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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

e.g. turning on computer to start lecture
e.g. biking, driving

e.g. supermarket shop

e.g. moving a house
e.g. preparing a course

e.g. nuclear power
e.g. coordination forbuilding a house

Costly



5

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

We consciously think about planning to choose among different option.

What will the world be like?  
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/
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Shakey made use of STRIPS

• Shakey the Robot was the first 

general-purpose mobile robot to be 

able to reason about its own 

actions.

• Shakey was developed at 

the Artificial Intelligence Center of 

Stanford Research Institute (now 

called SRI 

https://en.wikipedia.org/wiki/Shakey_the_robot

https://www.youtube.com/watch?v=7bsEN8mwUB8

https://www.youtube.com/watch?v=GmU7SimFkpU

https://en.wikipedia.org/wiki/Shakey_the_robot
https://www.youtube.com/watch?v=7bsEN8mwUB8
https://www.youtube.com/watch?v=GmU7SimFkpU
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-

+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a

https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a
https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/
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Search vs Planning

Consider the task of getting milk, bananas, and a cordless drill

Really want to go to supermarket and then go to the hardware store

But we could get sidetracked! by irrelevant actions
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Search vs. Planning

Planning Systems do the following:

Open up action and goal representation to allow selection

Divide-and-conquer by sub-goaling

Relax requirement for sequential construction of solutions

• Search

– States: program data structures

– Actions: program code

– Goal: program code

– Plan: sequence from S0

• Planning

– States: logical sentences

– Actions: preconditions and outcomes

– Goal: logical sentences (conjunction)

– Plan: constraints on actions



33



34



36



37



38



39



40



41



42



43



44

Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Planning Languages

• Languages must represent..

– States

– Goals 

– Actions

• Languages must be

– Expressive for ease of representation

– Flexible for manipulation by algorithms
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Goal representation

• Goal is a partially specified state

– Represented as a conjunction of ground literals

– Examples

• At( Plane1, LAS )
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Action representation

– Specified in terms of the preconditions that must 

hold before it can be executed and the effects that 

ensue when it is executed

– Action( Fly( p, from, to ))

• Precond: At(p, from)  Plane(p) 

Airport(from) Airport(to)

• Effect: ¬ At(p, from) At(p, to)

– This is also known as an action schema
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The Language of Planning Problems

• Suppose our current state is:

– At(P1, CLE)  At(P2, LAS)  Plane(P1)  Plane(P2) 
Airport(CLE)  Airport(LAS)

• This state satisfies the precondition

– At(p, from)  Plane(p)  Airport(from)  Airport(to)

• Using the substitution

– {p/P1, from/CLE, to/LAS}

• The following concrete action is applicable

– Fly( P1, CLE, LAS)
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Action Representation

• Action Schema

– Action name

– Preconditions

– Effects

• Example

Action(Fly(p,from,to),

PRECOND: At(p,from)  Plane(p) 

Airport(from) Airport(to)

EFFECT: At(p,from) At(p,to))

• Sometimes, Effects are split into ADD list and 

DELETE list

Fly(WHI,LNK,O

HA)

At(WHI,LNK),Plane(WHI), 

Airport(LNK), Airport(OHA)

At(WHI,OHA),  At(WHI,LNK)



57

Applying an Action

• Find a substitution list  for the variables 

– of all the precondition literals 

– with (a subset of) the literals in the current state description

• Apply the substitution to the propositions in the effect list

• Add the result to the current state description to generate the new state

• Example:

– Current  state: At(P1,JFK) At(P2,SFO)  Plane(P1)  Plane(P2) 

Airport(JFK) Airport(SFO)

– It satisfies the precondition with ={p/P1,from/JFK, to/SFO)

– Thus the action Fly(P1,JFK,SFO) is applicable

– The new current state is: At(P1,SFO) At(P2,SFO)  Plane(P1) 

Plane(P2) Airport(JFK) Airport(SFO)
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Languages for Planning Problems

• STRIPS 

– STanford Research Institute Problem Solver

– Historically important

• ADL

– Action Description Languages

• PDDL

– Planning Domain Definition Language

– Revised & enhanced for the needs of the International 

Planning Competition
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STRIPS (STanford Research Institute Problem Solver)
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State-Space Search

• Search the space of states 

– Initial state, goal test, step cost, etc.

