
1

Planning
Fundamentals of Artificial Intelligence

Slides are taken from AIMA,

Manuela Veloso (CMU)

Sheila McIlraith, (University of Toronto)

Michael Scherger (Kent State University)

Rina Dechter (Universıty of Irvıne)

Berthe Y. Choueiry (University of Nebraska-Lincoln)

Bill Sverdlik (Uppsala University)

http://www.it.uu.se/katalog/search.php?name=Bill%20Sverdlik&exact=yes

2

3

4

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

e.g. turning on computer to start lecture
e.g. biking, driving

e.g. supermarket shop

e.g. moving a house
e.g. preparing a course

e.g. nuclear power
e.g. coordination forbuilding a house

Costly

5

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

We consciously think about planning to choose among different option.

What will the world be like?

6

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

7

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

8

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

9

10

13

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

14

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

15

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

16

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

17

18

20

22

23

24

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

25

Shakey made use of STRIPS

• Shakey the Robot was the first

general-purpose mobile robot to be

able to reason about its own

actions.

• Shakey was developed at

the Artificial Intelligence Center of

Stanford Research Institute (now

called SRI

https://en.wikipedia.org/wiki/Shakey_the_robot

https://www.youtube.com/watch?v=7bsEN8mwUB8

https://www.youtube.com/watch?v=GmU7SimFkpU

https://en.wikipedia.org/wiki/Shakey_the_robot
https://www.youtube.com/watch?v=7bsEN8mwUB8
https://www.youtube.com/watch?v=GmU7SimFkpU

26

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-

+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a

https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a
https://media.ed.ac.uk/media/Artificial+Intelligence+Planning+-+Nils+Nilsson+-+A-Star+and+STRIPS/1_uhxvxo4a

27

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

28

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

29

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

30

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

31

Search vs Planning

Consider the task of getting milk, bananas, and a cordless drill

Really want to go to supermarket and then go to the hardware store

But we could get sidetracked! by irrelevant actions

32

Search vs. Planning

Planning Systems do the following:

Open up action and goal representation to allow selection

Divide-and-conquer by sub-goaling

Relax requirement for sequential construction of solutions

• Search

– States: program data structures

– Actions: program code

– Goal: program code

– Plan: sequence from S0

• Planning

– States: logical sentences

– Actions: preconditions and outcomes

– Goal: logical sentences (conjunction)

– Plan: constraints on actions

33

34

36

37

38

39

40

41

42

43

44

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

45

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

46

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

47

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

48

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

50

Planning Languages

• Languages must represent..

– States

– Goals

– Actions

• Languages must be

– Expressive for ease of representation

– Flexible for manipulation by algorithms

52

Goal representation

• Goal is a partially specified state

– Represented as a conjunction of ground literals

– Examples

• At(Plane1, LAS)

54

Action representation

– Specified in terms of the preconditions that must

hold before it can be executed and the effects that

ensue when it is executed

– Action(Fly(p, from, to))

• Precond: At(p, from) Plane(p)

Airport(from) Airport(to)

• Effect: ¬ At(p, from) At(p, to)

– This is also known as an action schema

55

The Language of Planning Problems

• Suppose our current state is:

– At(P1, CLE) At(P2, LAS) Plane(P1) Plane(P2)
Airport(CLE) Airport(LAS)

• This state satisfies the precondition

– At(p, from) Plane(p) Airport(from) Airport(to)

• Using the substitution

– {p/P1, from/CLE, to/LAS}

• The following concrete action is applicable

– Fly(P1, CLE, LAS)

56

Action Representation

• Action Schema

– Action name

– Preconditions

– Effects

• Example

Action(Fly(p,from,to),

PRECOND: At(p,from) Plane(p)

Airport(from) Airport(to)

EFFECT: At(p,from) At(p,to))

• Sometimes, Effects are split into ADD list and

DELETE list

Fly(WHI,LNK,O

HA)

At(WHI,LNK),Plane(WHI),

Airport(LNK), Airport(OHA)

At(WHI,OHA), At(WHI,LNK)

57

Applying an Action

• Find a substitution list for the variables

– of all the precondition literals

– with (a subset of) the literals in the current state description

• Apply the substitution to the propositions in the effect list

• Add the result to the current state description to generate the new state

• Example:

