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Where are we?

• Now leaving: sequential, deterministic reasoning

• Entering: probabilistic reasoning and machine learning



Probability: 

Review of main concepts



Making decisions under uncertainty

• Let action At = leave for airport t minutes before flight

– Will At succeed, i.e., get me to the airport in time for the flight?

• Problems:

• Partial observability (road state, other drivers' plans, etc.)

• Noisy sensors (traffic reports)

• Uncertainty in action outcomes (flat tire, etc.)

• Complexity of modeling and predicting traffic

• Hence a non-probabilistic approach either

• Risks falsehood: “A25 will get me there on time,” or

• Leads to conclusions that are too weak for decision making:

• A25 will get me there on time if there's no accident on the bridge and it doesn't rain 

and my tires remain intact, etc., etc.

• A1440 will get me there on time but I’ll have to stay overnight in the airport



Making decisions under uncertainty

• Suppose the agent believes the following:

P(A25 gets me there on time) = 0.04 

P(A90 gets me there on time) = 0.70 

P(A120 gets me there on time) = 0.95 

P(A1440 gets me there on time) = 0.9999 

• Which action should the agent choose?

– Depends on preferences for missing flight vs. time spent waiting

– Encapsulated by a utility function

• The agent should choose the action that maximizes the expected 

utility:

P(At succeeds) * U(At succeeds) + P(At fails) * U(At fails)



Making decisions under uncertainty

• More generally: the expected utility of an action is defined as:

EU(a) = Σoutcomes of a P(outcome|a) U(outcome)

• Utility theory is used to represent and infer preferences

• Decision theory = probability theory + utility theory



• Possible Worlds 
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Kolmogorov’s axioms of probability

• For any propositions (events) a, b

▪ 0 ≤ P(a) ≤ 1

▪ P(True) = 1 and P(False) = 0

▪ P(a  b) = P(a) + P(b) – P(a  b)
– Subtraction accounts for double-counting

• P(¬a) = 1 – P(a)



• unconditional probability degree of belief in a proposition in the absence of 
any other evidence 

• conditional probability degree of belief in a proposition given some evidence 
that has already been revealed 

• P(a | b) 

• P(rain today | rain yesterday) 

• P(route change | traffic conditions) 

• P(disease | test results) 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu



Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu



Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu



Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu



Random variables

• We describe the (uncertain) state of the world using random 
variables

• Random variable: a variable in probability theory with a domain of 
possible values it can take on 

▪ Denoted by capital letters

– R: Is it raining?

– W: What’s the weather?

– D: What is the outcome of rolling two dice?

– S: What is the speed of my car (in MPH)?

• Just like variables in CSPs, random variables take on values in 
a domain
▪ Domain values must be mutually exclusive and exhaustive

– R in {True, False}

– W in {Sunny, Cloudy, Rainy, Snow}

– D in {(1,1), (1,2), … (6,6)}

– S in [0, 200]



Events

• Probabilistic statements are defined over events, or sets of 
world states
▪ “It is raining”

▪ “The weather is either cloudy or snowy”

▪ “The sum of the two dice rolls is 11”

▪ “My car is going between 30 and 50 miles per hour”

• Events are described using propositions about random 
variables:
▪ R = True

▪ W = “Cloudy”  W = “Snowy”

▪ D  {(5,6), (6,5)}

▪ 30  S  50

• Notation: P(A) is the probability of the set of world states in 
which proposition A holds



Flight {on time, delayed, cancelled}
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Atomic events

• Atomic event: a complete specification of the state of the 
world, or a complete assignment of domain values to all 
random variables

– Atomic events are mutually exclusive and exhaustive

• E.g., if the world consists of only two Boolean variables 
Cavity and Toothache, then there are four distinct atomic 
events:

Cavity = false Toothache = false
Cavity = false  Toothache = true
Cavity = true  Toothache = false
Cavity = true  Toothache = true



Joint probability distributions

• A joint distribution is an assignment of 
probabilities to every possible atomic event

– Why does it follow from the axioms of probability that 
the probabilities of all possible atomic events must sum 
to 1?

Atomic event P

Cavity = false Toothache = false 0.8

Cavity = false  Toothache = true 0.1

Cavity = true  Toothache = false 0.05

Cavity = true  Toothache = true 0.05



Joint probability distributions

• A joint distribution is an assignment of 
probabilities to every possible atomic event

• Suppose we have a joint distribution of n random 
variables with domain sizes d
– What is the size of the probability table?

