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Where are we?

* Now leaving: sequential, deterministic reasoning




Probability:
Review of main concepts




Making decisions under uncertainty

 Letaction A, = leave for airport t minutes before flight
—  WIll A, succeed, i.e., get me to the airport in time for the flight?

* Problems:
 Partial observability (road state, other drivers' plans, etc.)
* Noisy sensors (traffic reports)
« Uncertainty in action outcomes (flat tire, etc.)
« Complexity of modeling and predicting traffic

« Hence a non-probabilistic approach either
* Risks falsehood: “A,: will get me there on time,” or

 Leads to conclusions that are too weak for decision making:

A, will get me there on time if there's no accident on the bridge and it doesn't rain
and my tires remain intact, etc., etc.

Aq440 Will get me there on time but I’ll have to stay overnight in the airport




Making decisions under uncertainty

» Suppose the agent believes the following:
P(A,: gets me there on time) = 0.04
P(Agy, gets me there on time) = 0.70
P(A,,gets me there on time) = 0.95
P(A 440 9€ts me there on time) = 0.9999

« Which action should the agent choose?
— Depends on preferences for missing flight vs. time spent waiting
— Encapsulated by a utility function
 The agent should choose the action that maximizes the expected
utility:
P(A, succeeds) * U(A, succeeds) + P(A fails) * U(A, fails)




Making decisions under uncertainty

« More generally: the expected utility of an action is defined as:
EU(a) = 2 comes of a P(OUtCOMe|a) U(outcome)

 Utility theory is used to represent and infer preferences
« Decision theory = probability theory + utility theory




e Possible Worlds
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Kolmogorov’s axioms of probability

 For any propositions (events) a, b
" 0<P(@)<1
= P(True) =1 and P(False) =0
= P(avb)=P(a) + P(b)-P(a ADb)

— Subtraction accounts for double-counting

« P(—a)=1-P(a)




« unconditional probability degree of belief in a proposition in the absence of
any other evidence

« conditional probability degree of belief in a proposition given some evidence
that has already been revealed

* Pla|b)
* P(rain today | rain yesterday)

* P(route change | traffic conditions)
* P(disease | test results)
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P(a A b)

P(a|b) = P

P(a A b) = P(b)P(a|b)

P(a A b) = P(a)P(b|a)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Random variables

« \We describe the (uncertain) state of the world using random
variables

 Random variable: a variable in probability theory with a domain of
possible values it can take on

= Denoted by capital letters
— R:Is it raining?
— W: What's the weather?
— D: What is the outcome of rolling two dice?
— S: What is the speed of my car (in MPH)?
 Just like variables in CSPs, random variables take on values in
a domain
= Domain values must be mutually exclusive and exhaustive
— R in{True, False}
— W in {Sunny, Cloudy, Rainy, Snow}
— Din {(1,1), (1,2), ... (6,6)}
— Sin [0, 200]




Events

« Probabilistic statements are defined over events, or sets of
world states
" “Itis raining”
" “The weather is either cloudy or snowy”
u “The sum of the two dice rolls is 11"
" “My car is going between 30 and 50 miles per hour”

« Events are described using propositions about random
variables:

= R=True
= W ="“Cloudy” v W = “Snowy”’
* D e {(506), (6,5}
= 30<S<50
 Notation: P(A) is the probability of the set of world states in
which proposition A holds




Flight {on time, delayed, cancelled}

probability distribution
P(Flight = on time) = 0.6

P(Flight = delayed) = 0.3
P(Flight = cancelled) = 0.1

P(Flight) = (0.6, 0.3, 0.1)
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Atomic events

« Atomic event: a complete specification of the state of the
world, or a complete assignment of domain values to all
random variables

— Atomic events are mutually exclusive and exhaustive

« E.g., If the world consists of only two Boolean variables
Cavity and Toothache, then there are four distinct atomic
events:

Cavity = false AToothache = false
Cavity = false A Toothache = true

Cavity = true A Toothache = false
Cavity = true A Toothache = true




Joint probability distributions

« Ajoint distribution is an assignment of
probabilities to every possible atomic event

Atomic event P
Cavity = false AToothache = false 0.8
Cavity = false A Toothache = true 0.1
Cavity = true A Toothache = false 0.05
Cavity = true A Toothache = true 0.05

— Why does it follow from the axioms of probability that
the probabilities of all possible atomic events must sum
to1?




