like after doing a few
actions, not just what it is like now

GOAL: Steven has coffee
CURRENTLY: robot in mailroom,
has no coffee, coffee not made,
Steven in office, etc.

TO DO: goto lounge, make
coffee,..

The Dock-Worker Robots (DWR)
Domain

aim: have one example to illustrate
planning procedures and techniques

informal description: .
— harbour with several locations (docks), e)

docked ships, storage areas for B <
containers, and parking areas for trucks 1 (Y 13

and trains

— cranes to load and unload ships etc., and
robot carts to move containers around

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

| e
|

\ sl
Rt P
RSN 8 ul
s '
153 iy

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

14

DWR Example State

container .

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Actions In the DWR Domain

« move robot r from location / to some adjacent and unoccupied
location [/

« take container ¢ with empty crane k from the top of pile p, all
located at the same location /

« put down container ¢ held by crane k on top of pile p, all
located at location /

* load container ¢ held by crane k onto unloaded robot r, all
located at location /

« unload container ¢ with empty crane k from loaded robot r,
all located at location /

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

State-Transition Systems: Graph

EE?ﬁ;;:Tr] Sy | movel
e
h‘—
1 tionl move2
take |
crane aavai.
R
pallet ii /T1 -
[robot 1 =
move2
locationl location2

Example

crane 32
[robot]

_locationl

take put

cran; S3
/pallet / i i

locationl location2

load

unload

ii

] foni :
movel move2

/|
L)

Sg

crane

locationl

location?2

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Autonomous Agents for Space Exploration

* Autonomous planning, scheduling, control
* NASA: JPL and Ames

* Remote Agent Experiment (RAX)
* Deep Space 1

* Mars Exploration Rover (MER)

Other Autonomous Systems

20

Manufacturing Automation —

* Sheet-metal bending machines - Amada Corp

* Software to plan the sequence of bends
[Gupta and Bourne, J. Manufacturing Sci. and Engr., 1999]

Other Applications (cont.)

Scheduling with Action Choices & Resource Requirements
* Problems in supply chain management
* HSTS (Hubble Space Telescope scheduler)
* Workflow management

Air Traffic Control

* Route aircraft between runways and terminals. Crafts must be kept
safely separated. Safe distance depends on craft and mode of
transport. Minimize taxi and wait time.

Character Animation
* (Generate step-by-step character behaviour from high-level spec

Plan-based Interfaces

* E.g. NLP to database interfaces
* Plan recognition, Activity Recognition

Other Applications (cont.)

Web Service Composition
* Compose web services, and monitor their execution

* Many of the web standards have a lot of connections to plan
representation languages

* BPEL; BPEL-4WS allow workflow specifications
* OWL-S allows process specifications

Grid Services/Scientific Workflow Management

Genome Rearrangement

* The relationship between different organisms can be measured by the

number of “evolution events” (rearrangements) that separate their
genomes

* Find shortest (or most likely) sequence of rearrangements between a
pair of genomes

Practical Al Planners

21

Planner Reference Applications

STRIPS Fikes & Nilsson 1971 Mobile Robot Control, etc.

HACKER Sussman 1973 Simple Program Generation

NOAH Sacerdoti 1977 Mechanical Engineers Apprentice Supervision
NONLIN Tate 1977 Electricity Turbine Overhaul, etc.

NASL McDermott 1978 Electronic Circuit Design

OPM Hayes-Roth & Hayes-Roth 1979 | Journey Planning

ISIS-II Fox et. al. 1981 Job Shop Scheduling (Turbine Production)
MOLGEN Stefik 1981 Experiment Planning in Molecular Genetics
DEVISER Vere 1983 Spacecraft Mission Planning

FORBIN Miller et al. 1985 Factory Control

SIPE/SIPE-2 Wilkins 1988 Crisis Action Planning. Oil Spill Management, etc.
SHOP/SHOP-2 | Nau et al. 1999 Evacuation Planning, Forest Fires, Bridge Baron, etc.
I-X/I-Plan Tate et al. 2000 Emergency Response, etc.

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Shakey made use of STRIPS

25

« Shakey the Robot was the first
general-purpose mobile robot to be
able to reason about its own
actions.

» Shakey was developed at
the Artificial Intelligence Center of
Stanford Research Institute (now
called SRI

https://en.wikipedia.org/wiki/Shakey_the_robot
https://www.youtube.com/watch?v=7bsEN8mwUB8
https://www.youtube.com/watch?v=GmU7SimFkpU

26

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a
https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a

27

Planning is Hard ~

« To be precise it's PSPACE hard.

« More intuitively, here's a problem:

- Planning domain called logistics;
« Actions called drive, load, unload...

— How would you solve the problems?
* Drive trucks around,

* load packages in;
* drive to package goal locations,
* unload packages.

—Easy? Yes, but you used a lot of intuition.

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

Here’s Another One

~ Initial: (cabbage monkey), (tasty pancake)
Goal: (jam doughnut)

Name Preconditions Effects
Liz (alsatian kebab) (not (alsatian kebab))
(tasty pancake) (Jam doughnut)
Amanda (tasty pancake) (not (tasty pancake))
(alfresco dining)
Derek (alfresco dining) (not (alfresco dining))
(tasty pancake)
Andrew (cabbage monkey) (not (cabbage monkey))
(alfresco dining) (alsatian kebab)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

29

Back to the Easier Problems...

Pressing a red button opens one door and shuts the other —

| \

* How might one encode this in PDDL? Initial state: right
tdhch Is open; standing in 1st room. Goal: standing in
ird room.

~Right door open (tasty pancake)

-In First room (cabbage monkey)

~Goal of standing in right room (jam doughnut)
~Actions for buttons: Amanda and Derek

-To move, Liz and Andrew

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

30

Search Problems —

* |nitial state

 set of possible actions/applicability conditions
— successor function: state - set of <action, state>
— successor function + initial state = state space
— path (solution)

» goal

— goal state or goal test function

path cost function

— for optimality

— assumption: path cost = sum of step costs

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Search vs Planning

Consider the task of getting milk, bananas, and a cordless drill
Really want to go to supermarket and then go to the hardware store
But we could get sidetracked! by irrelevant actions

Talk to Parrot
o
Go To Pet Store Buy a Dog
- -
Go To School Go To Class
- -
Start Go To Supermarket _ Buy Tuna Fish
o
Go To Sleep Buy Arugula
- -
Read A Book Buy Milk
- - - m= - — | Finish
Sit in Chair Sit Some More
- -
Etc. Etc. _ . \Read A Book
— - -

32

Search vs. Planning

Planning Systems do the following:
Open up action and goal representation to allow selection
Divide-and-conquer by sub-goaling
Relax requirement for sequential construction of solutions

 Search
— States: program data structures
— Actions: program code
— Goal: program code
— Plan: sequence from S,
 Planning
— States: logical sentences
— Actions: preconditions and outcomes
— Goal: logical sentences (conjunction)
— Plan: constraints on actions

Planning under Uncertainty

One of the major complexities in planning that we will deal
with later is planning under uncertainty.

* Our knowledge of the world will almost certainly be
Incomplete. We may wish to model that probabilistic.

* Sensing Is subject to noise (especially in robots).

* Actions and effectors are also subject to error
(uncertainty in their effects).

Classical Planning

For now we restrict our attention to the deterministic case.

We will examine:
* Complete Initial state specifications
* deterministic effects of actions.

* finding sequences of actions that can achieve a desired set
of effects.

This will in some ways be a lot like search, but we will see
that representation also plays an important role.

The Blocks World Definition

Table Table

Blocks are picked up and put down by the arm

Blocks can be picked up only if they are clear, i.e.,
without any block on top

The arm can pick up a block only if the arm is empty, i.e.,
if it is not holding another block, i.e., the arm can be pick
up only one block at a time

The arm can put down blocks on blocks or on the table

37

Planning by “Plain” State Search

Search from an initial state of the world to a
goal state

Enumerate all states of the world
Connect states with legal actions
Search for paths between initial and goal states

3-BlocksWorld State Transitions

39

3-BlocksWorld State Transitions

|
al

El C
A

|
o

“L—.A =

3-BlocksWorld State Transitions

40

41

3-BlocksWorld State Transitions

A= |

> o=
.

=1

Planning — Actions and States

« Model of an action

— a description of /egal actions in the domain

* “move queen’, “open door if unlocked”, “unstack if
top Is clear’,....

« Model of the state

— Numerical identification (s1, s2,...) — no information
— “Symbolic” description
« objects, predicates

42

Planning — State Representation

_ B -
el 111 (4 nled A5 [

on(B,table) and on(C, table) and holding(A)

Planning — The Problem

* |n planning problems we have:
- an initial state, |

(at mydvd amazon)
(at truck amazon)
(at driver home)
(path home amazon)
(link amazon london)
(link london myhouse)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

44

nttps://www.youtube.com/watch?v=eeQcCs9snhU

45

Planning — The Problem

« In planning problems we have:
- an initial state, |
— a goal state, G

(at mydvd myhouse)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

46

Planning — The Problem

* |In planning problems we have:
- an initial state, |
- a goal state, G
- some actions, A, defined according to a domain

(load mydvd truck depot)
(walk driver home amazon)
(board-truck driver truck amazon)
(drive-truck driver amazon london)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

47

Planning — The Problem

* |In planning problems we have:
- an initial state, |
— a goal state, G

- some actions, A, defined according to a domain
« these have preconditions and effects

(:action load
(:parameters (?d - dvd ?t - truck ?dep - depot)
(:precondition (and (at ?t ?dep) (at ?d ?dep))
(:effect (and (not (at ?d ?dep))
(in ?d ?t))

)
Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

48

Forward-Chaining P\Ianning: Intuition

load-truck.. X walk driver.
7 N
ralk driv g i-t¢
4

drive~truck.

drive~-truck..

unload-truck.

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

Planning Languages

50

 Languages must represent..
— States
— Goals
— Actions
 Languages must be
— Expressive for ease of representation
— Flexible for manipulation by algorithms

Goal representation

52

« (Goal is a partially specified state
— Represented as a conjunction of ground literals
— Examples
* At(Plane,, LAS)

Action representation

54

— Specified in terms of the preconditions that must
hold before It can be executed and the effects that
ensue when It 1s executed

— Action(Fly(p, from, to))

 Precond: At(p, from) A Plane(p) A
Airport(from) A Airport(to)
 Effect: — At(p, from) A At(p, to)

— This 1s also known as an action schema

The Language of Planning Problems

55

» Suppose our current state is:

— At(P1, CLE) A At(P2, LAS) A Plane(P1) A Plane(P2) A
Airport(CLE) A Airport(LAS)

 This state satisfies the precondition
— At(p, from) A Plane(p) A Airport(from) A Airport(to)

 Using the substitution
— {p/P1, from/CLE, to/LAS}

» The following concrete action is applicable
— Fly(P1, CLE, LAS)

Action Representation

56

« Action Schema
— Action name
— Preconditions
— Effects
« Example
Action(Fly(p,from,to),

At(WHI,LNK),Plane(WH]I),
Airport(LNK), Airport(OHA)

Fly(WHI,LNK,O

HA)
At(WHI,OHA), — At(WHI,LNK)

PRECOND: At(p,from) A Plane(p) A

Airport(from) A Airport(to)

EFFECT. —At(p,from) A At(p,to))
» Sometimes, Effects are split into AbD list and

DELETE list

57

Applying an Action

 Find a substitution list © for the variables
— of all the precondition literals
— with (a subset of) the literals in the current state description
« Apply the substitution to the propositions in the effect list
 Add the result to the current state description to generate the new state
« Example:

— Current state: At(P1,JFK) A At(P2,SFO) A Plane(P1) A Plane(P2)
A Alrport(JFK) A Airport(SFO)

— It satisfies the precondition with 6={p/P1,from/JFK, to/SFO)
— Thus the action Fly(P1,JFK,SFO) is applicable

— The new current state is: At(P1,SFO) A At(P2,SFO) A Plane(P1) A
Plane(P2) A Airport(JFK) A Airport(SFO)

Languages for Planning Problems

59

* STRIPS

— STanford Research Institute Problem Solver
— Historically important

« ADL
— Action Description Languages

« PDDL

— Planning Domain Definition Language

— Revised & enhanced for the needs of the International
Planning Competition

STRIPS (STanford Research Institute Problem Solver)

Tidily arranged actions descriptions, restricted language

ACTION: Buy(x)
PRECONDITION: At(p), Sells(p, z) At(p) Sells(p,x)
EFreCcT: Have(x)

Buy(x)

[Note: this abstracts away many important details!] Have(x)

Restricted language = efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

A complete set of STRIPS operators can be translated
into a set of successor-state axioms

That transform into a state description that entails the goal wff.

STRIPS: describing goals and state

Factored representation of states

On(B,A)
On(A,C)
On(C,F1)
Clear(B)
Clear(F1)
The formula describes a set of world states

A > |w

Planning search for a formula satisfying a goal description
State descriptions: conjunctions of ground literals.
Also universal formulas: On(x,y) =(y=F1) or ~Clear(y)

Goal wff: drx.g(x) A f(»)

On(B,A)
On (A, C)
On (C,F1)
Clear (B)
Clear (F1l)

Given a goal wff, the search algorithm looks for a sequence of actions

STRIPS Action Representation

Actions - operators -- rules -- with:

— Precondition expression -- must be satisfied before
the operator is applied.

— Set of effects -- describe how the application of the
operator changes the state.

Precondition expression: propositional, typed first order
predicate logic, negation, conjunction, disjunction,
existential and universal quantification, and functions.

Effects: add-list and delete-list.

Conditional effects -- dependent on condition on the
state when action takes place.

STRIPS Description of Operators

A STRIPS operator has 3 parts:
— A set, PC (preconditions) of ground literals
— A set D, of ground literals called the delete list
— A set A, of ground literals called add list

e Usually described by Schema: Move(x,y,z)
— PC: On(x,y) and Clear(x) and Clear(z)
— D: (Clear(z), On(x,y)
— A: On(x,z), Clear(y), Clear(F1)

 Astate S1 is created applying operator O by
adding A and deleting D from S1.

63

« MOVE(X,y,z) moves block x from the top of y to the top of *
z. y and z can be either the table or another block.
MOVE is applicable only if x and z are clear,and xisony.

move (B,A,F1l)

B >
A A
C B C
Precondition:
On(B,A)
Clear (B)
Clear (F1)
Delete list
On (B, F1l)
on(B,A) L1 Addlist—Clear (A)
Clear (F1l) Clear (F1)
On(A,C) Unchanged On (A, C)
on(C,Fl) »™ On (C,F1l)
Clear (B) Clear (B)

Different Representation - Blocksworld

« MOVE(X,y,z) moves block x from the top of y to the top of
z. v and z can be either the table or another block.

MOVE is applicable only if x and z are clear, and x ison y.