– Impossible to write out completely for all but the 
smallest distributions



Notation

• P(X1 = x1, X2 = x2, …, Xn = xn) refers to a single entry 

(atomic event) in the joint probability distribution table

– Shorthand: P(x1, x2, …, xn) 

• P(X1, X2, …, Xn) refers to the entire joint probability 

distribution table

• P(x1 ) can also refer to the probability of an event 

– E.g., X1 = x1 is an event



Joint Probability
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Marginalization
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Conditioning
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Marginal probability distributions

• From the joint distribution P(X,Y) we can find the 
marginal distributions P(X) and P(Y)

P(Cavity, Toothache)

Cavity = false Toothache = false 0.8

Cavity = false  Toothache = true 0.1

Cavity = true  Toothache = false 0.05

Cavity = true  Toothache = true 0.05

P(Cavity)

Cavity = false ?

Cavity = true ?

P(Toothache)

Toothache = false ?

Toochache = true ?



Marginal probability distributions

• From the joint distribution P(X,Y) we can find the 
marginal distributions P(X) and P(Y)

• To find P(X = x), sum the probabilities of all atomic 
events where X = x:

• This is called marginalization (we are marginalizing 
out all the variables except X)
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Conditional probability

• Probability of cavity given toothache: 
P(Cavity = true | Toothache = true)

• For any two events A and B,  
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Conditional probability

• What is P(Cavity = true | Toothache = false)?
0.05 / 0.85 = 0.059

• What is P(Cavity = false | Toothache = true)?
0.1 / 0.15 = 0.667

P(Cavity, Toothache)

Cavity = false Toothache = false 0.8

Cavity = false  Toothache = true 0.1

Cavity = true  Toothache = false 0.05

Cavity = true  Toothache = true 0.05

P(Cavity)

Cavity = false 0.9

Cavity = true 0.1

P(Toothache)

Toothache = false 0.85

Toothache = true 0.15



Conditional distributions

• A conditional distribution is a distribution over the values of 
one variable given fixed values of other variables

P(Cavity, Toothache)

Cavity = false Toothache = false 0.8

Cavity = false  Toothache = true 0.1

Cavity = true  Toothache = false 0.05

Cavity = true  Toothache = true 0.05

P(Cavity | Toothache = true)

Cavity = false 0.667

Cavity = true 0.333

P(Cavity|Toothache = false)

Cavity = false 0.941

Cavity = true 0.059

P(Toothache | Cavity = true)

Toothache= false 0.5

Toothache = true 0.5

P(Toothache | Cavity = false)

Toothache= false 0.889

Toothache = true 0.111



Normalization trick

• To get the whole conditional distribution P(X | Y = y) at 
once, select all entries in the joint distribution table 
matching Y = y and renormalize them to sum to one

P(Cavity, Toothache)

Cavity = false Toothache = false 0.8

Cavity = false  Toothache = true 0.1

Cavity = true  Toothache = false 0.05

Cavity = true  Toothache = true 0.05

Toothache, Cavity = false

Toothache= false 0.8

Toothache = true 0.1

P(Toothache | Cavity = false)

Toothache= false 0.889

Toothache = true 0.111

Select

Renormalize



Normalization trick

• To get the whole conditional distribution P(X | Y = y) at 
once, select all entries in the joint distribution table 
matching Y = y and renormalize them to sum to one

• Why does it work?
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by marginalization



Product rule

• Definition of conditional probability: 

• Sometimes we have the conditional probability and want to 
obtain the joint:
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Chain rule

• Product rule:

• Chain rule:
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Independence

• Two events A and B are independent if and only if 
P(A  B) = P(A, B) = P(A) P(B)

– In other words, P(A | B) = P(A) and P(B | A) = P(B)

– This is an important simplifying assumption for modeling, 
e.g., Toothache and Weather can be assumed to be 
independent

• Are two mutually exclusive events independent?