Joint probability distributions

« Ajoint distribution is an assignment of
probabilities to every possible atomic event
» Suppose we have a joint distribution of n random
variables with domain sizes d
— What is the size of the probability table?

— Impossible to write out completely for all but the
smallest distributions




Notation

o P(X; =Xy, X,=X,, ..., X, = X_) refers to a single entry
(atomic event) In the joint probability distribution table
— Shorthand: P(x, X,, ..., X))
« P(X,, X,, ..., X,) refers to the entire joint probability
distribution table
* P(X, ) can also refer to the probability of an event
— E.g., X, =X, Is an event




Joint Probability

D

v

C =cloud C = —cloud R = rain R = —rain
04 0.6 0.1 0.9
R = rain R = —rain
C = cloud 0.08 0.32
C = —cloud 0.02 0.58
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P(C | raimn)

_ P(C, rain) _
P(C | ran) = _ = aP(C, rain)
P(rain)

= 0<0.08, 0.02) =<0.8,0.2)

R = rain R = —rain
C = cloud 0.08 0.32
C = —cloud 0.02 0.58
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Marginalization
R = rain R = —rain
C = cloud 0.08 0.32
C = —cloud 0.02 0.58
P(C = cloud)

= P(C = cloud, R = rain) + P(C = cloud, R = —rain)
=0.08 +0.32
=0.40

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Marginalization

P(a) = P(a, b) + P(a, D)

PX=x)= ) PX=x,Y=y)
j
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David J. Malan and Brian Yu




Conditioning

P(a) = P(a|b)P(b) + P(a|—b)P(—Db)

PX=1x)= ) PX=ux|Y=y)P(Y=y)
j
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David J. Malan and Brian Yu




Marginal probability distributions

* From the joint distribution P(X,Y’) we can find the
marginal distributions P(X) and P(Y)

P(Cavity, Toothache)

Cavity = false AToothache = false 0.8

Cavity = false A Toothache = true 0.1

Cavity = true A Toothache = false 0.05

Cavity = true A Toothache = true 0.05
P(Cavity) P(Toothache)
Cavity = false ? Toothache = false ?
Cavity = true ? Toochache = true ?




Marginal probability distributions

* From the joint distribution P(X,Y’) we can find the
marginal distributions P(X) and P(Y)

« To find P(X = x), sum the probabilities of all atomic
events where X = Xx:
P(X=xX)=P(X =xAY =y)v..v(X =xAY =y))

— P((X, V) V... v (X, yn))= Zn: P(X,y;)

 This is called marginalization (we are marginalizing
out all the variables except X)




Conditional probability

 Probability of cavity given toothache:
P(Cavity = true | Toothache = true)

» For any two events A and B, P(AAB) P(AB)

AR =0 R

P(A A B)

P(B)




Conditional probability

P(Cavity, Toothache)

Cavity = false AToothache = false 0.8

Cavity = false A Toothache = true 0.1

Cavity = true A Toothache = false 0.05

Cavity = true A Toothache = true 0.05
P(Cavity) P(Toothache)
Cavity = false 0.9 Toothache = false 0.85
Cavity = true 0.1 Toothache = true 0.15

« What is P(Cavity = true | Toothache = false)?

0.05/0.85=10.059

« What is P(Cavity = false | Toothache = true)?

0.1/0.15=0.667




Conditional distributions

« A conditional distribution is a distribution over the values of
one variable given fixed values of other variables

P(Cavity, Toothache)

Cavity = false AToothache = false
Cavity = false A Toothache = true
Cavity = true A Toothache = false

Cavity = true A Toothache = true

0.8
0.1
0.05
0.05

P(Cavity | Toothache = true)

P(Cavity|Toothache = false)

Cavity = false 0.667 Cavity = false 0.941
Cavity = true 0.333 Cavity = true 0.059
P(Toothache | Cavity = true) P(Toothache | Cavity = false)

Toothache= false 0.5 Toothache= false 0.889
Toothache = true 0.5 Toothache = true 0.111




Normalization trick

 To get the whole conditional distribution P(X | Y =) at
once, select all entries in the joint distribution table
matching Y =y and renormalize them to sum to one

P(Cavity, Toothache)
Cavity = false AToothache = false 0.8
Cavity = false A Toothache = true 0.1
Cavity = true A Toothache = false 0.05
Cavity = true A Toothache = true 0.05
& Select
Toothache, Cavity = false
Toothache= false 0.8
Toothache = true 0.1

& Renormalize
P(Toothache | Cavity = false)
Toothache= false 0.889
Toothache = true 0.111




Normalization trick

 To get the whole conditional distribution P(X | Y =) at
once, select all entries in the joint distribution table
matching Y =y and renormalize them to sum to one

« Why does it work?