(OPEEATOE MOVE
:preconds
?block BLOCK
?from OBJECT
7to OBJECT
(and (clear 7?block)
(clear 7to)
(on ?block 2from)
effects
add (on 7?block 7to)
del {(on 7block 7from)
(1f (block-p ?from)
add (clear 7?from))
(if (block-p ?to)
del (clear ?7to)))

Action Representation - BlocksWorld

(OPERATOR PICK FROM TABLE (OPERATOR

?0b BLOCK PICK FROM BLOCK

:preconds 2ob BLOCK
(and (clear 7?ob) 2110b BLOCK

Egi;i;ﬁ;iyf?b} : preconds

caffects (and (on 7ok ?Zucb)
del (on-table ?ob) (clear Zob)
del (clear ?ob) (arm-empty))
del (arm-empty) :effects
add (helding 7cb)) del (on ?cb 7?Zuocb)

del (clear Zob)
del (arm-empty)
add (holding ?ob)
add (clear 7Zuch))

67

Action Representation - BlocksWorld

(OPERATOR PUT ON BLOCK

7o0b BLOCK
7uob BLOCK
rpreconds

(and

reffects

del
del

add
add
add

(holding ?ob)
(clear 7?uch)
(clear Zob)
(arm-empty)
(on Zob 7ucb))

(clear Zuochb)
(holding Zob))

(OPERATOR PUT DCOWN ON TABLE
?o0b
BLOCK rprecon
ds
(holding ?ob)
:effects

del (holding Z?ob)
add (clear Zob)
add (arm-empty)
add (on-table 7Zob))

The block world

C
A B

ol rs

It {Onf A, Table) A On{ B, Table) A On{C, Table)
A Block{A) A Block{B) A Block{C)
A Clear{A) A Clear{B) A Clear{C))
Goal{On{A, B) A On(B, C))
Aetionf Move(b, =, 4),
PRECOND: Onf{bx) A Clear{b) A Clear{y) A Block({’) A
(b#a) A{b#F y) Alz# y),
EFFECT: Onfb, o) A Clewr{z) A - Onfb,2) A - Clear(4))
Action{ MoveTo Table(b,),
PRECOND: On{b,2) A Clear{b) A Block({b) A {b # =),
EFFECT: On{b, Table) A Clear{z) A - Onfb,z))

Figure 11.4 A planning problem in the bloclks world: building a three-bloclt towsr, Ons
solution is the sequence [Mowve{ B, Table, '), Move{ A, Table, B)|.

A STRIP/PDDL description of an aircargo
transportation problem

Problem: flying cargo in planes from one location to another

Irat{At{Cy, SFOY A At{Cy, JFK) A At{Py, SFO) A AH{P,, JFK)
A Cargof{Cy) A Cargo{Cy) A Plane{P) A Plane{F;)
A Airport {(JFK) A Airport{SFO))
Goal{ At{Cy, JFK) A At{Cy, SFO))
Aetion{Load{e, p, a),
PRECOND: At{g a) A At{p, a) A Cargo{c) A Flane(p) A Airport{a)
EFFECT: - At{e, a) A Infe, p))
Actionf Undoad{e, p, a),
PRECOND: In{e, p) A Ai{p, a) A Cargo{e) A Plane{p) A Airport{a)
EFFECT: At{e, a) A - Infe,)
Action{ Fly{p, from, to),
PRECOND: At{p, from) A Plane{p) A Airport{from) A Airport{ic)
EFFECT: - At{p, from) A At{p, to))

Figure 11.2 A STRIPS problem involving fransportation of air cargo between airporte,

In(c,p)- cargo c is inside plane p
At(x,a) — object x is at airport a

STRIP for spare tire problem

Problem: Changing a flat tire

Tt { At{ Flat, Aale) A AL{Spare, Trunk))
Goal{ At { Spare, Awle))
Action| Remove{ Spare, Trunk),

PRECOND: At{ Spare, Trunk)

EFFECT: - At{ Spare, Trunk) A Ai{Spare, Ground))
Actionf Remove{ Flat, Axle),

PRECOND: At{ Flat, Aale)

EFFECT: — At{ Flat, Axle) A Ai{ Flat, Ground))
Action] PaaOn{ Spare, Aule),

PRECOND: At{Spare, Ground) A — At{Flat, Awxle)

EFFECT: - At{ Spare, Ground) A At{Spare, Axle))
Acetionf LeaveOverright,

PRECOND:

EFFECT: = Ai{ Spare, Ground) A — Ai{Spare, Axle) A — Ai{ Spare, Trunk)

A = A Flat, Ground) A - At{Flat, Axie))

Figure 11.3 The simpls spare tire problem,

90

State-Space Search

 Search the space of states

— Initial state, goal test, step cost, etc.

— Actions are the transitions between state
 Actions are invertible

— Move forward from the initial state: Forward State-
Space Search or Progression Planning

— Move backward from goal state: Backward State-Space
Search or Regression Planning

Planning forward and backward

91

FIvP,
At(Fy, A
At Py, A

FIy(P;, A, B)

-(
L‘[

AflFy, A
At(P,, B

AtlP,, B
At(P,, A

AP, A)
AfLP,, B)]‘\ FiviP, A B
(b)
AtP,. B) Fiy(P, A 8)
Al(Py, A)

At(F4, B)
At(P,, B)

Figure11.5 Two approachss to ssarching for aplan. (a) Forward (progression) state-space
search, starting in the initial state and using the problem’s actions to search forward for the
goal state. (b) Bacloward (regression) state-space search: a belisf-state search (ses page 84)

Forward Search methods

92

move (A, C,F1)

On (¢, F1l)
Clear(B)
Clear (A)
On (B, TA)
On (A, C)
Clear (F1)

move (B,A,F1)

On(C, F1l)
Clear (B)
On (A, C)
Cn(B,A)
Clear (F1l)

move (L, O, B)

Backward: Recursive STRIPS

Forward search with islands:

Achieve one subgoal at a time. Achieve a new
conjunct without ever violating already achieved
conjuncts or maybe temporarily violating
previous subgoals.

General Problem Solver (GPS) by Newell Shaw
and Simon (1959) uses Means-Ends analysis.

Each subgoal is achieved via a matched rule, then
its preconditions are subgoals and so on. This
leads to a planner called STRIPS(gamma) when
gamma is a goal formula.

93

STRIPS algorithm

Given a goal stack:
1. Consider the top goal

2. Find a sequence of actions satisfying the goal from
the current state and apply them.

3. The next goal is considered from the new state.
4. Temination: stack empty

5. Check goals again.

* Regressing a ground operator

Goal

Backward search methods;

—h....

O |w@ | >

move (B, Fl, C) on(C,Fl)
an (B, C)

On (A, B)

move (A,F1,E)

on(C,F1)
on(B,C)
Clear (B)
Clear (L)
on(&,Fl)

Subgoal—the regression of
On(C,Fl) AOn(B,C) AOn(A,B)
through move (&, F1,E)

Continue until a subgoal is produced
that is satisfied by current world state

95

96

Regressing an ungrounded operator
Goal

move (B, z,C)

move (A, x,B)

On (C,F1)

On (B, C) ‘
Clear (B) Because we are moving A4
Clear (A) from somewhere else to B
On(A,x)

_I[:}': = B:}
—(x = A)
—ll[}:

/

Because 4 cannot Because On(B,C) and On (A, C)
be on itself cannot both be true —

(:::} move (B, =, C)

Oon(C,Fl)

Clear (B)

Clear (&) move (B, v, C)
—l{Y = B)

—l{Y = A)

—ly = C)

Oon (&, x)

on (B, v)

—i{x = B)

—({x = A)

Instantiate rules:
Fl/x=, Fl1/v

C)

— (=

Oon(C,FL1L)
Clear (B)
Clear (A)
On (A, F1)
On(B,F1)

move (A, x,B)

Oon{(C,Fl)
On(B, C)

Clear(B)
Clear (A)
On(a,x)

—{zx = B)
—l{zx = M)
—l'l:}C = C)

move (A, C,F1)

On{C,Fl)
Clear (B)
T move (B,A,F1) Clear (&)
on{a,C)
On(C,F1l) on (B 1)
Clear (B)
On (&, C)
on({B,A)

This goal is satisfied by

97

SRIPS In State-Space Search

98

« STRIPS representation makes it easy to focus on ‘relevant’
propositions and

— Work backward from goal (using EFFECTS)

— Work forward from initial state (using
PRECONDITIONS)

— Facilitating bidirectional search

At(P, . B)
Fly(P, ,A.B) AtR;, A)
AP, . A)
@ AP, . A)
Fly(P,.A.B) AtP,, A)
At(P,, B)
/-f
— atp, A
P At(P;, B) n Fly(P,.A,B) At 5)
— e
® o At(P,. B)
= ar.8 | JFE.aB
e At(P,, A)

Relevant Action

99

e An action Is relevant

— In Progression planning when its preconditions
match a subset of the current state

— In Regression planning, when its effects match
a subset of the current goal state

100

Consistent Action

* The purpose of applying an action 1s to ‘achieve a
desired literal’

 We should be careful that the action does not undo
a desired literal (as a side effect)

e A consistent action iIs an action that does not undo
a desired literal

101

Backward State-Space Search

« Glven
— A goal G description
— An action A that is relevant and consistent
» (Generate a predecessor state where
— Positive effects (literals) of A in G are deleted

— Precondition literals of A are added unless they already
appear

— Substituting any variables in A’s effects to match literals
In G

— Substituting any variables in A’s preconditions to match
substitutions in A’s effects

 Repeat until predecessor description matches initial state

102

State-Space Search

Remember that the language has no functions symbols

Thus number of states is finite (but could be very large)

And we can use any complete search algorithm (e.g., A*)
— We need an admissible heuristic

— The solution Is a path, a sequence of actions: total-order
planning

* Problem: Space and time complexity
— STRIPS-style planning is PSPACE-complete
— Becomes tractable when actions have

* only positive preconditions and
« only one literal effect

103

Relaxed Plans

« What makes planning difficult?

* Delete effects — if there are no ‘bad moves’,
problem solving is easy.

« |gnoring delete effects gives us a relaxed planning
problem.

« Solutions to the relaxed problem — relaxed plans.

« Length of relaxed plan approximates that of the
non-relaxed plan.

« Can we use relaxed planning to make a heuristic?

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

104

Building a Relaxed Planning Graph

The Relaxed Planning Graph (RPG) is made of
alternate fact layers and action layers.

Fact layer f(n) is used to determine which actions
can appear in action layer a(n+1)

- Those whose preconditions are satisfied in f(n)

f(n+1) = f(n), plus all the add effects of the actions
In a(n+1).

Hence, fact layers get bigger and bigger as more
actions become applicable.

The first fact layer, f(0), is a state S.

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

105

Building a Simple RPG

f(0) (at truck A) (at package B)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

106

Building a Simple RPG

f(0) (at tr\uck A) (at package B)
a(l) (move\t‘n’ck A B)
f(1) (at truck A) (at truck B) (at package B)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

107

Building a Simple RPG

f(0) (at tr\uck A) (at package B)
a(l) (mo#e\‘tcuck A B)
f(1) (at truck A) (at truck B) (at package B)

\

(move truck A B) (move truck BA) (Ioad packagc truck B)

(at truck A) (at truck B) (at package B) (in package truck)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

108

Building a Simple RPG

f(0) ’ (at truck A) (at package B)
a(1) | (move truck A B)
f(1) (at truck A) (at truck B) (at package B)

\

) (move truck A B) (move truck B A) (Ioad package truck B) ‘

(\t truck A) (attruck B) (at package B) (m pac___g,n:uck)

\ —— e

‘ (unlhhackage truck" (unload package truck B) ‘
\

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

109

Termination Criterion

+ If we are l?‘uildinﬂ‘a relaxed glanning graﬁh to find a relaxed
Falan to achieve the goals we can stop when we reach a fact

yer in which all the goals appear.

« Otherwise we can stop when we generate a fact layer
identical éo the previous one (i.e. no new facts have
appeared).

- If nothing new appeared this time nothing new ever will.

« Can also use RPG reachability analysis to restrict action
instantiation, only create action instances that are reachable
from the initial state:

- If it can't be reached in the relaxed problem it can't be reached
In the real one.

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

110

Extracting a Solution

« Planning graph gives us facts and achievers.
* To get a solution, work backwards through the RPG.

« At each fact layer f(n), we have goals to achieve g(n).
We start with g(n) containing the problem goals.

« For each fact in g(n):
- If it was in f(n-1), add it to g(n-1)
- Otherwise, choose an action from a(n), and add its
preconditions to g(n-1)

-~ (FF has a greedy tie breaking criterion for this choice
based on h,,, values but for our purposes we’'ll say we
choose arbitrarily.)

« Stop when at g(0).

< | 013

https-//WWW.youtube.com/watch?v=EeQcCsISnhU

111

Extracting a Solution
< (attruck A) (at package B)

(mov:t‘n‘lck AB)
’
< (attruck A) (at truck B) (at package B)

N

(move truck A B) (move truck B A) (Ioad pT\ftka e truck B)

B

~ —

~f(attruck A) (at truck B) (at package B) (in package truck)—

o e
... (unload package truck A) (unload package truck B)
A

e B o pocize A —

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

112

Extracting a Solution
< (attruck A) (at package B)

(mové ?n‘lck AB)
< (attruck A) (at trq:'!iB) (at package B)
Y

(move truck A B) (move truck B A) (load p;éka e truck B)

~fattruck A) (at truck B) (at package B) (in package truck) -

B e ——all

(mﬂo;;l package truck B)

¥ (unload package truck A)

9 (at package A)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

113

Extracting a Solution
< (attruck A) (at packageB)

\k‘l
(move truck A B)
L
< (attruck A) (attruck B) (at package B)

T \
| .

(move truck A B) (move truck B A) (load package truck B)

o (at package A)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

114

Extracting a Solution

< (attruck A) (at package B)
i

(move truck A B)
/

I ik o pactaemy—
- "

(move truck A B) (move truck B A) (loa package truck B)

(in package truck)

CLRI S @V (at truck B) (at package B)

M (unload package truck A) (lmlo:d p;?liage truck B)

W (at package A)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

115

Extracting a Solution
< (attruck A) (at packageB)

(mo\'é?rqck A B)

|

B) (at package B)

‘

(move truck A B) (move truck B £V] (load package truck B)

CLRIT VI (at truck B) (at package B) RUUR S CELRIE Y

—

W (unload package truck A) (mﬂo;;l p;?kage truck B)

= W (at package A) e
Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

116

Extracting a Solution
Sl (at truck A) .(at package B)

(move truck A B)

S (at truck A) (at truck B) (at package B)

[
(move truck A B) (move truck B A) BTG R T (9102 199

CRIE VI (at truck B) (at package B) R(UE T CELRTLTE Y

e ——

M (unload package truck A) (unlo:d package truck B)

W (at package A)

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

117

Extracting a Solution

(move truck A B)

(load package truck B)

(unload package truck A)

Heuristic value of S: 3

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

118

Detecting Dead-End States

« What if the goal facts never appear in the planning
graph?