– No, but for mutually exclusive events we have 
P(A  B) = P(A) + P(B)



Independence

• the knowledge that one event occurs does not affect the probability of the 
other event 

• P(a ∧ b) = P(a)P(b|a) 

• P(a ∧ b) = P(a)P(b) 
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Independence

• Two events A and B are independent if and only if 
P(A  B) = P(A, B) = P(A) P(B)

– In other words, P(A | B) = P(A) and P(B | A) = P(B)

– This is an important simplifying assumption for modeling, 
e.g., Toothache and Weather can be assumed to be 
independent

• Conditional independence: A and B are conditionally 
independent given C iff  
P(A  B | C) = P(A | C) P(B | C) 

– Equivalently:
P(A | B, C) = P(A | C) or P(B | A, C) = P(B | C) 



Conditional independence: Example

• Toothache: boolean variable indicating whether the patient has a toothache

• Cavity: boolean variable indicating whether the patient has a cavity

• Catch: whether the dentist’s probe catches in the cavity

• If the patient has a cavity, the probability that the probe catches in it doesn't 
depend on whether he/she has a toothache

P(Catch | Toothache, Cavity) = P(Catch | Cavity)

• Therefore, Catch is conditionally independent of Toothache given Cavity

• Likewise, Toothache is conditionally independent of Catch given Cavity

P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

• Equivalent statement:

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)



Conditional independence: Example

• How many numbers do we need to represent the joint 
probability table P(Toothache, Cavity, Catch)? 

23 – 1 = 7 independent entries

• Write out the joint distribution using chain rule:

P(Toothache, Catch, Cavity)

= P(Cavity) P(Catch | Cavity) P(Toothache | Catch, Cavity) 

= P(Cavity) P(Catch | Cavity) P(Toothache | Cavity) 

• How many numbers do we need to represent these 
distributions? 

1 + 2 + 2 = 5 independent numbers

• In most cases, the use of conditional independence reduces 
the size of the representation of the joint distribution from 
exponential in n to linear in n



Bayesian inference - Naïve Bayes model

http://xkcd.com/1236/

http://xkcd.com/1236/


Bayes’ Rule

• The product rule gives us two ways to factor 

a joint probability:

• Therefore,

• Why is this useful?

– Can update our beliefs about A based on evidence B

• P(A) is the prior and P(A|B) is the posterior

– Key tool for probabilistic inference: can get diagnostic probability from 

causal probability

• E.g., P(Cavity = true | Toothache = true) from

P(Toothache = true | Cavity = true)

)()|()()|(),( APABPBPBAPBAP ==

)(

)()|(
)|(

BP

APABP
BAP =

Rev. Thomas Bayes

(1702-1761)

P(a ∧ b) = P(b) P(a|b) 
P(a ∧ b) = P(a) P(b|a) 



Bayes' Rule 
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Bayes Rule example

• Marie is getting married tomorrow, at an outdoor ceremony in the 
desert. In recent years, it has rained only 5 days each year (5/365 = 
0.014). Unfortunately, the weatherman has predicted rain for 
tomorrow. When it actually rains, the weatherman correctly 
forecasts rain 90% of the time. When it doesn't rain, he incorrectly 
forecasts rain 10% of the time. What is the probability that it will 
rain on Marie's wedding? 

P(rain | predict) =
P(predict | rain)P(rain)

P(predict)

=
P(predict | rain)P(rain)

P(predict | rain)P(rain)+ P(predict | Ørain)P(Ørain)



Bayes Rule example

• Marie is getting married tomorrow, at an outdoor ceremony in the 
desert. In recent years, it has rained only 5 days each year (5/365 = 
0.014). Unfortunately, the weatherman has predicted rain for 
tomorrow. When it actually rains, the weatherman correctly 
forecasts rain 90% of the time. When it doesn't rain, he incorrectly 
forecasts rain 10% of the time. What is the probability that it will 
rain on Marie's wedding? 

P(rain | predict) =
P(predict | rain)P(rain)

P(predict)

111.0
0986.00126.0

0126.0

986.01.0014.09.0

014.09.0
=

+
=

+


=

=
P(predict | rain)P(rain)

P(predict | rain)P(rain)+ P(predict | Ørain)P(Ørain)



Bayes rule: Example

• 1% of women at age forty who participate in routine 
screening have breast cancer. 80% of women with breast 
cancer will get positive mammographies. 9.6% of women 
without breast cancer will also get positive 
mammographies. A woman in this age group had a 
positive mammography in a routine screening. What is 
the probability that she actually has breast cancer?