– Current state: At(P1,JFK) At(P2,SFO) Plane(P1) Plane(P2)

Airport(JFK) Airport(SFO)

– It satisfies the precondition with ={p/P1,from/JFK, to/SFO)

– Thus the action Fly(P1,JFK,SFO) is applicable

– The new current state is: At(P1,SFO) At(P2,SFO) Plane(P1)

Plane(P2) Airport(JFK) Airport(SFO)

59

Languages for Planning Problems

• STRIPS

– STanford Research Institute Problem Solver

– Historically important

• ADL

– Action Description Languages

• PDDL

– Planning Domain Definition Language

– Revised & enhanced for the needs of the International

Planning Competition

60

STRIPS (STanford Research Institute Problem Solver)

61

62

63

64

65

66

67

78

83

87

90

State-Space Search

• Search the space of states

– Initial state, goal test, step cost, etc.

– Actions are the transitions between state

• Actions are invertible

– Move forward from the initial state: Forward State-

Space Search or Progression Planning

– Move backward from goal state: Backward State-Space

Search or Regression Planning

91

Planning forward and backward

92

Forward Search methods

93

94

95

96

97

98

SRIPS in State-Space Search

• STRIPS representation makes it easy to focus on ‘relevant’

propositions and

– Work backward from goal (using EFFECTS)

– Work forward from initial state (using

PRECONDITIONS)

– Facilitating bidirectional search

99

Relevant Action

• An action is relevant

– In Progression planning when its preconditions

match a subset of the current state

– In Regression planning, when its effects match

a subset of the current goal state

100

Consistent Action

• The purpose of applying an action is to ‘achieve a

desired literal’

• We should be careful that the action does not undo

a desired literal (as a side effect)

• A consistent action is an action that does not undo

a desired literal

101

Backward State-Space Search

• Given

– A goal G description

– An action A that is relevant and consistent

• Generate a predecessor state where

– Positive effects (literals) of A in G are deleted

– Precondition literals of A are added unless they already

appear

– Substituting any variables in A’s effects to match literals

in G

– Substituting any variables in A’s preconditions to match

substitutions in A’s effects

• Repeat until predecessor description matches initial state

102

State-Space Search

• Remember that the language has no functions symbols

• Thus number of states is finite (but could be very large)

• And we can use any complete search algorithm (e.g., A*)

– We need an admissible heuristic

– The solution is a path, a sequence of actions: total-order

planning

• Problem: Space and time complexity

– STRIPS-style planning is PSPACE-complete

– Becomes tractable when actions have

• only positive preconditions and

• only one literal effect

103

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

104

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

105

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

106

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

107

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

108

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

109

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

110

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

111

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

112

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

113

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

114

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

115

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

116

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

117

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

118

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

119

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

120

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

121

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

122

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

123

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

124

Slide credit: Intruction to AI planning, Amanda Coles, EASSS2013

https://www.youtube.com/watch?v=EeQcCs9SnhU

125

131

132

133

134

135

136

137

138

139

140

Partial Order Planning (POP)

• State-space search

– Yields totally ordered plans (linear plans)

• POP

– Works on subproblems independently, then combines subplans

– Example

• Goal state: (RightShoeOn LeftShoeOn)

• Initial state: Init()

• Actions:

Action(RightShoe, PRECOND: RightSockOn, EFFECT:

RightShoeOn)

Action(RightSock, EFFECT: RightSockOn)

Action(LeftShoe, PRECOND: LeftSockOn, EFFECT:

LeftShoeOn)

Action(LeftSock, EFFECT: LeftSockOn)