« |n this case, no relaxed plan can be found from
the state to the goal.

« ...and hence, the state is a dead-end:

- if no relaxed plan can be found, adding delete
effects won't make it easier.

— We say the heuristic value of such states is
infinite.
* |s a useful property of the heuristic — can discard
such states during search.

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

119

Or Not...

« Whilst the RPG can detect dead ends soundly, it is
unfortunately not complete:

- Sound: if it says there is a dead-end there is one
- Complete: if there is a dead-end it will be found.

« There are some dead-ends that are undetectable
by the RPG.

 Indeed domains with such dead-ends tend to be
generally difficult for planners.

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

120

Is the Relaxed-Plan Heuristic
Admissible?

« Recall that in order to do optimal planning using A*
we needed an admissible heuristic.

« In its standard for the RPG heuristic is not
admissible.
-~ This is because of the greedy extraction procedure used,
- We select the earliest achiever, breaking ties

« The length of the optimal relaxed plan (h+) is an
admissible heuristic;

- Unfortunately finding an optimal solution to even the relaxed
planning problem is NP-Hard (requires search).

- We can't afford to do this at every state just to get an estimate

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

121

Can we Generate Admissible
Heuristics?

* Yes!

* The easy one: count the number of action layers in
the relaxed planning graph.
-~ This is admissible, although clearly less informative (a price
often paid by admissible heuristics).
« Can we do better?
- Yes! Butthat's a whole other tutorial!

— There’s lots of exciting research going on now into heuristics for
optimal planning.

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

122

Heuristic Computation: Trade Off

« Heuristic computation is expensive:

- The planner FF spends around 80% of its search time
performing heuristic computation.

 The heuristic must be sufficiently informative and prune
enough of the search space to make calculating it
worthwhile.

« |n 2008 Blind (Breadth-First) Search was competitive
with heuristic optimal planners.

-~ This is not true any more...

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

123

FF: Fast Forward

« FF Written by J6rg Hoffmann circa 2000.
« Outstanding Performer IPC-2000.
« Top Performer IPC-2002.

« Still a very popular planner today.
— It's fast;
—It's robust.

« FF is a satisfycing planner that makes use of the
relaxed plan length heuristic we just learnt about.

J. Hoffmanm and B. Nebel (2001) "The FF Plamung System: Fast Plan Generanon
Through Heuristic Search”, Volume 14, pages 253-302

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

124

Slide credit: Intruction to Al planning, Amanda Coles, EASSS2013

nttps://www.youtube.com/watch?v=eeQcCs9snhU

* RSTR

e Two

The Sussman annomaly

PS cannot achieve shortest plan

nossible orderings of subgoals:

— On(A,B) and On(B,C) or On(B,C) and On(A,B)

C
A

—_— i
B
C

131

_ Sussman Anomaly

)

B A

e The Sussman Anomaly shows the limitations of non-interleaved
planning methods

e Before this was described, people used to do planning by
considering different subgoals in SEQUENCE

e The Anomaly will show that naively pursuing one subgoal X after
you satisfy the other subgoal Y may not work because steps
required to accomplish X might undo things subgoal Y

132

Sussman Anomaly in the block world _

"Sussman anomaly" problem

Bl[A

Start State Goal State
Clear(x) On(x,z) Clear(y) Clear(x) On(x,z)
PutOn(x,y) PutOnTable(x)
~0On(x,z) ~Clear(y) ~0On(x,z) Clear(z) On(x,Table)

Clear(z) On(x,y)

+ several inequality constraints

133

Sussman Anomaly -

B
C
C A
B A A
B C

 Final state requires On(A,B) and On(B, C)

e Top diagram tries to focus on subgoal: On(B,C) -- Now trying to
put A on top of B cannot be done without undoing On(B, C)

e Bottom diagram tries to focus on subgoal: On(A, B) first; but now
trying to put B on top of C would cause On(A,B) to be undone!

134

Anomaly lllustrates the Need for Interleaved Plans

START

On(C,A) On(A,Table) CI(B) On(B, Table) CI(C)

On(A,B) 0On(B,C)

FINISH

Bl{A

ojo)>

Example: continued

START

On(C,A) On(A, Table) CI(B) On(B, Table) CI(C)

\l

cr}s) On}ﬁ,z) c:}c:)

PutOn(B,C)

/

On(A,B) On(B,C)
FINISH

135

ofo]>

Need to Re-Order Plan Steps Dynamically

START

On(C,A) On(A, Table) CI(B) On(B, Table) CI(C)

|
CI(A) On(,!.z) CI:’!!J

—

PutOn(A,B) =~

\

On}A,B} On(B,C)

_—

\l

C?B) On(B,z) CI(C)

ot

FINISH

PutOn(B,C)

136

PutOn(A,B)

clobbers CI(B)

=> order after
PutOn(B,C)

o]]>

Example (cont.)

On(C,z) CI(C)

START

137

On(C,A) On(A, Table) CI(B) On(B, Table) CI(C)

/

il

0

utOnTable(C) N\

e
S

oy
L
\ R

-
C?A) On(/!,z) CIB)

~

PutOn(A

B)

_:-'

\

On(A,B)

I

\

CI(B) On(B,z) GJ?CJ

PutOn(A,B)

clobbers CI(B)

=> order after
PutOn(B,C)

PutOn(B,C)
clobbers CI(C)
=> order after
PutOnTable(C)

—

PutOn(B,C)

/

#

On(B,C)

FINISH

Lo

.38

Partial order planning

Least commitment planning

Nonlinear planning

Search in the space of partial plans

A state is a partial incomplete partially ordered plan
Operators transform plans to other plans by:

— Adding steps

— Reordering

— Grounding variables

SNLP: Systematic Nonlinear Planning (McAllester and
Rosenblitt 1991)

NONLIN (Tate 1977)

A partial order plan for putting shoes and socks

Partial-Order Plan:

N

L eft Right
Sock Sock
LefisockOn RIghtSockOn
Left Right
Shoe Shoe

\ /

LeftShoaOn, RightshoeOn

Finish

Total-Order Plans:

Start Start Start Start Start Start
Y Y Y Y ' y
Right Right L eft Left Right Left
Sock Sock Sock Sock Sock Sock
Y 1 ' v Y Y
Left Left Right Right Right Left
Sock Sock S0Gk S0ck Shoe Shoe
Y 1 ' Y Y Y
Right Left Right Left Left Right
Shoe Shoe Shoe Shoe Sock Sock
Y Y ' ' Y {
Left Right L eft Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
Y Y ! Y 1 '
Finish Finish Finish Finish Finish Finish

Figure11.6 A partial-order plan for putting on shoes and socks, and the six corresponding
linearizations into total-order plans.

139

140

Partial Order Planning (POP)

 State-space search

— Yields totally ordered plans (linear plans)
« POP

— Works on subproblems independently, then combines subplans
— Example

« Goal state: (RightShoeOn A LeftShoeOn)
* Initial state: Init()
« Actions:

Action(RightShoe, PRECOND: RightSockOn, EFFECT:
RightShoeOn)

Action(RightSock, EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn, EFFECT:
LeftShoeOn)

Action(LeftSock, EFFECT: LeftSockOn)

Partially Ordered Plans

141

» Partially Ordered Plan
— A partially ordered collection of steps

» Start step has the initial state description and
Its effect

 Finish step has the goal description as Its
precondition

 Causal links from outcome of one step to
precondition of another step

» Temporal ordering between pairs of steps

Components of a Plan

142

1. Aset of actions

2. Aset of ordering constraints

— A < B reads “A before B” but not necessarily immediately
before B

— Alert: cautiontocyclesA<Band B < A

3. Aset of causal links (protection intervals) between actions

P : :
— A= B reads “A achieves p for B” and p must remain true

from the time A is applied to the time B is applied

— Example “RightSock RightSOCkO.n RightShoe

4. A set of open preconditions

— Planners work to reduce the set of open preconditions to the
empty set w/o introducing contradictions

143

Partial Ordered Plans

« An open condition Is a precondition of a step not
yet causally linked

« Anplan is complete iff every precondition is
achieved

A precondition is achieved iff it is the effect if an
earlier step and no possibly intervening step
undoes It

144

Consistent Plan (POP)

 Consistent plan is a plan that has
— No cycle In the ordering constraints
— No conflicts with the causal links
» Solution
— Is a consistent plan with no open preconditions

» To solve a conflict between a causal link A ——» B
and an action C (that clobbers, threatens the causal
link), we force C to occur outside the “protection
interval” by adding

— the constraint C < A (demoting C) or
— the constraint B < C (promoting C)

Setting up the PoP

145

« Add dummy states

Start

Literal,, Literaly, ...

— Start

Literal,, Literal,, ...

« Has no preconditions
* Its effects are the literals of the initial state

Finish

— Finish

* Its preconditions are the literals of the goal state

e Has no effects

Start

Initial Plan:

LeftShoeOn, RightShoeOn

— Actions: {Start, Finish}

Finish

— Ordering constraints: {Start < Finish}
— Causal links: {}
— Open Preconditions: {LeftShoeOn,RightShoeOn}

146

POP as a Search Problem

« The successor function arbitrarily picks one open precondition p on
an action B

 For every possible consistent action A that achieves p

— It generates a successor plan adding the causal link A——pB
and the ordering constraint A< B

— If Awas not in the plan, it adds Start < Aand A < Finish
— It resolves all conflicts between

* the new causal link and all existing actions

 between A and all existing causal links

— Then It adds the successor states for combination of resolved
conflicts

* |t repeats until no open precondition exists

Partially Ordered Plans

147

Start

[eftShoeOn, Right5hoeOn

Finish

Start

/N

Left
Sock

'

LeftSockOn
Left
Shoe

LeftShoeOn, RightShoeOn

RightSockOn

Right
Sock

l

Right
Shoe

Finish

Start 148

At(Home) Sells(tHWS,Drill) Sells(SM Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

At(x)

Go(HWS)

Start

At(HWS), Sells(HWS, Drill) At(SM), Sells(SM,Milk)

Buy/(Drill)

Buy(Milk)

N /

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

At(x)

150

Go(SM)

At(SM), Sells(SM,Bananas)

Buy(Bananas)

P

151

At(Home) At(Home)

Go(HWS) Go(SM)

AH(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) ~ At(SM), Sells(SM,Bananas)

Buy/(Drill) Buy(Milk) Buy(Bananas)

a R .

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

Clobbering

152

A clobberer is a
potentially intervening
step that destroys the
condition achieved by a
causal link

— Example Go(Home)
clobbers At(Supermarket)

Demotion

— Put before Go(Supermarket)
Promotion

— Put after Buy(Milk)

— —

..-“'"‘ —

Y

Go(Supermarket)

At(Supermarket)

Buy(Milk)

l
.

PROMOTION

—_—

"~
\, DEMOTION

Go(Home)

/ At(Home)

/
/

At(HOome)

Finish

154

At(Home)

Start

AHHWS)
——
Go(HWS) r Go(SM)

e

A(HWS), Sells(HWS, Drill)

Buy(Drill)

W

At(SM), Sells(SM,Milk)

Al(SM), Sells(SMm, Bananas)

Buy(Milk)

Buy(Bananas)

;

At(SM)

W s sl

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

Go(Home)

155

Start 156

At(Home) Sells(tHWS,Drll) Sells(SM Milk) Sells(50 Ban.)

At(HWS) Sells(HWS, Drill)

Buy(Drill)

At(x)

Go(SM)

Af(SM) Sells(SM,Milk)

Buy(Milk)

Have(Milk) At{Home) Have(Ban.) Have(Drill)

Finish

157

At(Home)

Go(HWS)

At(HWS) Sells(HWS,Drill)

Buy(Drill)

A{(HWS)

Go(SM)

At(SM) - Sells(SM Milk) § At(SM) Sells(SM.Ban.)

Buy(Milk)

Buy(Ban.)

At(SM)

Go(Home)

i

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Finish

158

Example of POP: Flat tire problem

Start

* Only one open precondition At(Spare,Trunk), At(Flat,Axle)
« Only 1 applicable action

At(Spare,Ground), —At(Flat,Axle)

PutOn(Spare,Axle)
* Pick up At(Spare,Ground)
» Choose only applicable action At(Spage,Axle)

Remove(Spare, Trunk)

Finish

Example: Spare tire problem

Init(At(Flat, Axle) »n At(Spare, trunk))
Goal(At(Spare,Axle))
Action(Remove(Spare, Trunk)

PRECOND: Af(Spare, Trunk)

EFFECT: —At(Spare, Trunk) A At{Spare, Ground))
Action(Remove(Flat,Axile)

PRECOND: At(Flat.Axie)

EFFECT: -At(Flat,Axle) ~ At{Flat,Ground))
Action(PutOn(Spare,Axle)

PRECOND: At(Spare Groundp) ~-At(Flat,Axle)

EFFECT: At(Spare Axle) » =Ar{Spare, Ground))
Action(LeaveOvernight

PRECOND:

EFFECT: = Af(Spare Ground) ~ — At(Spare Axle) » = At(Spare, trunk) n = At(Flat, Ground) A =

At(Flat Axle))

159

160

Solving the problem

A Soare Trunk)| Remow(Spare.Trunk)\

1{Soare Trunk) AnSpare,
—AfRatAde)

Ar(&we/we)l Finish |

PutOn(Spare Axle)

e Intial plan: Start with EFFECTS and Finish with PRECOND.