P(x,y) _ P(xy)
2 P(.y)  P(y)




Product rule

P(A, B)

- Definition of conditional probability:  P(A|B) = P(B)

» Sometimes we have the conditional probability and want to
obtain the joint:

P(A,B)=P(A|B)P(B)=P(B|A)P(A)




Chain rule

e Product rule:

P(A,B)=P(A|B)P(B)=P(B|A)P(A)

e Chainrule:

P(Aueei A) = P(A)P(A, [ AIP(A [ALA)..P(A, [ Ao AL)
TTPAT A AL)




Independence

« Two events A and B are independent if and only if
P(A A B)=P(A, B) =P(A) P(B)
— In other words, P(A | B) = P(A) and P(B | A) = P(B)

— This Is an important simplifying assumption for modeling,
e.g., Toothache and Weather can be assumed to be
Independent

« Are two mutually exclusive events independent?

— No, but for mutually exclusive events we have
P(Av B)=P(A) + P(B)




Independence

* the knowledge that one event occurs does not affect the probability of the

P(EBE) = P(88)P(E)

other event

* PlaAb)=P(a)P(b|a)

* P(a Ab)=P(a)P(b)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Independence

« Two events A and B are independent if and only if
P(A A B)=P(A, B) =P(A) P(B)
— In other words, P(A | B) =P(A) and P(B | A) = P(B)
— This Is an important simplifying assumption for modeling,

e.g., Toothache and Weather can be assumed to be
Independent

« Conditional independence: A and B are conditionally
Independent given C iff
PAAB|C)=P(A|C)P(B|C)

— Equivalently:
P(A|B,C)=P(A|C)orP(B|A,C)=P(B|C)




Conditional independence: Example

« Toothache: boolean variable indicating whether the patient has a toothache
« Cavity: boolean variable indicating whether the patient has a cavity
« Catch: whether the dentist’s probe catches in the cavity

« |f the patient has a cavity, the probability that the probe catches in it doesn't
depend on whether he/she has a toothache

P(Catch | Toothache, Cavity) = P(Catch | Cavity)
« Therefore, Catch is conditionally independent of Toothache given Cavity
« Likewise, Toothache is conditionally independent of Catch given Cavity
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)
« Equivalent statement:
P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)




Conditional independence: Example

« How many numbers do we need to represent the joint
probability table P(Toothache, Cavity, Catch)?

2% — 1 =7 independent entries
 \Write out the joint distribution using chain rule:

P(Toothache, Catch, Cavity)
= P(Cavity) P(Catch | Cavity) P(Toothache | Catch, Cavity)
= P(Cavity) P(Catch | Cavity) P(Toothache | Cavity)
« How many numbers do we need to represent these
distributions?
1+ 2 + 2 =5 independent numbers
 In most cases, the use of conditional independence reduces

the size of the representation of the joint distribution from
exponential in n to linear in n




Bayesian inference - Naive Bayes model

P(rﬂwme T PCKED UP) —
THE OCEAN | A SEASHELL

IFEHEDLF T'M NEAR p ™M NEFR
HEF'EI{LL THE OCEAN THE OCEAN

P(32se

R

SMﬂdi)

STATISTICALLY SPERKING, IF YOU PICK UP A
SEASHELL AND DOV HOLD IT TOYOUR EAR,
YbU CAN PROBABLY HEAR THE OCEAN.



http://xkcd.com/1236/

, P(a A b) = P(b) P(a|b)
Bayes’ Rule P(a A b) = P(a) P(b|a)

« The product rule gives us two ways to factor
a joint probability:

P(A,B)=P(A|B)P(B)=P(B|A)P(A)

P(BIA)P(A)

e Therefore, P(A|B) = o(B)

« Why is this useful?

— Can update our beliefs about A based on evidence B
* P(A) is the prior and P(A|B) is the posterior
— Key tool for probabilistic inference: can get diagnostic probability from
causal probability

« E.g., P(Cavity = true | Toothache = true) from
P(Toothache = true | Cavity = true)




< <

Given clouds in the morning,
what's the probability of rain in the afternoon?