141

Partially Ordered Plans

• Partially Ordered Plan

– A partially ordered collection of steps

• Start step has the initial state description and

its effect

• Finish step has the goal description as its

precondition

• Causal links from outcome of one step to

precondition of another step

• Temporal ordering between pairs of steps

142

Components of a Plan

1. A set of actions

2. A set of ordering constraints

– A p B reads “A before B” but not necessarily immediately

before B

– Alert: caution to cycles A p B and B p A

3. A set of causal links (protection intervals) between actions

– A B reads “A achieves p for B” and p must remain true

from the time A is applied to the time B is applied

– Example “RightSock RightShoe

4. A set of open preconditions

– Planners work to reduce the set of open preconditions to the

empty set w/o introducing contradictions

p

RightSockOn

143

Partial Ordered Plans

• An open condition is a precondition of a step not
yet causally linked

• A plan is complete iff every precondition is
achieved

• A precondition is achieved iff it is the effect if an
earlier step and no possibly intervening step
undoes it

144

Consistent Plan (POP)

• Consistent plan is a plan that has

– No cycle in the ordering constraints

– No conflicts with the causal links

• Solution

– Is a consistent plan with no open preconditions

• To solve a conflict between a causal link A B

and an action C (that clobbers, threatens the causal

link), we force C to occur outside the “protection

interval” by adding

– the constraint C p A (demoting C) or

– the constraint B p C (promoting C)

p

145

Setting up the PoP

• Add dummy states

– Start

• Has no preconditions

• Its effects are the literals of the initial state

– Finish

• Its preconditions are the literals of the goal state

• Has no effects

• Initial Plan:

– Actions: {Start, Finish}

– Ordering constraints: {Start p Finish}

– Causal links: {}

– Open Preconditions: {LeftShoeOn,RightShoeOn}

Start

Finish

Start

Finish

LeftShoeOn, RightShoeOn

Literal1, Literal2, …

Literala, Literalb, …

146

POP as a Search Problem

• The successor function arbitrarily picks one open precondition p on

an action B

• For every possible consistent action A that achieves p

– It generates a successor plan adding the causal link A B
and the ordering constraint A p B

– If A was not in the plan, it adds Start p A and A p Finish

– It resolves all conflicts between

• the new causal link and all existing actions

• between A and all existing causal links

– Then it adds the successor states for combination of resolved

conflicts

• It repeats until no open precondition exists

p

147

Partially Ordered Plans

Start

Finish

Right Sock

Right Shoe

Left Sock

Left Shoe

148

149

150

151

152

Clobbering

• A clobberer is a
potentially intervening
step that destroys the
condition achieved by a
causal link

– Example Go(Home)
clobbers At(Supermarket)

• Demotion

– Put before Go(Supermarket)

• Promotion

– Put after Buy(Milk)

153

154

155

156

157

158

• Only one open precondition

• Only 1 applicable action

Example of POP: Flat tire problem

Start

Finish

At(Spare,Trunk), At(Flat,Axle)

At(Spare,Axle)

PutOn(Spare,Axle)

At(Spare,Ground), At(Flat,Axle)

• Pick up At(Spare,Ground)

• Choose only applicable action

Remove(Spare,Trunk)

159

160

161

162

163

164

165

168

POP Algorithm (1)

• Backtrack when fails to resolve a threat or find an operator

• Causal links

– Recognize when to abandon a doomed plan without

wasting time expanding irrelevant part of the plan

– allow early pruning of inconsistent combination of

actions

• When actions include variables, we need to find

appropriate substitutions

– Typically we try to delay commitments to instantiating

a variable until we have no other choice (least

commitment)

• POP is sound, complete, and systematic (no repetition)

169

POP Algorithm (2)

• Decomposes the problem (advantage)

• But does not represent states explicitly: it is hard to design

heuristic to estimate distance from goal

– Example: Number of open preconditions – those that

match the effects of the start node. Not perfect (same

problems as before)

• A heuristic can be used to choose which plan to refine

(which precondition to pick-up):

– Choose the most-constrained precondition, the one

satisfied by the least number of actions. Like in CSPs!

– When no action satisfies a precondition, backtrack!

– When only one action satisfies a precondition, pick up

the precondiction.