161

Solving the problem

AifSpare Trunk)| Remove (Spare, Trunk)

ArfSoare Trunk) Anf

PutOn(Spare Axle) == A *wf}| Finish

Start

AtfFla Ace) — A RatAdle)

e Intial plan: Start with EFFECTS and Finish with PRECOND.
e Pick an open precondition: At(Spare, Axle)

e Only PutOn(Spare, Axle)is applicable
e Add causal link: PutOn(Spare, Axle) —*2421) s Einjsh

e Add constraint : PutOn(Spare, Axle) < Finish

162

Solving the problem

AﬂWeTn.r*)‘ Rpmove (Spare, Trun

At{Soare Trunk)

i Aff Soare Ale)| Finish

ArfFla Ade)

e Pick an open precondition: At(Spare, Ground)

e Only Remove(Spare, Trunk)is applicable
e Add causal link: Re move(Spare, Trunk)—223aeCromd) s pytOn(Spare, Axle)

e Add constraint : Remove(Spare, Trunk) < PutOn(Spare,Axle)

163

Solving the problem

AnfSoare Trunk)| Remove (Spare. Trunk) \

AtfSpre. Trunk) / AtfSpare. Ground,

PutOn(Spare Axle) w=ASoare Ade)| Finish

ArFla, Ade) ¢ —1AfRatAde)

/ 7
ARt Ade)

l - AN Rat.Ground))
LeaveOve rnig ht ﬂA;%EAde)

A ,Gound)
—1ANS, Trurk)

e Pick an open precondition: — Af(Flat, Axle)

e [eaveOverNightis applicable
e conflict: Remove(Spare,Trunk) dipareOnud) > PutOn(Spare, Axle)

e Because LeaveOverNight also makes - At(Spare, Ground)
e To resolve, add constraint : LeaveOverNight < Remove(Spare, Trunk)

164

Solving the problem

Remove (Spare.Trunk)
7

Trunk)

Ar(Soare, Trunk) / AnSoare, Grou inl
PutOn(Spare Axle) = AffSoare Ade)l Finish
ArFla, Axle) ! —AfRatAxde) =P Lol :
/
/
/ ARzt Axde)
—1AnRar Groung))

LeaveOvernight :gﬁggﬂﬂﬁjﬁ;
—1AnSoare, Trurk)

e Pick an open precondition: At(Spare, Trunk)

e Only Startis applicable

e Add causal link: Start —25eaelnn) sRe move(Spare, Trunk)

e Conflict: of causal link with effect = At(Spare, Trunk) in LeaveOverNight

e No re-ordering solution possibDle.
e Backtrack to a prior move since there is no way to fix this

165

Solving the problem

ArfSoare Trunk)| Remove (Spare. Trunk) \

ArfSoare Trunk) ANSare, 4 _
AfSoare Ade)| Finish
. AtFl Adle) — AfRatAde) IPutOn[SpareAxle)]-- |

AfR=xr Ade)| Remove(Flat, Axle) /

» Backtracking step: Remove LeaveOverNight and its causal links

* Now try Remove(Flat, Axle) as a way to satisfy — At(Flat, Axle)
e That one works... and the partial plan can be completed as above

168

POP Algorithm (1)

Backtrack when fails to resolve a threat or find an operator

Causal links

— Recognize when to abandon a doomed plan without
wasting time expanding irrelevant part of the plan

— allow early pruning of inconsistent combination of
actions

When actions include variables, we need to find
appropriate substitutions

— Typically we try to delay commitments to instantiating
a variable until we have no other choice (least
commitment)

POP is sound, complete, and systematic (no repetition)

169

POP Algorithm (2)

« Decomposes the problem (advantage)

« But does not represent states explicitly: it is hard to design
heuristic to estimate distance from goal

— Example: Number of open preconditions — those that
match the effects of the start node. Not perfect (same
problems as before)

A heuristic can be used to choose which plan to refine
(which precondition to pick-up):
— Choose the most-constrained precondition, the one
satisfied by the least number of actions. Like in CSPs!

— When no action satisfies a precondition, backtrack!

— When only one action satisfies a precondition, pick up
the precondiction.

170

POP Algorithm

function POP (initial, goal, operators) returns plan

plan < MAKE-MINIMAL-PLAN(#nitial, goal)

loop do
if SOLUTION?(plan) then return plan
Sheed; €4 SELECT-SUBGOAL(plan)
CHOOSE-OPERATOR(plan, operators, S,,ceq, €)
RESOLVE-THREATS(plan)

end

function SELECT-SUBGOAL(plan) returns Speed, ¢

pick a plan step S,ceq from STEPS(plan)
with a precondition ¢ that has not been achieved
return S,,..q. €

171

POP Algorithm

procedure CHOOSE-OPERATOR(plan, operators, Speed, ¢)

choose a step S,44 from operators or STEPS(plan) that has ¢ as an effect
if there is no such step then fail
add the causal link S,q0 %3 Speeq to LINKS(plan)
add the ordering constraint S,5q < Sy eeq to ORDERINGS(plan)
if S,q4 is a newly added step from operators then
add Sgy4q to STEPS(plan)
add Start < S,qa < Finish to ORDERINGS(plan)

procedure RESOLVE-THREATS(plan)

for each Sij,q that threatens a link S; —<3 S; in LINKS(plan) do
choose either
Demotion: Add Syprear < S; to ORDERINGS(plan)
Promotion: Add S; < Siuyeat to ORDERINGS(plan)
if not CONSISTENT(plan) then fail
end

172

Case Study: DWR domain

Overview

States with Internal Structure
Operators with Structure
Planning Domains and Problems
Forward State-Space Search
Backward State-Space Search

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

173

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Objects in the DWR Domain

* robots {robotl, robot2,...}:

— container carrier carts for one container

-~ can move between adjacent locations
* cranes {cranel, crane2, ...}

-~ belongs to a single location

- can move containers between robots and piles at same location
« containers {contl, cont2, ...}

- stacked in some pile on some pallet, loaded onto robot, or held by crane
 locations {1ocl, loc2, ...}

-~ storage area, dock, docked ship, or parking or passing area
« piles {pilel,pile2,...}:

- attached to a single location

-~ pallet at the bottom, possibly with containers stacked on top of it
* pallet:

-~ at the bottom of a pile

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Example: DWR Types in PDDL Syntax

(define (domain dock-worker-robot)

(:requirements :strips :typing)

types
; Igcation :there are several connected locations
pile ;Is attached to a location,
it holds a pallet and a stack of containers
robot :holds at most 1 container,
;only 1 robot per location
crane ;belongs to a location to pickup containers
container)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

17R

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

17R

Example: DWR Predicates (PDDL)

(:predicates
(adjacent ?11 ?12 - location)
(attached ?p - pile ?I - location)
(belong 7k - crane 71 - location)

éat ?r - robot ?| - location)
occupied ?I - location)

(loaded ?r - robot ?c - container)
(unloaded ?r - robot)

(holding 7k - crane ?c - container)
(empty 7k - crane)

éin ?c - container ?p - pile)
top 7c - container ?p - pile)
(on ?c1 - container 7c2 - container)

;location ?I1 is adjacent to ?12
;pile ?p attached to location ?I
;crane 7k belongs to location ?I

:robot ?r is at location ?|

there is a robot at location ?|

‘robot ?r is loaded with container ?7¢
;robot ?r is empty

.crane 7k is holding a container 7c
.crane 7k is empty

,container ?c is within pile ?p
;container ?c is on top of pile ?p
‘container ?c1 is on container ?c2

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

177

States in the STRIPS Representation

+ Let < be a first-order language with finitely many predicate
symbols, finitely many constant symbols, and no function
symbols.

« A state in a STRIPS planning domain is a set of ground atoms
of £.

—~ (ground) atom p holds in state s iff pes
— 8 satisfies a set of (ground) literals g (denoted s k g) if:

+ every positive literal in g is in s and
« every negative literal in gis notin s.

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

DWR Example: STRIPS States

state = {
adjacent(loc1,loc2), adjacent(loc2, loc1),
attached(p1,loc1), attached(p2,loc1),
belong(crane1,loc1),
occupied(loc2),

empty(crane1),
at(r1,loc2),
unloaded(r1),
In(c1,p1),in(c3,p1),
on(c3,c1), on(c1,pallet),

top(c3,p1),

In(c2,p2),
on(c2,pallet),
top(c2,p2)}

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Operators and Actions in STRIPS
Planning Domains

« A planning operator in a STRIPS planning domain is a triple
o0 = (name(0), precond(o), effects(o)) where:
-~ the name of the operator name(0) is a syntactic expression of the

form n(x,,...,x,) where nis a (unique) symbol and x,,...,x, are all the
variables that appear in 0, and

— the preconditions precond(o) and the effects effects(o) of the operator
are sets of literals.

« An action in a STRIPS planning domain is a ground instance
of a planning operator.

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

180
* move(r,,m)

-~ precond: adjacent(/,m), at(r,/), ~occupied(m)
- effects: at(r,m), occupied(m), ~occupied(/), ~at(r,/) —

« load(k,/c,n)
- precond: belong(k,/), holding(k,c), at(r,/), unloaded(r)
- effects: empty(k), ~holding(k,¢), loaded(s,¢), ~unloaded(/)

* put(k/cap)

— precond: belong(k,/), attached(p, /), holding(k,¢), top(a.p)
— effects: ~holding(k,c), empty(k), in(c,p), top(c,p), on(c,a), ~top(d,p)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

181

Example: DWR Operator (PDDL)

., moves a robot between two adjacent locations

(:action move
‘parameters (?r - robot ?from ?to - location)
‘precondition (and
(adjacent ?from ?to) (at ?r ?from)
(not (occupied ?t0)))
.effect (and
(at ?r ?to) (occupied ?to)

(not (occupied ?from)) (not (at ?r ?from))))

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Applicability and State Transitions

« Let L be a set of literals.
— L*is the set of atoms that are positive literals in L and
-~ L-is the set of all atoms whose negations are in L.

« Let a be an action and s a state. Then a is applicable in s iff:
- precond*(a) € s; and
— precond(a) ns = {}.

* The state transition function yfor an applicable action & in
state sis defined as:
- Us.a) = (s— effects(a)) v effects*(a)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Finding Applicable Actions: Algorithm

function addApplicables(A, op, precs, o, S)
If precs”.isEmpty() then
for every np in precs do
if s.falsifies(o(np)) then return
A.add(o(op))
else
pp € precs*.chooseOne()
forevery spin sdo
o’ < o.extend(sp, pp)
if o’.isValid() then
addApplicables(A, op, (precs - pp), 0, S)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

ke Example: Applicable Actions

{adjacent(loc1.loc2 (:action move :parameters (?r - robot ?from ?to - location)
adjacent ; :precondition (and (adjacent ?from ?to) (at ?r ?from)
attached(p1,loc1), t ied 2t
attached(p2,loc1), (not (occupied ?t0))) ,
belong(crane1,loc1), -effect (and (at ?r ?to) (occupied ?to)
occupled(loczg, (not (occupied ?from)) (not (at ?r ?from))))
empty(cranet),

r1,loc2),
unloaded(r1),

in(c1,p1),in(c3,p1),
on(c3,c) on(c1,pallet),
top(c3,p1),

in(c2,p2),
on(c2,pallet),

top(c2,p2)}

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Classical Planning

» task: find solution for planning problem

* planning problem
— initial state
+ atoms (relations, objects)

-~ planning domain
= operators (name, preconditions, effects)

— goal
» solution (plan)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

1QR

States in the STRIPS Representation

+ Let < be a first-order language with finitely many predicate
symbols, finitely many constant symbols, and no function
symbols.

« A state in a STRIPS planning domain is a set of ground atoms
of £.

—~ (ground) atom p holds in state s iff pes
— 8 satisfies a set of (ground) literals g (denoted s k g) if:

+ every positive literal in g is in s and
« every negative literal in gis notin s.

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Example: Domain (PDDL)

{define (domain dock-worker-robot)
(:raquiraments :strips typing)
{types location pile robot crane container)
{:constants pallet - container)
{:predicates
(adjacent 711 712 - location)
(attached 7p - pile 71 - location)
{belong 7k - crane 7l - location)
{at 7r - robot 7| - location)
(occupied 71 - location)
(loaded 7r - robot 7¢ - container)
{unloaded 7r - rabot)
(holding 7k - crane Ve - container)
(empty 7k - crana)
{in 7¢ - container ?p - pile}
(top 7c¢ - container ?p - pile)
{on Tk1 - container 7k2 - container));;

(:action move parameters (7r - robot Firom 7o - location)
;precondition (and (adjacent Tfrom 7to) (at 7r Tfrom) (not (occupiad Ta)))
:affect (and (at 7r Tio) (not (occupied 7from)) (occupied 7ta) (not (at 7r 7from)))}

(:action load parameters (7K - crana 71 - location 7¢ - container 7r - rabot)
:precondition (and (at 7r 71) (belong 7k 1) (holding 7k 7c) (unloaded Tr))
‘effect (and (lcaded 7r 7c) (not (unloaded 7r)) (empty 7k) (not (helding 7k 7¢))))

{:action unload :parameters (7k - crane 71 - location 7¢ - container 7r - robot)
:precondition (and (belong 7k 71) (at ?7r 71) (loaded 7r 7¢) (empty 7K))
‘effect (and (unloaded 7r) (holding 7k 7¢) (not (loaded 7r 7¢))(not (empty 7K))))

(:action take parameters (7K - crana 71 - location Yc Telse - container 7p - pila)
:precondition (and (belong 7k ?l){attached 7p 71) (empty 7k) (in 7¢ 7p) (top 7c 7p)
on 7c 7else))
:eflect (and (holding 7k 7c) (top Pelse 7p) (not (in 7¢ 7p)) (not (top 7c 7p)) (not (on 7¢ Telse))
(not (empty 7k))))

(-action put ;parameters {7k - crane 71 - location ?¢ Telse - container Tp - pile)
:precondition (and (belong 7k 1) (attached 7p 1) (holding 7k 7¢) (top Pelse 7p))
;:uﬁm:t {?Ekn:?}}l)h 7c 7p} (top 7c 7p) (on 7c 7else) (not (top 7else 7p)) (not (helding 7k 7c))

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

STRIPS Planning Problems

« A STRIPS planning problem is a triple 2=(Z,s;,9)
where:

- 2=(S,A,y) is a STRIPS planning domain on some first-order
language £

- S,€S is the initial state

— g is a set of ground literals describing the goal such that
the set of goal states is: S,;={s€S | s satisfies g}

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

DWR Example: STRIPS Planning

Problem
« 2: STRIPS planning domain for DWR domain —___ '
+ s: any state *‘T >
— example: s, = {attached(pile,loc1),
in(cont,pilé}, top(cont,pile), —— (G
on(cont,pallet), belong(crane,loc1), daal lo?

empty(crane), adjacent(loc1,loc2), adjacent(loc2,loc1),
at(robot,loc2),

occupied(loc2), unloaded(robot)} = s =
« g.any subset of L H
— example: g = {~unloaded(robot), M
at(robot,loc2)}, i.e. S,={ss} . .

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Example: DWR Problem (PDDL)

: @ simple DWR problem with 1 robot and 2 locations incd q1) (ince q1) (incf q1)
(doﬁng g%gmc:’n;c c}(w\[ml:&' o gon cd pallet) (on ce cd) (on cf co)
.objects
r1 - robot (top pallet pZ;
1112 - location (top pallet q2
k1 k2 - crane
%p2q2-pile atri 1)
i itca cb cc cd ce cf pallet - container) unloaci!:g'r;))
in occuy
adjacent |1 12 :
adjacenti2 I éompty k1
attached p11 empty k2))
stcted e
attache :
.» task is to move all containers to locations 12
ggf:;‘; 31 |21 i2 (ca ?c(wd n%c in pile p2, the rest in g2
: a
belong k2 12 s p2) ?n cc p 2{
inca p1) (in cb p1) (in cc p1) incb q2) (in cd q2) (in ce q2) (in cf q2))))
%on ca pallet) (on cL ca) (on cc ch)
top cc p1)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Classical Plans

* A plan is any sequence of actions m=(ay,...,a,), where A20.
- The length of plan 17 is |7|=k, the number of actions.
- If m=(a,,...,ap and m,=(a%,...,a) are plans, then their concatenation

is the plan my*1m= (ay,....84,81,...,@)).