P(cancer | positive) =
P(positive | cancer)P(cancer)

P(positive)

0776.0
095.0008.0

008.0

99.0096.001.08.0

01.08.0
=

+
=

+


=

=
P(positive | cancer)P(cancer)

P(positive | cancer)P(cancer)+ P(positive | Øcancer)P(Øcancer)



Law of total probability

P(X = x) = P(X = x,Y = yi )
i=1

n

å

= P(X = x |Y = yi )P(
i=1

n

å Y = yi )



Probabilistic inference

• Suppose the agent has to make a decision about the value 

of an unobserved query variable X given some observed 

evidence variable(s) E = e

– Partially observable, stochastic, episodic environment

– Examples: X = {spam, not spam}, e = email message

X = {zebra, giraffe, hippo}, e = image features



MAP decision

• Value x of X that has the highest posterior probability 
given the evidence E = e:

• Maximum likelihood (ML) decision:

x̂ = argmaxx P(e| x)

)()|()|( xPxePexP 

likelihood priorposterior

x̂ = argmaxx P(X = x | E = e) =
P(E = e| X = x)P(X = x)

P(E = e)

)()|(maxarg xXPxXeEPx ===



Naïve Bayes model

• Suppose we have many different types of observations 
(symptoms, features) E1, …, En that we want to use to obtain 
evidence about an underlying hypothesis X

• MAP decision:

• We can make the simplifying assumption that the different 
features are conditionally independent 
given the hypothesis:

– If each feature can take on d values, what is the complexity of storing 
the resulting distributions?

P(E1 = e1,  ... , En = en | X = x) =

P(X = x | E1 = e1,  ... , En = en)

µ P(X = x)P(E1 = e1,  ... , En = en | X = x)

P(Ei = ei | X = x)
i=1

n

Õ



Naïve Bayes model

• Posterior:

• MAP decision:

P(X = x | E1 = e1,  ... , En = en)

µ P(X = x)P(E1 = e1,  ... , En = en | X = x)

= P(X = x) P(Ei = ei | X = x)
i=1

n

Õ

likelihoodpriorposterior

x̂ = argmaxx P(x | e)µ P(x) P(ei | x)
i=1

n

Õ



Case study: Text document classification

• MAP decision: assign a document to the class with the highest posterior 
P(class | document) 

• Example: spam classification
– Classify a message as spam if P(spam | message) > P(¬spam | message)



Case study: Text document classification

• MAP decision: assign a document to the class with the highest 
posterior P(class | document) 

• We have  P(class | document)   P(document | class)P(class)

• To enable classification, we need to be able to estimate the likelihoods
P(document | class) for all classes and
priors P(class)



Naïve Bayes Representation

• Goal: estimate likelihoods P(document | class) 
and priors P(class)

• Likelihood: bag of words representation
– The document is a sequence of words (w1, …, wn) 

– The order of the words in the document is not important

– Each word is conditionally independent of the others given document 
class 



Naïve Bayes Representation

• Goal: estimate likelihoods P(document | class) 
and priors P(class)

• Likelihood: bag of words representation
– The document is a sequence of words (w1, …, wn) 

– The order of the words in the document is not important

– Each word is conditionally independent of the others given document 
class 

P(document | class) = P(w1,  ... ,wn | class) = P(wi | class)
i=1

n

Õ



Naïve Bayes Representation

• Goal: estimate likelihoods P(document | class) and P(class)

• Likelihood: bag of words representation
– The document is a sequence of words (w1, … , wn) 

– The order of the words in the document is not important

– Each word is conditionally independent of the others given document 
class 

– Thus, the problem is reduced to estimating marginal likelihoods of 
individual words P(wi | class)

P(document | class) = P(w1,  ... ,wn | class) = P(wi | class)
i=1

n

Õ



Parameter estimation

• Model parameters: feature likelihoods P(word | class) and priors
P(class) 

– How do we obtain the values of these parameters?

spam:  0.33

¬spam:  0.67 

P(word | ¬spam)P(word | spam)prior



Parameter estimation

• Model parameters: feature likelihoods P(word | class) and priors
P(class) 

– How do we obtain the values of these parameters?