170

POP Algorithm

171

POP Algorithm

172

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

Case Study: DWR domain

173

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

174

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

175

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

176

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

177

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

178

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

179

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

180

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

181

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

182

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

183

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

184

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

185

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

186

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

187

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

188

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

189

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

190

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

191

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

192

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

193

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

194

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

195

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

196

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

197

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

198

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

199

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

200

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

201

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

202

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

203

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

204

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

205

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

206

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

207

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

208

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

209

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

210

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

211

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

212

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

213

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

214

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

215

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

216

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

217

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

218

Slide Credit: Artificial Intelligence Planning, The University of Edinburgh,
https://media.ed.ac.uk/channel/Artificial-Intelligence-Planning/

219

220

221

222

Focus

• Building the Planning Graph

• Using it for Heuristic Estimation

• Using it for generating the plan

– GraphPlan algorithm [Blum & Furst, 95]

223

Example of a Planning Graph (1)

Init(Have(Cake))

Goal(Have(Cake)Eaten(Cake))

Action(Eat(Cake)

Precond: Have(Cake)

Effect: Have(Cake)Eaten(Cake))

Action(Bake(Cake)

Precond: Have(Cake)

Effect: Have(Cake))

Propositions true at

the initial state

Action is connected to its

preconds & effects

Persistence Actions (noop)

224

Example of a Planning Graph (2)

• At each state level, list all literals that may hold at that level

• At each action level, list all noops & all actions whose preconditions may hold at

previous levels

• Repeat until plan ‘levels off,’ no new literals appears (Si=Si+1)

• Building the Planning Graph is a polynomial process

• Add (binary) mutual exclusion (mutex) links between conflicting actions and

between conflicting literals

Mutual exclusion links S1 represents multiple states

225

Mutex Links between Actions

1. Inconsistent effects: one action negates an effect of another

– Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake)

2. Interference: An action effect negates the precondition of another

– Eat(Cake) negates precondition of the noop of Have(Cake):

3. Competing needs: A precondition on an action is mutex with the

precondition of another

– Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition

226

Mutex Links between Literals

1. Two literals are negation of each other

2. Inconsistent support: Each pair of actions that can

achieve the two literals is mutex. Examples:

– In S1, Have(Cake) & Eaten(Cake) are mutex

– In S2, they are not because Bake(Cake) & the noop of Eaten(Cake)

are not mutex

227

228

Planning Graph

• Is a sequence S0,A0,S1,A1,…,Si of levels

– Alternating state levels & action levels

– Levels correspond to time stamps

– Starting at initial state

– State level is a set of (propositional) literals

• All those literals that could be true at that level

– Action level is a set of (propositionalized) actions

• All those actions whose preconditions appear in the state level (ignoring all negative interactions,

etc.)

• Is special data structure used for

1. Deriving better heuristic estimates

2. Extract a solution to the planning problem: GRAPHPLAN algorithm

• Propositionalization may yield combinatorial explosition in the presence of a

large number of objects

229

230

Planning Graph for Heuristic Estimation

• A literal that does not appear in the final level cannot be achieved by

any plan

– State-space search: Any state containing an unachievable literal has cost

h(n)=

– POP: Any plan with an unachievable open condition has cost h(n)=

• The estimate cost of any goal literal is the first level at which it appears

– Estimate is admissible for individual literals

– Estimate can be improved by serializing the graph (serial planning graph:

one action per level) by adding mutex between all actions in a given level

• The estimate of a conjunction of goal literals

– Three heuristics: max level, level sum, set level

231

Estimate of Conjunction of Goal Literals

• Max-level

– The largest level of a literal in the conjunction

– Admissible, not very accurate

• Level sum

– Under subgoal independence assumption, sums the level costs of

the literals

– Inadmissible, works well for largely decomposable problems

• Set level

– Finds the level at which all literals appear w/o any pair of them

being mutex

– Dominates max-level, works extremely well on problems where

there is a great deal of interaction among subplans

232

233

234

235

236

GRAPHPLAN Algorithm

GRAPHPLAN (problem) returns solution or failure

graph InitPlanningGRAPH (problem)

goals GOALS[problem]

loop do

if goals all non-mutex in last level of graph then do

solution EXTRACTSOLUTION(graph,goals,LENGTH(graph))

if solution failure then return solution

else if NoSolutionPossible(graph) then return failure

graph ExpandGarph(graph,problem)

• Two main stages

1. Extract solution

2. Expand the graph

237

Example: GRAPHPLAN Execution (1)