— The extended state transition function for plans is defined as follows:

* y(s,mm)=s if k=0 (1ris empty)
* y(s,m=y(y(s,a,),(@,,...,ap) if 0 and a, applicable in s
* y(s,m=undefined otherwise

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

192

Classical Solutions

» Let 2=(2,s,,9) be a planning problem. A plan 1T is a
solution for 2 if s, m) satisfies g.

— A solution r7is redundant if there is a proper subsequence
of mris also a solution for 2.

— 1ris minimal if no other solution for 2 contains fewer actions
than .

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Classical Representations

« propositional representation
— world state is set of propositions

— action consists of precondition propositions, propositions to be added
and removed

« STRIPS representation
— like propositional representation, but first-order literals instead of
propositions
 state-variable representation
— state is tuple of state variables {x;,...,x,}
— action is partial function over states

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

State-Space Search

* idea: apply standard search algorithms (breadth-first,
depth-first, A*, etc.) to planning problem:
— search space is subset of state space
— nodes correspond to world states
— arcs correspond to state transitions
— path in the search space corresponds to plan

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

94

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

State-Space Planning as a Search

Problem

» given: statement of a planning problem P=(0O,s;,9)
+ define the search problem as follows:

— initial state: s,

— goal test for state s: s satisfies g

— path cost function for plan 1. ||

— successor function for state s: ['(s)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

196

Reachable Successor States

* The successor function M:25—-25 for a STRIPS domain
2=(S,A,y) is defined as:
—@{y(s,a) | @A and g applicable in s} for s=S

- I({S1,--:81)= Ut (S0) i
- M({sy,...,s,)={sy,...,5,} = Sty s SpS
- M™{s,,...,s,)=F™({s,...,s,})

-

* The transitive closure of I defines the set of all reachable
states:

= ()= Uggeo.) M {8} for s=S

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Forward State-Space Search Algorithm

function fwdSearch(O,s;,g)

state € s;

plan € ()

loop
if state.satisfies(g) then return p/an
applicables €< {ground instances from O applicable in state}
if applicables.isEmpty() then return failure
action € applicables.chooseOne()
state < y(state,action)
plan € plan « {(action)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

_ DWR Example: Forward Search

initial state: plan = goal state:

lool lood | logl logd

Sg

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

DWR Example: Forward Search

crane so
L__/ ﬂ (e
loc) loc2

erane
ii
L locl

Sy
/1
[—Tobot _J

loc2

plan =

take(crane,loc1,cont pallet pile)
move(robot,loc2,loc1)
load(crane,loc1,cont,robot)
move(robot, loc1,loc2)

crane 83
R

[_robot '}
| locd loc2

goal state:
crane SS
greied ﬁ =
locl loc2
crane ﬁ D 34
| locl loc2

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

199

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

200

Properties of Forward Search

* Proposition: fwdSearch is sound, i.e. if the function returns a plan as a
solution then this plan is indeed a solution.

- proofidea: show (by induction) state=y(s,plan) at the beginning of each
iteration of the loop

* Proposition: fwdSearch is complete, i.e. if there exists solution plan
then there is an execution trace of the function that will return this
solution plan.

— proofidea: show (by induction) there is an execution trace for which plan is
a prefix of the sought plan

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

201

Relevance and Regression Sets B

« Let 2=(2,s;,9) be a STRIPS planning problem. An
action a<A is relevant for g if
- g n effects(a) * {} and
- g* n effects(a) = {} and g n effects*(a) = {}.

* The regression set of g for a relevant action a<A is:
- y'(g,a)=(g - effects(a)) u precond(a)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Regression Function

* The regression function I for a STRIPS domain Z=(S,A,y)
on L iIs defined as:

- "(g)={y'(9,a) | acAisrelevant for g} for ge2*-

- {g4,....9.)={94-.-.Gn}
- M({g4,....9.)= U(ke[1.n])r.1(gk) } Grr--19n€2"
- F({gy....g)= F(Tm(Gg.... g)

« The transitive closure of I defines the set of all regression
sets:

— (9)= Uepo.«pl ({9} for ge2-

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

State-Space Planning as a Search

Problem

+ given: statement of a planning problem P=(0,s;,9)

+ define the search problem as follows:
— initial search state: g
— goal test for state s: s; satisfies s
— path cost function for plan . ||
— successor function for state s: 7(s)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

203

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

204

Example: Regression with Operators

« goal: at(robot,loc1)
« operator: move(r,/,m)
— precond: adjacent(/,m), at(r,/), ~occupied(m)
- effects: at(r,m), occupied(m), ~occupied(/), ~at(r,/)

 actions: move(robot,/loc1)
i, o D

— many options increase branching factor

+ lifted backward search: use partially instantiated operators
iInstead of actions

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Overview

Search States: Partial Plans

« Plan Refinement Operations

* The Plan-Space Search Problem
» Flawless Partial Plans

* The PSP Algorithm

« PSP Implementation Details
Partial-Order Planning

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

State-Space vs. Plan-Space Search

 state-space search:
search through graph of nodes representing world
states

* plan-space search:
search through graph of partial plans

—nodes: partially specified plans
— arcs: plan refinement operations
— solutions: partial-order plans

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

207

Partial Plans

» plan: set of actions organized into some structure

» partial plan:
— subset of the actions

— subset of the organizational structure

» temporal ordering of actions
« rationale: what the action achieves in the plan

— subset of variable bindings

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

208

Definition of Partial Plans

« A partial plan is a tuple m = (A,X,B,L), where:
- A={a,,...,a,} is a set of partially instantiated planning operators;
— <is a set of ordering constraints on A of the form (a,<a);

— B is a set of binding constraints on the variables of actions in A of the
form x=y, x#y, or xeD,,
— L is a set of causal links of the form (a,-[p]-=>a,) such that:
* @;and a, are actions in A,
* the constraint (a<a)) is in <;
* proposition p is an effect of a; and a precondition of a; and
* the binding constraints for variables in a; and a; appearing in p are in B.

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

209

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

210

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

211

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Adding Actions

« partial plan contains actions
- initial state
— goal conditions
— set of operators with different variables

 reason for adding new actions
— to achieve unsatisfied preconditions
—to achieve unsatisfied goal conditions

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Adding Actions: Example

initial state

|Ig

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

214

Adding Actions: Example

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Adding Actions: Example

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

216

- Adding Causal Links

 partial plan contains causal links

— links from the provider
» an effect of an action or
* an atom that holds in the initial state

— to the consumer
+ a precondition of an action or
* a goal condition

 reasons for adding causal links
— prevent interference with other actions

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Adding Causal Links: Example

initial state

1:m(f1.,g.m1)

preconditions

2:'0“(‘(2 ,/2,C2,f2)

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

! SN

causal link:

217

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

218

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,

https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Planning Graphs

A planning graph consists of a sequence of levels
that correspond to time-steps in the plan

Level 0 is the initial state.

Each level contains a set of literals and a set of
actions

Literals are those that could be true at the time
step.

Actions are those that their preconditions could
be satisfied at the time step.

Works only for propositional planning.

219

220

Example:Have cake and eat it too

Irat{ Have{ Cake))
Goal{ Have{ Cake) A Faten{Cake))
Action| Eat{ Cake)

PRECOND: Have{Cake)

EFFECT: = Have{Coke) A Faten|Cake))
Action{ Baoke{ Cake)

PRECOND: - Have{ Cake)

EFFECT: Have{ Cake)

Figure 11.11 The “have cake and eat cake too™ problem,

The Planning graphs for “have cake”,

+ Persistence actions: Represent “inactions” by boxes: frame axiom

* Mutual exclusions (mutex) are represented between literals and actions.
» Slrepresents multiple states

* Continue until two levels are identical. The graph levels off.

* The graph records the impossibility of certain choices using mutex links.

* Complexity of graph generation: polynomial in number of literals.

221

S Ao A S,
Bake(Cake) \
Have(Cake) Have(Cake) {} Have(Cake)
— Have(Cake)] — Have(Cake)
EatiCake) |< Eat(Cake) |<
Ezten(Cake) : Ezten(Cake)
— Eaten(Cake) = Eaten(Cake) T — Eaten(Cake)

Figure 1112 The planning graph for the “hawve calte and eat cale too™ problem up to level
&5, Rectangles indicate actions (small squares indicate persistence actions) and straight lines
indicate preconditions and sffects. Mutex links are showm as curved gray lines.

222

Focus

 Building the Planning Graph
 Using it for Heuristic Estimation

 Using It for generating the plan
— GraphPlan algorithm [Blum & Furst, 95]

223

Example of a Planning Graph (1)

Init(Have(Cake)) Action(Eat(Cake)
Goal(Have(Cake)~Eaten(Cake)) Precond: Have(Cake)
Effect. —Have(Cake)AEaten(Cake))
Propositions true at Action(Bake(Cake)
the initial state Precond: —Have(Cake)
Persistence Actions (noop) Effect: Have(Cake))
Sy Ag S, A S»
Bake(Cake)

1]

Have(Cake) = Have(Cake)

Have(Cake) .*
\ —Have(Cake) = —Have(Cake)

f Eat(Cake) |< Eat(Cake) |<
Eaten(Cake) = Eaten(Cake)
—lEaten(Cake) / // —lEaten{Cake) =) —1Eaten(Cake)

Action is connected to its
preconds & effects

224

Example of a Planning Graph (2)

« At each state level, list all literals that may hold at that level

« Ateach action level, list all noops & all actions whose preconditions may hold at
previous levels

« Repeat until plan ‘levels off,” no new literals appears (S;=S;,)
 Building the Planning Graph is a polynomial process

« Add (binary) mutual exclusion (mutex) links between conflicting actions and
between conflicting literals

S[] J"."""[] 51 A1 EE
Bake(Cake) -\
Have{Cake) = Have(Cake) =, Have(Cake)
\ —Have(Cake) =) —Have(Cake)
Eat(Cake) |< Eat(Cake) |<
f Eaten(Cake) = Eaten{Cake)
— Eaten{Cake) 8 \ / —l.EafEn{GakK 8 — Eaten{Cake)

Mutual exclusion links S, represents multiple states

225

Mutex Links between Actions

1. Inconsistent effects: one action negates an effect of another
— Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake)

2. Interference: An action effect negates the precondition of another
— Eat(Cake) negates precondition of the noop of Have(Cake):

3. Competing needs: A precondition on an action is mutex with the
precondition of another

— Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition

S[] A[] S 1 A 1 S 2
Bake(Cake)
Have(Cake) =! Have(Cake) = T~ Have(Cake)
\ —Have(Cake) =) —Have(Cake)
Eat{Cake) |< Eat{Cake) |<

Eaten{Cake) = Eaten{Cake)
— Eaten{Cake) 8 — Eaten{Cake) 8 — Eaten{Cake)

226

Mutex Links between Literals

1. Two literals are negation of each other
2. Inconsistent support: Each pair of actions that can
achieve the two literals is mutex. Examples:

— In S1, Have(Cake) & Eaten(Cake) are mutex
— In S2, they are not because Bake(Cake) & the noop of Eaten(Cake)
are not mutex

S[] J"i'."'t[] A1 EE

Bake(Cake) -\
Have{Cake) = Have(Cake) =, Have(Cake)
\ —Have(Cake) >< =) —Have(Cake)
Eat(Cake) |< Eat(Cake) |<

Eaten{Cake) Eaten{Cake)
—Eafen{Cake) —Eafen({Cake)

o M

— Eaten|{Cake)

Defining Mutex relations

* A mutex relation holds between two actions on the
same level iff any of the following holds:

Inconsistency effect: one action negates the effect of another.
b . ”
Example eat cake and persistence of have cake

interference: One of the effect of one action is the negation of
the precondition of the other. Example: eat cake and
persistence of Have cake

Competing needs: one of the preconditions of one action is
mutually exclusive with a precondition of another.
Example: Bake(cake) and Eat(Cake).

A mutex relation holds between 2 literals @t the same level iff one is
the negation of the other or if each possible pair of actions
that can achieve the 2 literals is mutually exclusive.

227

228

Planning Graph

 Isasequence (Sy;,AyS, AL, ..,S;) of levels
— Alternating state levels & action levels
— Levels correspond to time stamps
— Starting at initial state

— State level is a set of (propositional) literals
« All those literals that could be true at that level

— Action level is a set of (propositionalized) actions

 All those actions whose preconditions appear in the state level (ignoring all negative interactions,
etc.)

 Is special data structure used for

1. Deriving better heuristic estimates
2. Extract a solution to the planning problem: GRAPHPLAN algorithm

« Propositionalization may yield combinatorial explosition in the presence of a
large number of objects

229

Planning graphs for heuristic estimation

Estimate the cost of achieving a goal by the level in the
planning graph where it appears.

To estimate the cost of a conjunction of goals use one of
the following:

Max-level: take the maximum level of any goal (admissible)
Sum-cost: Take the sum of levels (inadmissible)

Set-level: find the level where they all appear without
Mutex (admissible). Dominates max-level

Graph plans are relaxation of the problem. Representing
more than pair-wise mutex is not cost-effective

230

Planning Graph for Heuristic Estimation

 Aliteral that does not appear in the final level cannot be achieved by
any plan

— State-space search: Any state containing an unachievable literal has cost
h(n)=cc

— POP: Any plan with an unachievable open condition has cost h(n)=cc
« The estimate cost of any goal literal is the first level at which it appears
— Estimate is admissible for individual literals

— Estimate can be improved by serializing the graph (serial planning graph:
one action per level) by adding mutex between all actions in a given level

« The estimate of a conjunction of goal literals
— Three heuristics: max level, level sum, set level

231

Estimate of Conjunction of Goal Literals

« Max-level
— The largest level of a literal in the conjunction
— Admissible, not very accurate

e |Level sum

— Under subgoal independence assumption, sums the level costs of
the literals

— Inadmissible, works well for largely decomposable problems

e Set level

— Finds the level at which all literals appear w/o any pair of them
being mutex

— Dominates max-level, works extremely well on problems where
there is a great deal of interaction among subplans

232

The graphplan algorithm

function GRAPHPLAN(problem) returns solution or failure

graph «— INITIAL-PLANNING-GRAPH{ problem)
goals +— GOALS[problem)]
loop do
if goals all non-mutex in last level of graph then do
solution «— EXTRACT-SOLUTION(graph, goals, LENGTH(grapk))
if soldion # farlure then return solution
else if NO-SOLUTION-POSSIBLE(grapk) then return foilure
graph «— EXPAND-GRAPH(graph, problem)

Figure 11.13 The GRAPHPLAN algorithm. GRAPHPLAN alternates between a solhation
extraction step and a graph expansion step. EXTRACT-SOLUTION looks for whether a plan
can be found, starting at the end and searching backwards, EXPAND-GRAPH adds the actions
for the current level and the state literals for the next level,

Planning graph for spare tire
goal: at(spare,axle)

* S2 has all goals and no mutex so we can try to extract solutions
* Use either CSP algorithm with actions as variables
* Or search backwards

33

A Ranove AatAsls

S0 Ag = Ay 59
At{Spare, Trank) 3 A} (Spare Trunk) LN A{Spare, Trunk)
\ \ Rennoney Spare, Tunks)
Rernoved Spane, Trurk) =1 A} {Spare Trunk) —ASpare, Trunk)

At{Flz¢ Axle) /

- Ab(Fist Axle) o =44 {Flat Axie)
| Leavecvemight — Ab{Fiat Axle) 0 A} (Flat Axle)
|_Lesvweovamight
— A {Spare, Axle)] — A} Spare Axile) 0 T4 {Spare, Axle)
\ PUKDN{ Spare Aule) At (Spare, Axle)
— 4} {Flad Grownd) 1 = 4 Fls, Grownd) L} — 84 Flad, Grownd)
AbiFlst, Growund) {} AtiFlat, Ground)
— A} Spare, Ground) . — Ao ane Ground) i} A4S pare, Gre und)
Ab{Spare Ground I} AHSpare, Gro und)

Figure 11.14

The planning graph for the spare tire problem after expansion to level S,

Mutex links are shown as gray lines. Only some representative mutexes are shown, because
the graph would be too cluttered if we showed them all. The solution is indicated by bold

ltmae armA Akl imae

234

Search planning-graph backwards with heuristics

How to choose an action during backwards
search:

* Use greedy algorithm based on the level cost of the
literals.