– Actions are the transitions between state

• Actions are invertible

– Move forward from the initial state: Forward State-

Space Search or Progression Planning

– Move backward from goal state: Backward State-Space 

Search or Regression Planning
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Planning forward and backward
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Forward Search methods
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SRIPS in State-Space Search

• STRIPS representation makes it easy to focus on ‘relevant’ 

propositions and 

– Work backward from goal (using EFFECTS)

– Work forward from initial state (using 

PRECONDITIONS)

– Facilitating bidirectional search
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Relevant Action

• An action is relevant

– In Progression planning when its preconditions 

match a subset of the current state

– In Regression planning, when its effects match 

a subset of the current goal state
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Consistent Action

• The purpose of applying an action is to ‘achieve a 

desired literal’

• We should be careful that the action does not undo 

a desired literal (as a side effect)

• A consistent action is an action that does not undo 

a desired literal
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Backward State-Space Search

• Given 

– A goal G description

– An action A that is relevant and consistent

• Generate a predecessor state where

– Positive effects (literals) of A in G are deleted

– Precondition literals of A are added unless they already 

appear

– Substituting any variables in A’s effects to match literals 

in G 

– Substituting any variables in A’s preconditions to match 

substitutions in A’s effects

• Repeat until predecessor description matches initial state
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State-Space Search

• Remember that the language has no functions symbols

• Thus number of states is finite (but could be very large)

• And we can use any complete search algorithm (e.g., A*)

– We need an admissible heuristic

– The solution is a path, a sequence of actions: total-order 

planning

• Problem: Space and time complexity

– STRIPS-style planning is PSPACE-complete 

– Becomes tractable when actions have 

• only positive preconditions and 

• only one literal effect
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU



119

Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013
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Slide credit:  Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU
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Partial Order Planning (POP)

• State-space search

– Yields totally ordered plans (linear plans)

• POP 

– Works on subproblems independently, then combines subplans

– Example

• Goal state: (RightShoeOn  LeftShoeOn)

• Initial state: Init()

• Actions:

Action(RightShoe, PRECOND: RightSockOn, EFFECT: 

RightShoeOn)

Action(RightSock, EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: 

LeftShoeOn)

Action(LeftSock, EFFECT: LeftSockOn)
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Partially Ordered Plans

• Partially Ordered Plan

– A partially ordered collection of steps

• Start step has the initial state description and 

its effect

• Finish step has the goal description as its 

precondition

• Causal links from outcome of one step to 

precondition of another step

• Temporal ordering between pairs of steps
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Components of a Plan

1. A set of actions

2. A set of ordering constraints 

– A p B reads “A before B” but not necessarily immediately 

before B

– Alert: caution to cycles A p B and B p A

3. A set of causal links (protection intervals) between actions

– A           B reads “A achieves p for B” and p must  remain true 

from the time A is applied to the time B is applied

– Example “RightSock                      RightShoe

4. A set of open preconditions

– Planners work to reduce the set of open preconditions to the 

empty set w/o introducing contradictions

p

RightSockOn
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Partial Ordered Plans

• An open condition is a precondition of a step not 
yet causally linked

• A plan is complete iff every precondition is 
achieved

• A precondition is achieved iff it is the effect if an 
earlier step and no possibly intervening step 
undoes it



144

Consistent Plan (POP)

• Consistent plan is a plan that has

– No cycle in the ordering constraints

– No conflicts with the causal links

• Solution

– Is a consistent plan with no open preconditions

• To solve a conflict between a causal link A         B 

and an action C (that clobbers, threatens the causal 

link), we force C to occur outside the “protection 

interval”  by adding

– the constraint  C p A  (demoting C) or 

– the constraint  B p C (promoting C)

p
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Setting up the PoP

• Add dummy states 

– Start

• Has no preconditions

• Its effects are the literals of the initial state

– Finish

• Its preconditions are the literals of the goal state

• Has no effects

• Initial Plan:

– Actions: {Start, Finish}

– Ordering constraints: {Start p Finish}

– Causal links: {}

– Open Preconditions: {LeftShoeOn,RightShoeOn}

Start

Finish

Start

Finish

LeftShoeOn, RightShoeOn

Literal1, Literal2, …

Literala, Literalb, …
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POP as a Search Problem

• The successor function arbitrarily picks one open precondition p on 

an action B

• For every possible consistent action A that achieves p

– It generates a successor plan adding the causal link  A          B 
and the ordering constraint  A p B

– If A was not in the plan, it adds  Start p A and  A p Finish

– It resolves all conflicts between 

• the new causal link and all existing actions 

• between A and all existing causal links

– Then it adds the successor states for  combination of resolved 

conflicts

• It repeats until no open precondition exists

p
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Partially Ordered Plans

Start

Finish

Right Sock

Right Shoe

Left Sock

Left Shoe
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Clobbering

• A clobberer is a 
potentially intervening 
step that destroys the 
condition achieved by a 
causal link

– Example Go(Home) 
clobbers At(Supermarket)