• At(Spare,Axle) is not in S0

• No need to extract solution

• Expand the plan

238

Example: GRAPHPLAN Execution (2)

• Three actions

are applicable

• 3 actions and 5

noops are added

• Mutex links are

added

• At(Spare,Axle)

still not in S1

• Plan is expanded

239

Example: GRAPHPLAN Execution (3)

• Illustrates well mutex links: inconsistent effects, interference,

competing needs, inconsistent support

240

Solution Extraction (Backward)

1. Solve a Boolean CSP: Variables are actions, domains are

{0=out of plan, 1=in plan), constraints are mutex

2. Search problem from last level backward

241

Backtrack Search for Solution Extraction

• Starting at the highest fact level

– Each goal is put in a goal list for the current fact layer

– Search iterates thru each fact in the goal list trying to find an action to

support it which is not mutex with any other chosen action

– When an action is chosen, its preconditions are added to the goal list of

the lower level

– When all facts in the goal list of the current level have a consistent

assignment of actions, the search moves to the next level

• Search backtracks to the previous level when it fails to assign an action

to each fact in the goal list at a given level

• Search succeeds when the first level is reached.

242

Termination of GRAPHPLAN

• GRAPHPLAN is guaranteed to terminate

– Literal increase monotonically

– Actions increase monotonically

– Mutexes decrease monotinically

• A solution is guaranteed not to exist when

– The graph levels off with all goals present & non-

mutex, and

– EXTRACTSOLUTION fails to find solution

243

Optimality of GRAPHPLAN

• The plans generated by GRAPHPLAN

– Are optimal in the number of steps needed to execute

the plan

– Not necessarily optimal in the number of actions in the

plan (GRAPHPLAN produces partially ordered plans)

244

245

246

247

255

Further reading

257

258

Situation Calculus: Ontology

• Situations

• Fluents

• Atemporal (or eternal)

predicates & functions

259

Situation Calculus: Ontology

• Situations

– Initial state: S0

– A function Result(a,s) gives the situation resulting

from applying action a in situation s

• Fluents

– Functions & predicates whose truth values can

change from one situation to the other

– Example: Holding(G1,S0)

• Atemporal (or eternal) predicates and functions

– Example: Gold(G1), LeftLegOf(Wumpus)

260

Situation Calculus

• Sequence of actions

– Result([],s)=s

– Result([a | seq],s)=Result(seq,Result(a,s))

• Projection task

– Deducing the outcome of a sequence of actions

• Planning task

– Find a sequence of actions that achieves a

desired effect

261

Example: Wumpus World

• Fluents

– At(o,p,s), Holding(o,s)

• Agent is in [1,1], gold is in [1,2]

– At(Agent,[1,1],S0) At(G1,[1,2],S0)

• In S0, we also need to have:

– At(o,x,S0) [(o=Agent) x=[1,1]] [(o=G1) x=[1,2]]

– Holding(o,S0)

– Gold(G1) Adjacent([1,1],[1,2]) Adjacent([1,2],[1,1])

• The query is:

– seq At(G1,[1,1],Result(seq,S0))

• The answer is

– At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G1),Go([1,2],[1,1]),S0))

262

Importance of Situation Calculus

• Historical note

– Situation Calculus was the first attempt to

formalizing planning in FOL

– Other formalisms include Event Calculus

– The area of using logic for planning is

informally called in the literature “Reasoning

About Action & Change”

• Highlighted three important problems

1.Frame problem

2.Qualification problem

3.Ramification problem

263

‘Famous’ Problems

• Frame problem

– Representing all things that stay the same from one

situation to the next

– Inferential and representational

• Qualification problem

– Defining the circumstances under which an action is

guaranteed to work

– Example: what if the gold is slippery or nailed down, etc.

• Ramification problem

– Proliferation of implicit consequences of actions as

actions may have secondary consequences

– Examples: How about the dust on the gold?