For any set of goals:
1. Pick first the literal with the highest level cost.

2. To achieve the literal, choose the action with
the easiest preconditions first (based on sum or
max level of precond literals).

Properties of planning graphs;
termination

Literals increase monotonically
— Once a literal is in a level it will persist to the next level
Actions increase monotonically

— Since the precondition of an action was satisfied at a level
and literals persist the action’ s precond will be satisfied
from now on

Mutexes decrease monotonically:

— |f two actions are mutex at level Si, they will be mutex at
all previous levels at which they both appear

Because literals increase and mutex decrease it is
guaranteed that we will have a level where all goals
are non-mutex

235

GRAPHPLAN Algorithm

236

GRAPHPLAN (problem) returns solution or failure
graph <« InitPlanningGRAPH (problem)
goals «— GOALS[problem]
loop do
If goals all non-mutex in last level of graph then do
solution «— EXTRACTSOLUTION(graph,goals,LENGTH(graph))
iIf solution = failure then return solution
else if NoSolutionPossible(graph) then return failure
graph < ExpandGarph(graph,problem)

« Two main stages
1. Extract solution
2. Expand the graph

Example: GRAPHPLAN EXxecution (1)

237

» At(Spare,Axle) is not in S,
* NO need to extract solution
+ Expand the plan

So
At(Spare, Trunk)

At(Flat,Axle)

—Al(Spare,Axle)
—At(Flat,Ground)

—At(Spare,Ground)

238

Example: GRAPHPLAN EXxecution (2)

* Three actions
are applicable S, A, S,
,/'T'

e 3 actions and 5 At(Spare, Trunk) At(Spare, Trunk)
noops are added \

 Mutex links are f

Remove({Spare, Trunk) —At(Spare, Trunk)

added At(Flat, Axle) / — At(Flat, Axle)
[LeaveOvermight —At(Flat, Axle)
« At(Spare,Axle)
still not Iin Sl —At(Spare,Axle) O \\\\ —At(Spare,Axle)
° Plan IS expanded —At(Flat,Ground) i, \ﬂAt(Flat,Ground)
\ At(Flat,Ground)
—At(Spare,Ground)] \ﬁ At(Spare, Ground)

At(Spare,Ground)

Example: GRAPHPLAN EXxecution (3)

239

Sﬂ A{] S1 A 1
At(Spare, Trunk) 1 At(Spare, Trunk)]
\l Remove(Spare, Trunk)
—Al{Spare, Trunk)]
Femove{Flat Axle) / Remove(Flat, Axle)
At(Flat Axle) /] At(Flat Axle)]
| LeaveOvemight —At{Flat Axle)
| LeaveCvernight
—At{Spare, Axle) —At{Spare, Axle)
—At(Flat, Ground) {} — At(Flat,Ground)
\ At{Flat, Ground)]
—Ail{Spare, Ground) 1 At(Spare, Ground) / {}
4

At(Spare, Ground) /

S»
At(Spare, Trunk)

IR — At(Spare, Trunk)

At(Filat Axle)
—At(Flat Axle)

—At{Spare, Axle)
At{Spare, Axle)
—At(Flat, Ground)
At(Flat,Ground)
At{Spare, Ground)
At(Spare,Ground)

240

Solution Extraction (Backward)

1.

2.

S, A, S, A, S
At(Spare, Trunk) 1 At(Spare, Trunk) {1 At(Spare, Trunk)
\l Remove(Spare, Trunk) l\
—Al{Spare, Trunk)] \ —At(Spare, Trunk)
Femove{Flat Axle) / Remove(Flat, Axle)
At(Flat Axle) /] At(Flat Axle)] At(Flat Axle)
| LeaveOvemight —At{Flat Axle) —At{Flat Axle)
| LeaveCvernight
—At{Spare, Axle) —At{Spare, Axle) —At{Spare, Axle)
At{Spare, Axle)
—Al{Flat, Ground) {} —At{Flat,Ground) —At(Flat, Ground)
\ At(Flat, Ground) {} At(Flaf, Ground)
—At(Spare, Ground) 1 At(Spare, Ground) / 1 At(Spare, Ground)
r1

At(Spare, Ground) /

At(Spare,Ground)

241

Backtrack Search for Solution Extraction

 Starting at the highest fact level
— Each goal is put in a goal list for the current fact layer

— Search iterates thru each fact in the goal list trying to find an action to
support it which is not mutex with any other chosen action

— When an action is chosen, its preconditions are added to the goal list of
the lower level

— When all facts in the goal list of the current level have a consistent
assignment of actions, the search moves to the next level

« Search backtracks to the previous level when it fails to assign an action
to each fact in the goal list at a given level

e Search succeeds when the first level 1s reached.

242

Termination of GRAPHPLAN

« GRAPHPLAN Is guaranteed to terminate
— L.iteral increase monotonically
— Actions increase monotonically
— Mutexes decrease monotinically

A solution is guaranteed not to exist when

— The graph levels off with all goals present & non-
mutex, and

— EXTRACTSOLUTION falls to find solution

243

Optimality of GRAPHPLAN

« The plans generated by GRAPHPLAN

— Are optimal in the number of steps needed to execute
the plan

— Not necessarily optimal in the number of actions in the
plan (GRAPHPLAN produces partially ordered plans)

244

Other classical planning
approaches

* The most effective approached to planning
currently are:

— Translating to Boolean Satisfiability

— Forward state-space search with carefully craftec
heuristics

— Search using planning graphs (covered already)

Planning as Satisfiability

Express propositional planning as a set of propositions.
Index propositions with time steps:
On(A,B) 0, ON(B,C) O

Goal conditions: the goal conjunctsattime T, T is
determined arbitrarily.

Unknown propositions are not stated.
Propositions known not to be true are stated negatively.
Actions: a proposition for each action for each time slot.

Succesor state axioms need to be expressed for each action
(like in the situation calculus but it is propositional)

245

Planning with propositional logic
(continued)

We write the formula:
— Initial state and succesor state axioms and goal

We search for a model to the formula. Those actions
that are assigned true consititute a plan.

To have a single plan we may have a mutual exclusion
for all actions in the same time slot.

We can also choose to allow partial order plans and
only write exclusions between actions that interfere
with each other.

Planning: iteratively try to find longer and longer plans.

SATplan algorithm

function SATPLAN(problem, T ..,) returns solution or failure
inputs: problem, a planning problem
T inas, anupper limit for plan length

for T=0to T, do
enf , mapping +— TRANSLATE-TO-SAT(problem, T)
assigrunent +— SAT-SOLVER(enf)
if assrgrniment 15 not mall then
return EXTRACT-SOLUTION(assigrunerd, mapping)
return foilure

Figure 11.15 The SATPLAN algorithm. The plarming problem is translated into a CNF
sentence n which the goal is asserted to hold at a fixed time step T' and axioms are included
for each time step up to T (Details of the translation are given inthe text.) If the satisfiability
algorithm finds amodel, then aplan is extracted by looking at those proposition symbols that
refer to actions and are assigned fruwe inthe model. If no model exists, then the process is
repeated with the goal moved one step later.

247

Further reading

Situation Calculus

* First we look at how to model dynamic worlds within first-
order logic.

* The situation calculus Is an important formalism developed
for this purpose.

* Situation Calculus is a (mostly) first-order language.

* Include in the domain of individuals a special set of objects
called situations. Of these S, Is a special distinguished
constant which denotes the “initial” situation.

258

Situation Calculus: Ontology

 Situations
 Fluents

 Atemporal (or eternal)
predicates & functio

-] i

ResultiTurn (Right),
ResultiForward, 5,))
Turn (Right)

ResultiForward, 5,

Forward

259

Situation Calculus: Ontology

e Situations
— Initial state: S,

— A function Result(a,s) gives the situation resulting
from applying action a in situation s

e Fluents

— Functions & predicates whose truth values can
change from one situation to the other

— Example: —Holding(G,,S,)
 Atemporal (or eternal) predicates and functions
— Example: Gold(G,), LeftLegOf(Wumpus)

260

Situation Calculus

« Sequence of actions

— Result([],s)=s

— Result([a | seq],s)=Result(seq,Result(a,s))
 Projection task

— Deducing the outcome of a sequence of actions
 Planning task

— Find a sequence of actions that achieves a
desired effect

261

Example: Wumpus World

* Fluents
— At(o,p,s), Holding(o,s)
« Agentisin|[1,1], goldisin[1,2]
— At(Agent,[1,1],S,) A At(G,,[1,2],S,)
« InS,, we also need to have:
— At(0,x,S,) < [(0=Agent) A x=[1,1]] Vv [(0=G,) A x=[1,2]]
— —Holding(0,S,)
— Gold(G,) A Adjacent(]|1,1],[1,2]) A Adjacent([1,2],[1,1])
« The query is:
— 3 seq At(G,,[1,1],Result(seq,Sy))
« The answer is
— At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G,),Go([1,2],[1,1]),Sy))

Importance of Situation Calculus

262

e Historical note

— Situation Calculus was the first attempt to
formalizing planning in FOL

— Other formalisms include Event Calculus

— The area of using logic for planning is

informally called 1n the literature “Reasoning
About Action & Change”

 Highlighted three important problems
1.Frame problem
2.Qualification problem
3.Ramification problem

263

‘Famous’ Problems

* Frame problem

— Representing all things that stay the same from one
situation to the next

— Inferential and representational
 Qualification problem

— Defining the circumstances under which an action is
guaranteed to work

— Example: what if the gold is slippery or nailed down, etc.
« Ramification problem

— Proliferation of implicit consequences of actions as
actions may have secondary consequences

— Examples: How about the dust on the gold?

Situation Calculus Building Blocks

* Situations
* Fluents
* Actions

Situations

* Situations are the history of actions from s, You can think of
them as indexing “states” of the world, but two different
situations can have the same state. (E.g., “scratch, eat” may
lead to the same state of the world as “eat, scratch”™ When
dealing with dynamic environments, the world has different
properties at different points in time.

Eg.

In(robby,room1, s;), —in(robby,room3,s;)
—In(robby,room3,s,), in(robby,room1,s,).

* Different things are true in situation s, than in the initial
situation s,.

* Contrast this with the previous kinds of knowledge we
examined.

Fluents

* Previously, we were encoding a property of a term as a
relation in first-order logic. The distinction here is that
properties that change from situation to situation (called
fluents) take an extra situation argument.

E.Q.,
clear(b) = clear(b,s)

“clear(b)” Is no longer statically true, it Is true contingent on
what situation we are talking about

Blocks World Example.

clear(c,s,)
on(c,a,sy)
robot
hand ™~ | clear(b,s,)
‘ ‘ handempty(s,)
C

Actions

* Actions are also part of language

* A set of “primitive” action objects in the (semantic)
domain of individuals.

* |[n the syntax they are represented as functions mapping
objects to primitive action objects.
Examples:

* pickup(X) function mapping blocks to actions
* pickup(c) = “the primitive action object corresponding
to ‘picking up block ¢’
* stack(X,Y)
*stack(a,b) = “the primitive action object corresponding
to ‘stacking a on top of b’

Actions applied to situation — new situation

* Remember that actions are terms in the language.

* |In order to talk about the situation that results from executing
an action in a particular situation, there is a “generic” action
application function do(A,S).
do maps a primitive action A and a situation S to a new

situation.
* The new situation is the situation that results from applying A to S.

Example:
do(pickup(c), s,) = the new situation that is the result of

applying action “pickup(c)” to the initial situation s,.

What do Actions do?

* Actions affect the situation by changing what is true.
* on(c,a,s,); clear(a,do(pickup(c),s,))

* We want to represent the effects of actions, this is done In
the situation calculus with two components:

¢ Action Precondition Axioms
* Action Effect Axioms

Specifying the effects of actions

Action preconditions:

Certain things must hold for actions to have a predictable
effect.

* pickup(c) this action is only applicable to situations S
when “clear(c,S) A handempty(S)” is true.

Action effects:
* Actions make certain things true and certain things false.

* holding(c, do(pickup(c), S))
* v X.—handempty(do(pickup(X).,S))

Specifying the effects of actions

Action effects are conditional on their precondition being true.

VS, X.
ontable(X,S) A clear(X,S) A handempty(S)
— holding(X, do(pickup(X),S))
A —handempty(do(pickup(X),S))
A —ontable(X, do(pickup(X.S))
n —clear(X, do(pickup(X,S)).

N

Green indicates a situation term

Plan Generation

There are many ways to generate plans. Here we show how
to do it by representing actions in the situation calculus (as
you have just seen) and generating a plan via deductive
plan synthesis.

This is not the approach taken by state-of-the-art planners, as
we will see later, but it is where the field started and is still
used for specifying, studying and advancing research for
more complex tasks in reasoning about action and change

...S0 for now, back to resolution!

Reasoning with the Situation Calculus.

. Clear(c,sp)
.on(c,a,sp)
. clear(b,s;)

. ontable(b,sg)

.ontable(a,s;) ‘
. handempty(s,)

0 I) S S R S

Query: C
31Z.holding(b,Z)
7. (=holding(b,Z), ans(Z))

Does there exists a situation in which
we are holding b? And if so what is the
name of that situation.