• Demotion

– Put before Go(Supermarket)

• Promotion

– Put after Buy(Milk)
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• Only one open precondition

• Only 1 applicable action

Example of POP: Flat tire problem

Start

Finish

At(Spare,Trunk), At(Flat,Axle)

At(Spare,Axle)

PutOn(Spare,Axle)

At(Spare,Ground), At(Flat,Axle)

• Pick up At(Spare,Ground)

• Choose only applicable action 

Remove(Spare,Trunk)
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POP Algorithm (1)

• Backtrack when fails to resolve a threat or find an operator

• Causal links 

– Recognize when to abandon a doomed plan without 

wasting time expanding irrelevant part of the plan

– allow early pruning of inconsistent combination of 

actions

• When actions include variables, we need to find 

appropriate substitutions

– Typically we try to delay commitments to instantiating 

a variable until we have no other choice (least 

commitment) 

• POP is sound, complete, and systematic (no repetition)
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POP Algorithm (2)

• Decomposes the problem (advantage) 

• But does not represent states explicitly: it is hard to design 

heuristic to estimate distance from goal

– Example: Number of open preconditions – those that 

match the effects of the start node.  Not perfect (same 

problems as before)

• A heuristic can be used to choose which plan to refine 

(which precondition to pick-up): 

– Choose the most-constrained precondition, the one 

satisfied by the least number of actions.  Like in CSPs! 

– When no action satisfies a precondition, backtrack!

– When only one action satisfies a precondition, pick up 

the precondiction. 
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POP Algorithm
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POP Algorithm
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Case Study: DWR domain 



173

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
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Slide Credit: Artificial Intelligence Planning, The University of Edinburgh, 
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/
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Focus

• Building the Planning Graph

• Using it for Heuristic Estimation

• Using it for generating the plan

– GraphPlan algorithm [Blum & Furst, 95]
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Example of a Planning Graph (1)

Init(Have(Cake))

Goal(Have(Cake)Eaten(Cake))

Action(Eat(Cake)

Precond: Have(Cake)

Effect: Have(Cake)Eaten(Cake))

Action(Bake(Cake)

Precond: Have(Cake)

Effect: Have(Cake))

Propositions true at 

the initial state

Action is connected to its 

preconds & effects

Persistence Actions (noop)
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Example of a Planning Graph (2)

• At each state level, list all literals that may hold at that level

• At each action level, list all noops & all actions whose preconditions may hold at 

previous levels

• Repeat until plan ‘levels off,’ no new literals appears (Si=Si+1)

• Building the Planning Graph is a polynomial process

• Add (binary) mutual exclusion (mutex) links between conflicting actions and 

between conflicting literals

Mutual exclusion links S1 represents multiple states
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Mutex Links between Actions

1. Inconsistent effects: one action negates an effect of another

– Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake)

2. Interference: An action effect negates the precondition of another

– Eat(Cake) negates precondition of the noop of Have(Cake): 

3. Competing needs: A precondition on an action is mutex with the 

precondition of another

– Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition
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Mutex Links between Literals

1. Two literals are negation of each other

2. Inconsistent support: Each pair of actions that can 

achieve the two literals is mutex.  Examples:

– In S1, Have(Cake) & Eaten(Cake) are mutex

– In S2, they are not because Bake(Cake) & the noop of Eaten(Cake) 

are not mutex
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Planning Graph

• Is a sequence S0,A0,S1,A1,…,Si of levels

– Alternating state levels & action levels

– Levels correspond to time stamps

– Starting at initial state

– State level is a set of (propositional) literals

• All those literals that could be true at that level

– Action level is a set of (propositionalized) actions

• All those actions whose preconditions appear in the state level (ignoring all negative interactions, 

etc.)

• Is special data structure used for 

1. Deriving better heuristic estimates

2. Extract a solution to the planning problem: GRAPHPLAN algorithm

• Propositionalization may yield combinatorial explosition in the presence of a 

large number of objects
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Planning Graph for Heuristic Estimation

• A literal that does not appear in the final level cannot be achieved by 

any plan

– State-space search: Any state containing an unachievable literal has cost 

h(n)=

– POP: Any plan with an unachievable open condition has cost h(n)=

• The estimate cost of any goal literal is the first level at which it appears

– Estimate is admissible for individual literals

– Estimate can be improved by serializing the graph (serial planning graph: 

one action per level) by adding mutex between all actions in a given level

• The estimate of a conjunction of goal literals

– Three heuristics: max level, level sum, set level 
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Estimate of Conjunction of Goal Literals