– Need training set of labeled samples from both classes

– This is the maximum likelihood (ML) estimate, or estimate that 
maximizes the likelihood of the training data:

P(word | class) =
# of occurrences of this word in docs from this class

total # of words in docs from this class
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d: index of training document, i: index of a word



Parameter estimation

• Parameter estimate:

• Parameter smoothing: dealing with words that were never seen or 
seen too few times

– Laplacian smoothing: pretend you have seen every vocabulary word one 
more time than you actually did

P(word | class) =
# of occurrences of this word in docs from this class + 1

total # of words in docs from this class + V

(V: total number of unique words)

P(word | class) =
# of occurrences of this word in docs from this class

total # of words in docs from this class



Summary: Naïve Bayes for Document Classification

• Assign the document to the class with the highest 
posterior 

• Model parameters:

P(class | document)µ P(class) P(wi | class)
i=1

n

Õ

P(class1)

…

P(classK)

P(w1 | class1)

P(w2 | class1)

…

P(wn | class1)

Likelihood

of class 1prior

P(w1 | classK)

P(w2 | classK)

…

P(wn | classK)

Likelihood

of class K

…



Summary: Naïve Bayes for Document Classification

• Assign the document to the class with the highest 
posterior 

• Note: by convention, one typically works with logs of 
probabilities instead:

– Can help to avoid underflow

P(class | document)µ P(class) P(wi | class)
i=1

n

Õ

L(class | document) = logP(class)+ logP(wi | class)
i=1

n

å



Bayesian networks

• More commonly called graphical models

• A way to depict conditional independence 
relationships between random variables

• A compact specification of full joint distributions



Bayesian networks: Structure

• data structure that represents 
the dependencies among 
random variables 

• a directed, acyclic graph 

• Nodes: random variables

• Arcs: interactions
• arrow from X to Y means X is a 

parent of Y 

• each node X has probability 
distribution P(X | Parents(X)) 



Example: N independent coin flips

• Complete independence: no interactions

X1 X2 Xn
…



Example: Naïve Bayes document model

• Random variables:
– X: document class

– W1, …, Wn: words in the document

W1 W2 Wn
…

X
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Example: Burglar Alarm

• I have a burglar alarm that is sometimes set off by minor 

earthquakes. My two neighbors, John and Mary, promised 

to call me at work if they hear the alarm

• Example inference tasks

– Suppose Mary calls and John doesn’t call. What is the probability 

of a burglary?

– Suppose there is a burglary and no earthquake. What is the 

probability of John calling?

– Suppose the alarm went off. What is the probability of burglary?

– …



Example: Burglar Alarm

• I have a burglar alarm that is sometimes set off by minor 

earthquakes. My two neighbors, John and Mary, promised 

to call me at work if they hear the alarm

• What are the random variables? 

– Burglary, Earthquake, Alarm, John, Mary

• What are the direct influence relationships?

– A burglar can set the alarm off

– An earthquake can set the alarm off

– The alarm can cause Mary to call

– The alarm can cause John to call



Example: Burglar Alarm



Conditional independence relationships

• Suppose the alarm went off. Does knowing whether there was a 

burglary change the probability of John calling?

P(John | Alarm, Burglary) = P(John | Alarm)



Conditional independence relationships

• Suppose the alarm went off. Does knowing whether there was a 

burglary change the probability of John calling?

P(John | Alarm, Burglary) = P(John | Alarm)

• Suppose the alarm went off. Does knowing whether John called 

change the probability of Mary calling?

P(Mary | Alarm, John) = P(Mary | Alarm)



Conditional independence relationships

• Suppose the alarm went off. Does knowing whether there was a 

burglary change the probability of John calling?

P(John | Alarm, Burglary) = P(John | Alarm)

• Suppose the alarm went off. Does knowing whether John called 

change the probability of Mary calling?

P(Mary | Alarm, John) = P(Mary | Alarm)

• Suppose the alarm went off. Does knowing whether there was an 

earthquake change the probability of burglary?

P(Burglary | Alarm, Earthquake) != P(Burglary | Alarm) 



Conditional independence relationships

• Suppose the alarm went off. Does knowing whether there was a 

burglary change the probability of John calling?

P(John | Alarm, Burglary) = P(John | Alarm)

• Suppose the alarm went off. Does knowing whether John called 

change the probability of Mary calling?

P(Mary | Alarm, John) = P(Mary | Alarm)

• Suppose the alarm went off. Does knowing whether there was an 

earthquake change the probability of burglary?

P(Burglary | Alarm, Earthquake) != P(Burglary | Alarm) 

• Suppose there was a burglary. Does knowing whether John called 

change the probability that the alarm went off?