276

Resolution o

Convert “pickup” action axiom into clause form:

v S,Y. ontable(Y,S) A clear(Y,S) A handempty(S) —

holding(Y, do(pickup(Y),S))
A —handempty(do(pickup(Y),S))
n —ontable(Y,do(pickup(Y,S))
A —cClear(Y,do(pickup(Y,S)).
3. (—ontable(Y,S), —clear(Y,S), —handempty(S),
holding(Y,do(pickup(Y),S))

9. (—ontable(Y,S), —clear(Y,S), —handempty(S),
—handempty(do(pickup(X).,S)))

10. (—ontable(Y,S), —clear(Y,S), —handempty(S),
—ontable(Y,do(pickup(Y,S)))

11. (—ontable(Y,S), —clear(Y,S), —handempty(S),
—clear(Y,do(pickup(Y,S)))

Resolution

12. R[8d, 7){Y=Db,Z=do(pickup(b),S)}
(—ontable(b,S), —clear(b,S), —handempty(S),
ans(do(pickup(b),S)))

13. R[12a,5] {S=s,}
(—clear(b,sy), —handempty(sy),
ans(do(pickup(b),s,)))

14. R[13a,3] {}
(—handempty(s,), ans(do(pickup(b),s;)))

15. R[14a,6] {}
ans(do(pickup(b),s,))

he answer?

* ans(do(pickup(b),sy))

* This says that a situation in which you are holding b
Is called “do(pickup(b),sy)”

* This tells you what actions to execute to achieve
“holding(b)”.

Two types of reasoning.

Two common types of queries :

1. Predicting the effects of a given sequence of action
E.g., on(b,c, do(stack(b,c), do(pickup(b), sp)))

2. Computing a sequence of actions that achieve a goal
conditions E.g.,

15. on(b,c,S) A on(c,a,S)

280

The Frame Problem

Unfortunately, logical reasoning won't immediately yield the
answer to these kinds of questions.

e.d., query: on(c,a,do(pickup(b),sy))?
* is c still on a after we pickup b?
* [ntuitively it should be

* Can logical reasoning reach this conclusion given the
representation of actions that we have proposed thus far?

The Frame Problem

. Clear(c,sg)
.on(c,a,sy)

. clear(b,sy)
.ontable(a,s,)
. ontable(b,s;)

handempty(s,)

8. (—ontable(Y,S), —clear(Y,S), —handempty(S),
holding(Y,do(pickup(Y),S))

9. (—ontable(Y,S), —clear(Y,S), —handempty(S),

—handempty(do(pickup(X),3)))

10. (—ontable(Y,S), —clear(Y,S), —handempty(S),
—ontable(Y,do(pickup(Y,S)))

11. (—ontable Y,SR, —clear Y,S;, —handempty(S),
—clear(Y,do(pickup(Y,S))

12. —on(c,a,do(pickup(b),s,)) {QUERY)

DO WN =

Nothing can resolve with 12!

Logical Consequence

* Remember that resolution only computes logical
consequences.

* We stated the effects of pickup(b), but did not state that it
doesn’t affect on(c,a).

* Hence there are models in which on(c,a) no longer holds
after pickup(b) (as well as models where It does hold).

* The problem is that representing the non-effects of actions is
very tedious and in general is not possible.
* Think of all of the things that pickup(b) does not affect!

33

The Frame Problem

* Finding an effective way of specifying the non-
effects of actions, without having to explicitly write
them all down is the frame problem.

* Good solutions have been proposed, and the
situation calculus has been a powerful way of
dealing with dynamic worlds:

* L ogic-based high-level robotic programming languages

284

Computation Problems

* Although the situation calculus is a very powerful

representation. It is not always efficient enough to use to
compute sequences of actions.

* The problem of computing a sequence of actions to
achieve a goal is “planning”

* Next we will study some less expressive representations
that support more efficient planning.

285

From Situation Calculus to STRIPS

Simplifying the Planning Problem

* Assume complete information about the initial state
through the closed-world assumption (CWA).

* Assume a finite domain of objects

* Assume that action effects are restricted to making
(conjunctions of) atomic formulae true or false. No
conditional effects, no disjunctive effects, etc.

* Assume action preconditions are restricted to
conjunctions of ground atoms.

87

Closed World Assumption (CWA)

* “Classical Planning”. No incomplete or uncertain
knowledge.

* Use the “Closed World Assumption” in our knowledge
representation and reasoning.

* The knowledge base used to represent a state of the world is a
list of positive ground atomic facts.

* CWA s the assumption that

a) if a ground atomic fact is not in our list of “known” facts, its
negation must be true.

D) the constants mentioned in KB are all the domain objects.

CWA

* CWA makes our knowledge base much like a database:
If employed(John,CIBC) Is not in the database, we
conclude that —employed(John, CIBC) is true.

CWA Example

KB = {handempty
clear(c), clear(b),
on(c,a),
ontable(a), ontable(b)}

1. clear(c) A clear(b)?

2. —on(b.c)?

3. on(a,c) v on(b,c)?
[14. 3Xon(Xc)? (D={ab,c})

A B | 5. vXontable(X)
— S X=avX=b?

290

Querying a Closed World KB

* With the CWA, we can evaluate the truth or falsity of
arbitrarily complex first-order formulas.

* This process Is very similar to query evaluation in databases.

* Just as databases are useful, so are CW KB's.

“‘CW KB or "CW-KB" = Closed-world knowledge base

"CWA" = Closed World Assumption

Querying A Closed-World KB

Query(F, KB) /*return whether ornot KB |= F */

If F Is atomic
return(F € KB)

Querying A CW KB

fF=F, AF
return(Query(F,) && Query(F,))

fF=F,vF,
return(Query(F,) || Query(F,))

If F=—F,
return(! Query(F,))

fF=F, > F,
return(!Query(F,) || Query(F,))

Querying A CW KB

if F=3X.F,
for each constant ¢ € KB

If (Query(F,{X=c}))
return(true)

return(false).

If F = VX.F,
for each constantc € KB

if (IQuery(F,{X=c}))
return(false)

return(true).

294

Querying A CW KB

Guarded quantification (for efficiency).

If F = vXF,
for each constant c € KB

if (IQuery(F,{X=c}))
return(false)

return(true).

E.g., consider checking
v X. apple(x) — sweet(x)

we already know that the formula is true for all “non-apples”

Querying A CW KB

Guarded quantification (for efficiency).

v X p(X)] F, > v X p(X) — F,
for each constant ¢ s.t. p(c)

if (IQuery(F,{X=c}))
return(false)

return(true).

3 X:[p(X)]F, <> 3 X p(X) A Fy
for each constant c s.t. p(c)

If (Query(F,{X=c}))
return(true)

return(false).

STRIPS representation.

* STRIPS (Stanford Research Institute Problem
Solver.) is a way of representing actions.

* Actions are modeled as ways of modifying the world.

* since the world Is represented as a CW-KB, a STRIPS
action represents a way of updating the CW-KB.

* Now actions yield new KB's, describing the new world—
the world as it is once the action has been executed.

297

Sequences of Worlds

* In the situation calculus where in one logical
sentence we could refer to two different situations at
the same time.

* on(a,b,sy) A —on(a,b,s,)

* In STRIPS, we would have two separate CW-KB'’s.
One representing the initial state, and another one
representing the next state (much like search where
each state was represented in a separate data
structure).

STRIPS Actions

* STRIPS represents actions using 3 lists.
1. A list of action preconditions.
2. A list of action add effects.
3. Alist of action delete effects.

* These lists contain variables, so that we can
represent a whole class of actions with one
specification.

* Each ground instantiation of the variables yields a
specific action.

STRIPS Actions: Example

pickup(X):

Pre: {handempty, clear(X), ontable(X)}
Adds: {holding(X)}

Dels: {handempty, clear(X), ontable(X)}

‘pickup(X)” is called a STRIPS operator.
a particular instance e.qg.
‘pickup(a)” is called an action.

Operation of a STRIPS action.

* For a particular STRIPS action (ground instance) to
be applicable to a state (a CW-KB)
* every fact in its precondition list must be true in KB.
* This amounts to testing membership since we have
only atomic facts in the precondition list.
* If the action is applicable, the new state is
generated by
* removing all facts in Dels from KB, then
* adding all facts in Adds to KB.

Operation of a Strips Action: Example

| |
|
- pickup(b) [¢
H = — =

pre = {handmpty, add = {holding(b)} del = {handmpty,

clear(b), clear(b),
ontable(b)} ontable(b)}

KB = {handempty KB = { holding(b),
clear(c), clear(b), clear(c),
on(c.,a), on(c,a),

ontable(a), ontable(b)} ontable(a)}

STRIPS Blocks World Operators.

* pickup(X)
Pre: {clear(X), ontable(X), handempty}
Add: {holding(X)}
Del: {clear(X), ontable(X), handempty}

* putdown(X)
Pre: {holding(X)}
Add: {clear(X), ontable(X), handempty}
Del: {holding(X)}

STRIPS Blocks World Operators.

* unstack(X,Y)
Pre: {clear(X), on(X,Y), handempty}
Add: {holding(X), clear(Y)}
Del: {clear(X), on(X,Y), handempty}
* stack(X,Y)
Pre: {holding(X),clear(Y)}
Add: {on(X,Y), handempty, clear(X)}
Del: {holding(X),clear(Y)}

STRIPS has no Conditional Effects

* putdown(X)
Pre: {holding(X)}
Add: {clear(X), ontable(X), handempty}
Del: {holding(X)}

* stack(X,Y)
Pre: {holding(X),clear(Y)}
Add: {on(X,Y), handempty, clear(X)}
Del: {holding(X),clear(Y)}

* The table has infinite space, so it is always clear. If we
“stack(X,Y)" if Y=Table we cannot delete clear(Table), but if
Y Is an ordinary block “c” we must delete clear(c).

Conditional Effects

* Since STRIPS has no conditional effects, we must
sometimes utilize extra actions: one for each type of
condition.

* \We embed the condition in the precondition, and then
alter the effects accordingly.

Other Example Domains

8 Puzzle as a planning problem

The Constants

* A constant representing each position, P1,...,P9

P1

P2

P3

P4

P3

P6

P7

P3

P9

* A constant for each tile (and blank) B, T1, ..., T8.

306

8-Puzzle

The Relations/Predicates/Properties
* at(T,P) tile T is at position P.

15 15 at(T1P1), at(T2,P2),
s at(T5 P3) .
6 4 3

* adjacent(P1,P2) P1 is next to P2 (i.e., we can
slide the blank from P1 to P2 in one move.

* adjacent(P5,P2), adjacent(P5,P8), ...

308

8-Puzzle —

The Operators

slide(T,X,Y)
Pre: {at(T,X), at(B,Y), adjacent(X,Y)}

Add: {at(B,X), at(T,Y)}
Del: {at(T.X), at(B,Y)}

at(T1P1), at(T5 P3), at(T1,P1), at(T5,P3),

at(B,P5), at(T8,P6), ...,

at(T8,P5), at(B P6), ...,

1 g 5 1 2)
7 |8 o 8
5 2 |3 slide(T8 P5P6) |6 [4 |3

Elevator Control

Figure 1: A Miconic-10"™ keypad allows passengers to
enter their destination before they enter the clevator. A
display informs the passenger about the elevator that
will offer the most suitable transport.

Elevator Control

Schindler Lifts.
* Central panel to enter your elevator request.
* Your request is scheduled and an elevator assigned to you.

* You can't travel with someone going to a secure floor,
emergency travel has priority, etc.

* Modeled as a planning problem and fielded in one of
Schindler’s high end elevators.

Planning as a Search Problem

* Given a CW-KB representing the initial state, a set
of STRIPS or ADL (Action Description Language)
operators, and a goal condition we want to achieve
(specified either as a conjunction of facts, or as a formula)

* The planning problem is to determine a sequence of
actions that when applied to the initial CW-KB yield an
updated CW-KB which satisfies the goal.

This is known as the classical planning task.

Planning As Search

* This can be treated as a search problem.
* The Initial CW-KB Is the Initial state.

* The actions are operators mapping a state (a CW-KB) to
a new state (an updated CW-KB).

* The goal Is satisfied by any state (CW-KB) that satisfies
the goal.

313

Example. -

N
C
A

move(b,c)

move(c,b) L
| B -l A]| B

>0

\
move(c,table) w il \Ll
\

move(a,b)

:
AlLC]

314

Problems -

* Search tree is generally quite large
* randomly reconfiguring 9 blocks takes thousands of CPU
seconds.
* The representation suggests some structure. Each
action only affects a small set of facts, actions
depend on each other via their preconditions.

* Planning algorithms are designed to take advantage
of the special nature of the representation.

Planning

* We will look at one technique:
Relaxed Plan heuristics used with heuristic search.

The heuristics are domain independent. As such they are
part of a class of so-called

domain-independent heuristic search for planning

316

Reachability Analysis.

* The idea is to consider what happens if we ignore
the delete lists of actions.

* This is yields a “relaxed problem” that can produce
a useful heuristic estimate.

Reachability Analysis

* In the relaxed problem actions add new facts, but
never delete facts.

* Then we can do reachability analysis, which is
much simpler than searching for a solution.

Reachability

* We start with the Initial state S,,.
* We alternate between state and action layers.

* We find all actions whose preconditions are contained in S,.
These actions comprise the first action layer A,.

* The next state layer contains:
* S, U all states added by the actions in A,.

* In general:
* A ... set of actions whose preconditions are in S;.
* S, =S, U the add lists of all of the actions in A,

STRIPS Blocks World Operators.

* pickup(X)
Pre: {handempty, ontable(X), clear(X)}
Add: {holding(X)}
* putdown(X)
Pre: {holding(X)}
Add: {handempty, ontable(X), clear(X)}

W
* unstack(X,Y)

Pre: {handempty, clear(X), on(X,Y)}

Add: {holding(X), clear(Y)}

* stack(X,Y)
Pre: {holding(X),clear(Y)}
Add: {handempty, clear(X), on(X,Y)}

Example

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty

So

unstack(a.b)
pickup(d)

a

c| | d

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
handempty,
clear(d),
holding(a),
clear(b),
holding(d)

this is not
a state as
some of
these
facts
cannot be
true at the
same timel

320

Example

21

al

g

C d on(a,b),
on(b,c),
ontable(c),
ontable(d),

clear(a),
clear(d),

handempty,

holding(a),
clear(b),
holding(d)

St

putdown(a),
putdown(d),
stack(a.b),

stack(a.a). Impossible,
stack(d.a), ™ [ltwe don
stack(d.b). _~ know because

stack(d.d). we ignore dels.
unstack(b,c)

Ay

322

[]] 1|
b b
c||d cl 1 d
on(a,b), unstack(a,b) on(a,b),
on(b.c), pickup(d) on(b,c),
ontable(c), ontable(c),
ontable(d), ontable(d),
clear(a), clear(a), this is not
clear(d), handempty, a statel
handempty clear(d),
holding(a),
So Ao clear(b),

holding(d) | S¢

Example

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(d),
handempty,
holding(a),
clear(b),
holding(d)

St

putdown(a),
putdown(d),
stack(a,b),
stack(a,a),
stack(d,b),
stack(d,a),
pickup(d),

ﬂhs’ruck(b,c)

A

Reachabilty

* We continue until:
* the goal G Is contained In the state layer, or
* until the state layer no longer changes (reached fix point).
* Intuitively:
* the actions at level A, are the actions that could be
executed at the I-th step of some plan, and

* the facts in level S, are the facts that could be made true
within a plan of length I.