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

	Slide 1: Planning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Shakey made use of STRIPS
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Search vs Planning
	Slide 32: Search vs. Planning
	Slide 33
	Slide 34
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 50: Planning Languages
	Slide 52: Goal representation
	Slide 54: Action representation
	Slide 55: The Language of Planning Problems
	Slide 56: Action Representation
	Slide 57: Applying an Action
	Slide 59: Languages for Planning Problems
	Slide 60: STRIPS (STanford Research Institute Problem Solver)
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 78
	Slide 83
	Slide 87
	Slide 90: State-Space Search
	Slide 91: Planning forward and backward
	Slide 92: Forward Search methods
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98: SRIPS in State-Space Search
	Slide 99: Relevant Action
	Slide 100: Consistent Action
	Slide 101: Backward State-Space Search
	Slide 102: State-Space Search
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140: Partial Order Planning (POP)
	Slide 141: Partially Ordered Plans
	Slide 142: Components of a Plan
	Slide 143: Partial Ordered Plans
	Slide 144: Consistent Plan (POP)
	Slide 145: Setting up the PoP
	Slide 146: POP as a Search Problem
	Slide 147: Partially Ordered Plans
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152: Clobbering
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158: Example of POP: Flat tire problem
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 168: POP Algorithm (1)
	Slide 169: POP Algorithm (2)
	Slide 170: POP Algorithm
	Slide 171: POP Algorithm
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	Slide 214
	Slide 215
	Slide 216
	Slide 217
	Slide 218
	Slide 219
	Slide 220
	Slide 221
	Slide 222: Focus
	Slide 223: Example of a Planning Graph (1)
	Slide 224: Example of a Planning Graph (2)
	Slide 225: Mutex Links between Actions
	Slide 226: Mutex Links between Literals
	Slide 227
	Slide 228: Planning Graph
	Slide 229
	Slide 230: Planning Graph for Heuristic Estimation
	Slide 231: Estimate of Conjunction of Goal Literals
	Slide 232
	Slide 233
	Slide 234
	Slide 235
	Slide 236: GraphPlan Algorithm
	Slide 237: Example: GraphPlan Execution (1)
	Slide 238: Example: GraphPlan Execution (2)
	Slide 239: Example: GraphPlan Execution (3)
	Slide 240: Solution Extraction (Backward)
	Slide 241: Backtrack Search for Solution Extraction
	Slide 242: Termination of GraphPlan
	Slide 243: Optimality of GraphPlan
	Slide 244
	Slide 245
	Slide 246
	Slide 247
	Slide 255: Further reading
	Slide 257
	Slide 258: Situation Calculus: Ontology
	Slide 259: Situation Calculus: Ontology
	Slide 260: Situation Calculus
	Slide 261: Example: Wumpus World
	Slide 262: Importance of Situation Calculus
	Slide 263: ‘Famous’ Problems
	Slide 265
	Slide 266
	Slide 267
	Slide 268
	Slide 269
	Slide 270
	Slide 271
	Slide 272
	Slide 273
	Slide 274
	Slide 275
	Slide 276
	Slide 277
	Slide 278
	Slide 279
	Slide 280
	Slide 281
	Slide 282
	Slide 283
	Slide 284
	Slide 285
	Slide 286
	Slide 287
	Slide 288
	Slide 289
	Slide 290
	Slide 291
	Slide 292
	Slide 293
	Slide 294
	Slide 295
	Slide 296
	Slide 297
	Slide 298
	Slide 299
	Slide 300
	Slide 301
	Slide 302
	Slide 303
	Slide 304
	Slide 305
	Slide 306
	Slide 307
	Slide 308
	Slide 309
	Slide 310
	Slide 311
	Slide 312
	Slide 313
	Slide 314
	Slide 315
	Slide 316
	Slide 317
	Slide 318
	Slide 319
	Slide 320
	Slide 321
	Slide 322
	Slide 323
	Slide 324
	Slide 325
	Slide 326
	Slide 327
	Slide 328
	Slide 329
	Slide 330
	Slide 331
	Slide 332
	Slide 333
	Slide 334
	Slide 335
	Slide 336
	Slide 337
	Slide 338
	Slide 339
	Slide 340
	Slide 341
	Slide 342
	Slide 343
	Slide 344
	Slide 345
	Slide 346
	Slide 347
	Slide 348
	Slide 349
	Slide 350
	Slide 351
	Slide 352
	Slide 353
	Slide 354
	Slide 355
	Slide 356