P(Alarm | Burglary, John) != P(Alarm | Burglary)
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– Children are conditionally independent of ancestors given parents
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Conditional independence relationships

• John and Mary are conditionally independent of Burglary and Earthquake given 
Alarm

– Children are conditionally independent of ancestors given parents

• John and Mary are conditionally independent of each other given Alarm

– Siblings are conditionally independent of each other given parents

• Burglary and Earthquake are not conditionally independent of each other given 
Alarm

– Parents are not conditionally independent given children

• Alarm is not conditionally independent of John and Mary given Burglary and 
Earthquake

– Nodes are not conditionally independent of children given parents

• General rule: each node is conditionally independent of its non-
descendants given its parents



Conditional independence and the joint distribution

• General rule: each node is conditionally independent of its 

non-descendants given its parents

• Suppose the nodes X1, …, Xn are sorted in topological 

order (parents before children)

• To get the joint distribution P(X1, …, Xn), 

use chain rule:

( )
=

−=
n

i

iin XXXPXXP
1

111 ,,|),,( 

( )
=

=
n

i

ii XParentsXP
1

)(|



Conditional probability distributions

• To specify the full joint distribution, we need to specify a 

conditional distribution for each node given its parents: 
P (X | Parents(X))

Z1 Z2 Zn

X

…

P (X | Z1, …, Zn)



Example: Burglar Alarm

The conditional 

probability tables are 

the model parameters



The joint probability distribution

• For example, P(j, m, a, b, e)

= P(b) P(e) P(a | b, e) P(j | a) P(m | a)

( )
=

=
n

i

iin XParentsXPXXP
1

1 )(|),,( 



Compactness

• Suppose we have a Boolean variable Xi with k Boolean 
parents. How many rows does its conditional probability 
table have? 

– 2k rows for all the combinations of parent values

– Each row requires one number for P(Xi = true | parent values)

• If each variable has no more than k parents, how many 
numbers does the complete network require? 

– O(n · 2k) numbers – vs. O(2n) for the full joint distribution

• How many nodes for the burglary network? 
1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



Conditional independence

• Common cause

• Are X and Z independent?

– No

• Are they conditionally 
independent given Y?

– Yes

• Common effect

• Are X and Z independent?

– Yes

• Are they conditionally 
independent given Y?

– No



A more realistic Bayes Network: Car diagnosis

• Initial observation: car won’t start

• Orange: “broken, so fix it” nodes

• Green: testable evidence

• Gray: “hidden variables” to ensure sparse structure, reduce parameteres



Car insurance



In research literature…

Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data 

Karen Sachs, Omar Perez, Dana Pe'er, Douglas A. Lauffenburger, and Garry P. Nolan

(22 April 2005) Science 308 (5721), 523.



In research literature…

Describing Visual Scenes Using Transformed Objects and Parts

E. Sudderth, A. Torralba, W. T. Freeman, and A. Willsky.

International Journal of Computer Vision, No. 1-3, May 2008, pp. 291-330.



In research literature…

Audiovisual Speech Recognition with Articulator Positions as Hidden Variables

Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko

International Congress on Phonetic Sciences 1719:299-302, 2007

audio video

http://isle.illinois.edu/sst/pubs/2007/hasegawa-johnson07icphs.pdf


In research literature…

Detecting interaction links in a collaborating group using manually annotated data

S. Mathur, M.S. Poole, F. Pena-Mora, M. Hasegawa-Johnson, N. Contractor

Social Networks 10.1016/j.socnet.2012.04.002

http://isle.illinois.edu/sst/pubs/2012/mathur12.pdf


In research literature…

Detecting interaction links in a collaborating group using manually annotated data

S. Mathur, M.S. Poole, F. Pena-Mora, M. Hasegawa-Johnson, N. Contractor

Social Networks 10.1016/j.socnet.2012.04.002

• Speaking: Si=1 if #i 

is speaking.

• Link: Lij=1 if #i is 

listening to #j.

• Neighborhood: 

Nij=1 if they are 

near one another.

• Gaze: Gij=1 if #i is 

looking at #j.