* Some of the actions/facts have this property.
But not all!

325

Reachability

to reach

on(c,b)
H_‘ requires 4
actions
a on(c,b),
b c on(a,b),
ontable(c),
on(a,b), unstack(a,b) EF;;r*b(-!S(b)r stack(c.b)
ontable(c). pickup(c) clear(c)
ur’rﬂble(b), handempty,
cleurEﬂg, holding(a), o
er)) ot b
pty holding(c) ;ilncf’r:de
after one
s, A, S, A step

Heuristics from Reachability Analysis

Grow the levels until the goal is contained in the final

state level Sy.
* |If the state level stops changing and the goal is not
present: The goal is unachievable under the assumption

that (a) the goal is a set of positive facts, and (b) all
preconditions are positive facts.

* Then do the following

Heuristics from Reachability Analysis

CountActions(G,Sy):
/* Compute the number of actions contained in a relaxed plan
achieving the goal. */

* Split Ginto facts in S_; and elements in S, only.
* G contains the previously achieved (in S, _,) and
* G, contains the just achieved parts of G (only in Sy).

* Find a minimal set of actions A whose add effects cover G,.
* may contain no redundant actions,

* but may not be the minimum sized set (computing the minimum
sized set of actions is the set cover problem and is NP-Hard)

* NewG = S,_; U preconditions of A.
* return CountAction(NewG,S¢_) + size(A)

Heuristics from Reachability Analysis

CountActions(G,Sy):
/" Compute the nhumber of actions contained in a relaxed plan
achieving the goal. */

* Split Ginto facts in Si_; and elements in Sy only.
* G, contains the previously achieved (in S, ;) and
* G, contains the just achieved parts of G (only in Sy).

* Find a minimal set of actions A whose add effects cover G,,.
* may contain no redundant actions,

* but may not be the minimum sized set (computing the minimum
sized set of actions is the set cover problem and is NP-Hard)

* NewG = Gp U preconditions of A.
* return CountAction(NewG,S¢_) + size(A)

Example

legend: [prelact/add]

SD = {f1: f2! f3}
AD - {[f1]a1[f4]: [fz]az [f5]}

Goal: f;.f.,f,
Actions:
f,]a,[f.]
frla,[f:]
CHAACH

Example

legend: [prelact/add]

Sy = {fy, T2, T3}

Ao = {lfilay[f,], [f]as[f:]}
Sq = {f1,15,15,1,.15)

Goal: f 1. 1.
Actions:
f,]a4[f,]
frla,[f:]
f5,14.f5]a5f;

Example

legend: [prelact/add]

S[] = {f1! f2! f3}

Ao = {lf4]a4[f,], [fr]a,lfs]}
Sy = {f1,15, 15,1415}

A1 = {[f2=f4=f5]a3[f5]}

Goal: f f.f,
Actions:
f,]a4[f4]
frla,[fe]
f5,14,f5]a;f;

Example

legend: [prelact/add]

SU = {f1: f2! fS}

AD = {[f1]a1[f4]: [fz]az[f5]}
S1 = {f1 :f2!f3=f4=f5}

A1 = {[f2=f4=f5]33[f5]}

S, ={f,,f,,f5.1,,15.1:}

Goal: f.f.f,
Actions:
f,]a,[f.]
frla,[fs]
CAACHLE

Example

legend: [prelact/add]

S = {fy, T, T3}
AD = {[f1]a1[f4]: [f2]a2[f5]}
81 = {f1 :f2:f3:f4=f5}

A1 = {[f2:f4:f5]aS[f5]}
SZ ={f1 ,f2:f3:f4:f5!f6}

G = {f55f5!f1}

Example

legend: [prelact/add]

Goal: f; f..f,
Sy = {fy, T, f3} Actions:
Ao = {[f1]a4[fs], [fr]a,[fs]} i]a4[f,]
Sy = {1, 12,1584, f5} frla,[fs]
A, = {lf,, 14, f5]a5 [T} URAMACHIE

S, ={f,.f,,f;5.1,,15,15}
G = {fe.fs, T}

We split G into G; and Gy:

Example

legend: [prelact/add]

So = {f1= f2= f3}

A, = {[f,]a4lf.], [f]a,[fs]}
S, = {f.f,,f5,1,,fs})

A1 = {[f2=f4=f5]33[f5]}

Sz ={f1=f2=f3=f4=f5=f5}

G = {f¢,f5.14}
G, = {f;} (newly achieved)
G, = {fs, f;} (achieved before)

35

Example

legend: [prelact/add]

So = {fy, T2, T3}

AD = {[f1]a1[f4]: [fz]aQ [f5]}
Sy = {f4,f5,15,14.1:})

A, = {lf5, 14 f5]1a5[f:]}
S, ={fM}

G = {f¢,f5, T4}

We split G into G, and G:

CountActs(G,S.)

Gp ={f5, f1} /lalready in S1
Gy = {fg} /Newins2
A={a;} /addsallinG,

[Ithe new goal: Gp U Pre(A)
Gy = {5,115, 14}
Return

1 + CountActs(G,,S,)

Example

“Now, we are at level $1
S, = {fy, f5, f3}

Aq = {[f1]a4[fs], [fo]aslfs]}
S1 = {f1!f2!f3!f4=f5}

G, = {fs.f,.f f.}

CountActs(G,,S,)

37

Example

“Now, we are at level S1
S =1{fy, T, f3}

Aq = {[fi]a [fs], [f]a,(fs]}
S, = {fy,f,,13,1,,1:}

G, = {fs.f,.f .}

We split G, into G, and G:

CountActs(G,,S,)

Example

_Now, we are at level S1
= {f;, f,, T3}
{[f1]a1[f4] [fo]a,[fs]}
= {f, :fzafza 4,15}

/ l

G, = {fs.f,.f fo)

We split G, into G, and G:

= {f5.f4}
= {1, 1)

CountActs(G,,S,)
Gp ={f,.f,} //already in SO
Gy = {fs,f5} //New in $1

A ={a,,a,}//adds all in G,

che new goal: G, U Pre(A)

{f1 :f }
Return

2 + CountActs(G,,S,)

39

Example

“Now, we are at level $1
So = {f;, 5, f5}

G, = {f, :fz}

We split G, into G; and G;:

Gy = {f.f}
Ge={}

CountActs(G,,S,)

GN ={f1 ,fz} /lalready in SO
Gp = {} //INew in s1

A= {} /INo actions needed.

Return
0

40

Example

“Now, we are at level S1 CountActs(G.,S,)
So = {fy, T, T3} Gy ={f,f,} raireadyin so

Gp = {} /New in s1
A= {} /INo actions needed.

Return
0
G2 = {f1!f2}
We split G, into G, and G:
Gy = {f11f2}
Gp={}

So, 1n total CountActs(G,S2)=1+2+0=3

342

Using the Heuristic N

* First, build a layered structure from a state S that reaches a
goal state.

* CountActions: counts how many actions are required in a
relaxed plan.
* Use this as our heuristic estimate of the distance of S to the
goal.

* This heuristic tends to work better with greedy best-first
search rather than A* search

* That is when we ignore the cost of getting to the current
state.

Admissibility

* A minimum sized plan in the delete relaxed problem
would be a lower bound on the optimal size of a

plan in the real problem. And could serve as an
admissible heuristic for A*.

* However, CountActions does NOT compute the
length of the optimal relaxed plan.

* The choice of which action set to use to achieve G,

(“Just achieved part of G”) is not necessarily optimal
— it Is minimal, but not necessary a minimum.

* Furthermore even If we picked a true minimum set A at
each stage of CountActions, we might not obtain a
minimum set of actions for the entire plan---the set A

picked at each state influences what set can be used at
the next stagel

44

Admissiblility ~

* |t is NP-Hard to compute the optimal length plan
even in the relaxed plan space.

* So CountActions cannot be made into an admissible
heuristic without making it much harder to compute.

* Empirically, refinements of CountActions performs very
well on a number of sample planning domains.

345

Beyond STRIPS

STRIPS operators are not very expressive and as a
consequence not as compact as they might be.

ADL (Action Description Language) extends the
expressivity of STRIPS

ADL Operators.

ADL operators add a number of features to STRIPS.

1. Their preconditions can be arbitrary formulas, not just a
conjunction of facts.

2. They can have conditional and universal effects.

3. Open world assumption:

1. States can have negative literals
2. The effect (PA—Q) means add P and —Q but delete — P and Q.

But ADL operators must still specify atomic changes to the
knowledge base (add or delete ground atomic facts).

ADL Operators Examples.

move(X,Y,Z)

Pre: on(X,Y) A clear(Z)

Effs: ADD[on(X,Z)]
DEL[on(X,Y)]

Z # table — DEL|[clear(Z)]
Y # table — ADD|clear(Y)]

ADL Operators, example

C move(c,a,b)
H m— @k

move(c,a,b)
Pre: on(c,a) » clear(b)
Effs: ADD[on(c,b)]
DEL[on(c,a)]
b = table — DEL[clear(b)]
a = table — ADD][clear(a)]

KB = { clear(c), clear(b), KB = {on(c,b)

on(c.a), clear(c), clear(a)
onEa,table;, on(a,table),
on(b,table)} on(b,table)}

ADL Operators Examples.

clearTable()
Pre:

Effs: VX. on(X,table) - DEL[on(X,table)]

ADL Operators.

1. Arbitrary formulas as preconditions.

® Ina CW-KB we can evaluate whether or not the
preconditions hold for an arbitrary precondition.

2. They can have conditional and universal effects.

® Similarly we can evaluate the condition to see If the
effect should be applied, and find all bindings for which
It should be applied.

Specify atomic changes to the knowledge base.
* CW-KB can be updated just as before.

Example

legend: [prelact/add]

S, ={f,, f,, 3} CountActs(G,S,)

AD - {[f1]a1[f4], [f2]a2[f5]} Gp ={f5, f1} /lalready in S1
81 = {f1 ,fz,f3,f4,f5} GN = {fﬁ} /[INew in S2
Ay = {[f2, 14, f5]a5(f1} A={as} Jaddsaling,

S, ={f. f,.f. f.,f- f.}
/l/the new goal: G U Pre(A)
G, = {f.f..f,,f.}

¢ =lels) Return

We split G into G, and G,: | ' * COUNtACtS(G,,5y)

ADL Operators.

ADL operators add a number of features to STRIPS.

1. Their preconditions can be arbitrary formulas, not just a
conjunction of facts.

2. They can have conditional and universal effects.

3. Open world assumption:

1. States can have negative literals
2. The effect (PA—Q) means add P and —Q but delete — P and Q.

But they must still specify atomic changes to the knowledge
base (add or delete ground atomic facts).

ADL Operators Examples.

move(X,Y,Z)

Pre: on(X,Y) A clear(Z)

Effs: ADD[on(X,Z)]
DEL[on(X,Y)]

Z # table - DEL|[clear(Z)]
Y # table — ADDIclear(Y)]

ADL Operators, example

4 @

move(c,a,b)
Pre: on(c,a) n clear(b)
Effs: ADD[on(c,b)]
DEL[on(c,a)]
b = table — DEL[clear(b)]
a = table — ADD][clear(a)]

KB ={ clear(c), clear(b),
on(c.,a),
on(a,table),
on(b,table)}

move(c,a,b)
— - [A B
KB = {on(c,b)
clear(c), clear(a)
on(a,table),
on(b,table)}

ADL Operators Examples.

clearTable()
Pre:

Effs: VX. on(X,table) - DEL[on(X,table)]

55

356

ADL Operators. -

1. Arbitrary formulas as preconditions.

" ina CW-KB we can evaluate whether or not the
preconditions hold for an arbitrary precondition.

2. They can have conditional and universal effects.

" Similarly we can evaluate the condition to see If the
effect should be applied, and find all bindings for which
It should be applied.

Specify atomic changes to the knowledge base.
* CW-KB can be updated just as before.

	Slide 1: Planning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Shakey made use of STRIPS
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Search vs Planning
	Slide 32: Search vs. Planning
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 50: Planning Languages
	Slide 52: Goal representation
	Slide 54: Action representation
	Slide 55: The Language of Planning Problems
	Slide 56: Action Representation
	Slide 57: Applying an Action
	Slide 59: Languages for Planning Problems
	Slide 60: STRIPS (STanford Research Institute Problem Solver)
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 78
	Slide 83
	Slide 87
	Slide 90: State-Space Search
	Slide 91: Planning forward and backward
	Slide 92: Forward Search methods
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98: SRIPS in State-Space Search
	Slide 99: Relevant Action
	Slide 100: Consistent Action
	Slide 101: Backward State-Space Search
	Slide 102: State-Space Search
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140: Partial Order Planning (POP)
	Slide 141: Partially Ordered Plans
	Slide 142: Components of a Plan
	Slide 143: Partial Ordered Plans
	Slide 144: Consistent Plan (POP)
	Slide 145: Setting up the PoP
	Slide 146: POP as a Search Problem
	Slide 147: Partially Ordered Plans
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152: Clobbering
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158: Example of POP: Flat tire problem
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 168: POP Algorithm (1)
	Slide 169: POP Algorithm (2)
	Slide 170: POP Algorithm
	Slide 171: POP Algorithm
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222: Focus
	Slide 223: Example of a Planning Graph (1)
	Slide 224: Example of a Planning Graph (2)
	Slide 225: Mutex Links between Actions
	Slide 226: Mutex Links between Literals
	Slide 227
	Slide 228: Planning Graph
	Slide 229
	Slide 230: Planning Graph for Heuristic Estimation
	Slide 231: Estimate of Conjunction of Goal Literals
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236: GraphPlan Algorithm
	Slide 237: Example: GraphPlan Execution (1)
	Slide 238: Example: GraphPlan Execution (2)
	Slide 239: Example: GraphPlan Execution (3)
	Slide 240: Solution Extraction (Backward)
	Slide 241: Backtrack Search for Solution Extraction
	Slide 242: Termination of GraphPlan
	Slide 243: Optimality of GraphPlan
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 255: Further reading
	Slide 257
	Slide 258: Situation Calculus: Ontology
	Slide 259: Situation Calculus: Ontology
	Slide 260: Situation Calculus
	Slide 261: Example: Wumpus World
	Slide 262: Importance of Situation Calculus
	Slide 263: ‘Famous’ Problems
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356