• Max-level

– The largest level of a literal in the conjunction

– Admissible, not very accurate

• Level sum 

– Under subgoal independence assumption, sums the level costs of 

the literals

– Inadmissible, works well for largely decomposable problems

• Set level

– Finds the level at which all literals appear w/o any pair of them 

being mutex

– Dominates max-level, works extremely well on problems where 

there is a great deal of interaction among subplans
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GRAPHPLAN Algorithm

GRAPHPLAN (problem) returns solution or failure

graph  InitPlanningGRAPH (problem)

goals  GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do

solution  EXTRACTSOLUTION(graph,goals,LENGTH(graph))

if solution  failure then return solution

else if NoSolutionPossible(graph) then return failure

graph  ExpandGarph(graph,problem)

• Two main stages

1. Extract solution

2. Expand the graph
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Example: GRAPHPLAN Execution (1)

• At(Spare,Axle) is not in S0

• No need to extract solution

• Expand the plan
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Example: GRAPHPLAN Execution (2)

• Three actions 

are applicable

• 3 actions and 5 

noops are added

• Mutex links are 

added

• At(Spare,Axle) 

still not in S1

• Plan is expanded
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Example: GRAPHPLAN Execution (3)

• Illustrates well mutex links: inconsistent effects, interference, 

competing needs, inconsistent support
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Solution Extraction (Backward)

1. Solve a Boolean CSP:  Variables are actions, domains are 

{0=out of plan, 1=in plan), constraints are mutex

2. Search problem from last level backward
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Backtrack Search for Solution Extraction

• Starting at the highest fact level

– Each goal is put in a goal list for the current fact layer

– Search iterates thru each fact in the goal list trying to find an action to 

support it which is not mutex with any other chosen action

– When an action is chosen, its preconditions are added to the goal list of 

the lower level

– When all facts in the goal list of the current level have a consistent 

assignment of actions, the search moves to the next level

• Search backtracks to the previous level when it fails to assign an action 

to each fact in the goal list at a given level

• Search succeeds when the first level is reached.
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Termination of GRAPHPLAN

• GRAPHPLAN is guaranteed to terminate

– Literal increase monotonically

– Actions increase monotonically

– Mutexes decrease monotinically

• A solution is guaranteed not to exist when

– The graph levels off with all goals present & non-

mutex, and

– EXTRACTSOLUTION fails to find solution
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Optimality of GRAPHPLAN

• The plans generated by GRAPHPLAN

– Are optimal in the number of steps needed to execute 

the plan

– Not necessarily optimal in the number of actions in the 

plan  (GRAPHPLAN produces partially ordered plans)
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Further reading
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Situation Calculus: Ontology

• Situations

• Fluents

• Atemporal (or eternal) 

predicates & functions
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Situation Calculus: Ontology

• Situations

– Initial state: S0

– A function Result(a,s) gives the situation resulting 

from applying action a in situation s

• Fluents

– Functions & predicates whose truth values can 

change from one situation to the other

– Example: Holding(G1,S0)

• Atemporal (or eternal) predicates and functions

– Example: Gold(G1), LeftLegOf(Wumpus)
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Situation Calculus

• Sequence of actions

– Result([],s)=s

– Result([a | seq],s)=Result(seq,Result(a,s))

• Projection task

– Deducing the outcome of a sequence of actions

• Planning task

– Find a sequence of actions that achieves a 

desired effect
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Example: Wumpus World

• Fluents

– At(o,p,s), Holding(o,s)

• Agent is in [1,1], gold is in [1,2]

– At(Agent,[1,1],S0)  At(G1,[1,2],S0)

• In S0, we also need to have:

– At(o,x,S0)  [(o=Agent)  x=[1,1]]  [(o=G1)  x=[1,2]]

– Holding(o,S0)

– Gold(G1) Adjacent([1,1],[1,2]) Adjacent([1,2],[1,1])

• The query is: 

–  seq At(G1,[1,1],Result(seq,S0))

• The answer is

– At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G1),Go([1,2],[1,1]),S0))
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Importance of Situation Calculus

• Historical note

– Situation Calculus was the first attempt to 

formalizing planning in FOL

– Other formalisms include Event Calculus

– The area of using logic for planning is 

informally called in the literature “Reasoning 

About Action & Change”

• Highlighted three important problems

1.Frame problem

2.Qualification problem

3.Ramification problem
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‘Famous’ Problems

• Frame problem

– Representing all things that stay the same from one 

situation to the next

– Inferential and representational

• Qualification problem

– Defining the circumstances under which an action is 

guaranteed to work

– Example: what if the gold is slippery or nailed down, etc.

• Ramification problem

– Proliferation of implicit consequences of actions as 

actions may have secondary consequences

– Examples: How about the dust on the gold?
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