• Indirect: Iij=1 if #i 

and #j are both 

listening to the same 

person.

http://isle.illinois.edu/sst/pubs/2012/mathur12.pdf


Summary

• Bayesian networks provide a natural 
representation for (causally induced) conditional 
independence

• Topology + conditional probability tables

• Generally easy for domain experts to construct



Bayes network inference

• A general scenario:

− Query variables: X

− variable for which to compute distribution 

− Evidence variables and their values: E = e

− observed variables for event e 

− Unobserved/Hidden variables: Y

− non-evidence, non-query variable. 

• Inference problem: answer questions about the query 

variables given the evidence variables

• Goal: Calculate P(X | e) 



Bayes network inference

• A general scenario:

− Query variables: X

− Evidence (observed) variables and their values: E = e

− Unobserved variables: Y

• Inference problem: answer questions about the query 

variables given the evidence variables

• Example: what is the 

probability of a burglary 

given that John and 

Mary called?



Bayes network inference

• A general scenario:

− Query variables: X

− Evidence (observed) variables and their values: E = e

− Unobserved variables: Y

• Inference problem: answer questions about the query 

variables given the evidence variables

− This can be done using the posterior distribution P(X | E = e)

− The posterior can be derived from the full joint P(X, E, Y)

• Since Bayesian networks can afford exponential savings in 

representing joint distributions, can they afford similar 

savings for inference?

==
y

yeX
e

eX
eEX ),,(

)(

),(
)|( P
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Full Joint distribution





Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu



Burglary example

• Query: P(b | j, m)

P(b | j, m) =
P(b, j, m)

P( j, m)
µ P(b,e, a, j, m)

E=e,A=a

å

= P(b)P(e)P(a | b,e)P( j | a)P(m | a)
E=e,A=a

å





Example







Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu





Another example

• Variables: Cloudy, Sprinkler, Rain, WetGrass



Another example

• Given that the grass is wet, what is the probability 
that it has rained?

P(r | w) =
P(r, w)

P(w)
µ P(c, s, r, w)

C=c,S=s

å

= P(c)P(s | c)P(r | c)P(w | r, s)
C=c,S=s

å

= P(c)P(r | c) P(w | r, s)
S=s

å
C=c

å P(s | c)

= P(c)P(r | c)P(w | r,c)
C=c

å

= P(w | r ) P(r | c)P(c)
C=c

å

= P(w | r )P(r )



• What determines whether you will pass the exam?
– A: Do you attend class?

– S: Do you study?

– Pr: Are you prepared 
for the exam?

– F: Is the grading fair?

– Pa: Do you get a passing 
grade on the exam?

A S

Pr
F

Pa

Another example

Source: UMBC CMSC 671, Tamara Berg



Another example

Source: UMBC CMSC 671, Tamara Berg

A S P(Pr|A,S)

T T 0.9

T F 0.5

F T 0.7

F F 0.1

A S

Pr
F

Pa

P(A=T) = 0.8
P(S=T) = 0.6

P(F=T) = 0.9

Pr A F P(Pa|A,Pr,F)

T T T 0.9

T T F 0.6

T F T 0.2

T F F 0.1

F T T 0.4

F T F 0.2

F F T 0.1

F F F 0.2



Another example

Query: What is the probability 

that a student attended class, 

given that they passed the 

exam?

Source: UMBC CMSC 671, Tamara Berg

A S

Pr
F

Pa
P(a | pa)µ P(a, pa)

= P(a, s, f , pr, pa)
S=s,F= f ,Pr=pr

å

= P(a)P(s)P( f )P(pr | a, s)P(pa | a, pr, f )
S=s,F= f ,Pr=pr

å



Efficient inference

• Query: P(b | j, m)

• Can we compute this sum efficiently?

P(b | j, m) =
P(b, j, m)

P( j, m)
µ P(b,e, a, j, m)

E=e,A=a

å

= P(b)P(e)P(a | b,e)P( j | a)P(m | a)
E=e,A=a

å



Efficient inference
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Efficient inference

• Key idea: compute the results of 

sub-expressions in a bottom-up way and cache them 

for later use

– Form of dynamic programming

– Polynomial time and space complexity for polytrees: 

networks at most one undirected path between any two 

nodes
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Approximate Inference  : Sampling 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu



Approximate Inference  : Rejection Sampling – Likelihood Weighting

• Start by fixing the values for evidence variables. 

• Sample the non-evidence variables using conditional probabilities in the 
Bayesian Network. 

•Weight each sample by its likelihood: the probability of all of the evidence. 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Uncertainty over time
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Uncertainty over time

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu



Sensor Models

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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