« 80% of rainy afternoons start with cloudy

Mmornings. —
« 40% of days have cloudy mornings. }P(b | a) R ( )
* 10% of days have rainy afternoons. a

P(b) P(a|b)

Knowing

P(clouds | rain)P(rain)

(I" ain | ClOLtdS) — P(cloudy morning | rainy afternoon
P(clouds) (cloudy g | rainy af )

we can calculate

— (8) ( 1) P(rainy afternoon | cloudy morning)

4

=0.2

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Knowing

P(visible effect | unknown cause)
we can calculate

P(unknown cause | visible effect)

Knowing
P(medical test result | disease)
we can calculate

P(disease | medical test result)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu



Bayes Rule example

« Marie iIs getting married tomorrow, at an outdoor ceremony in the
desert. In recent years, it has rained only 5 days each year (5/365 =
0.014). Unfortunately, the weatherman has predicted rain for
tomorrow. When it actually rains, the weatherman correctly
forecasts rain 90% of the time. When it doesn't rain, he incorrectly
forecasts rain 10% of the time. What is the probability that it will

rain on Marie's wedding?

P(predict | rain)P(rain)
P(predict)
P(predict | rain)P(rain)
P(predlct | rain)P(rain) + P(predict | @rain) P(Qrain)

P(rain | predict) =




Bayes Rule example

« Marie iIs getting married tomorrow, at an outdoor ceremony in the
desert. In recent years, it has rained only 5 days each year (5/365 =
0.014). Unfortunately, the weatherman has predicted rain for
tomorrow. When it actually rains, the weatherman correctly
forecasts rain 90% of the time. When it doesn't rain, he incorrectly
forecasts rain 10% of the time. What is the probability that it will

rain on Marie's wedding?

P(predict | rain)P(rain)
P(predict)
P(predict | rain)P(rain)
P(predlct | rain)P(rain) + P(predict | @rain)P(Jrain)

P(rain | predict) =

B 0.9x0.014 __ 00126 ..
0.9x0.014+0.1x0.986 0.0126+0.0986




Bayes rule: Example

* 1% of women at age forty who participate in routine
screening have breast cancer. 80% of women with breast
cancer will get positive mammaographies. 9.6% of women
without breast cancer will also get positive
mammographies. A woman in this age group had a
positive mammaography in a routine screening. What is
the probability that she actually has breast cancer?

P(positive | cancer)P(cancer)
P(positive)

P(cancer | positive) =

_ P(positive | cancer)P(cancer)
P(positive | cancer)P(cancer) + P(positive | @cancer)P(@dcancer)

0.8x0.01 0.008

— = =0.0776
0.8x0.01+0.096x0.99 0.008+0.095




Law of total probability

P(X=X)= éP(X: XY =Y)

=1

=APX=x|Y=y,)PY =)

=1




Probabilistic inference

« Suppose the agent has to make a decision about the value
of an unobserved query variable X given some observed
evidence variable(s) E = e

— Partially observable, stochastic, episodic environment

— Examples: X = {spam, not spam}, e = email message
X = {zebra, giraffe, hippo}, e = image features

Dear Sir.

x First, | must solicit your confidence in this

transaction, this is by virture of its nature
as being utterly confidencial and top
secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
x SUBJECT.

99 MILLION EMAIL ADDRESSES
FOR ONLY $99

Ok, lknow this is blatantly OT but I'm
beginning to go insane. Had an old Dell
Dimension XPS sitting in the corner and
decided to put it to use, | know it was
working pre being stuck in the corner, but
when I plugged it in, hit the power nothing

happened.




MAP decision

« Value x of X that has the highest posterior probability
given the evidence E = e:

P(E=¢e| X=X)P(X=X)

X=argmax, P(X=x|E=¢e)= P(E=6)
=e

ocargmax, P(E=¢e| X =x)P(X =X)
P(x|e)oc P(e|Xx)P(x)

posterior likelthood prior
« Maximum likelihood (ML) decision:

X=argmax, P(e|x)




Naive Bayes model

« Suppose we have many different types of observations
(symptoms, features) E,, ..., E, that we want to use to obtain
evidence about an underlying hypothesis X

« MAP decision:

P(X=x|E =6, .., E,=€)
UP(X=X)P(E, =6, ..., E, =8| X=X)

» \We can make the simplifying assumption that the different
features are conditionally independent
given the hypothesis:

P(E =6, ..,E,=|X=x)= OP(E=¢|X=X)

— If each feature can take on d values, what Is the complexity of storing
the resulting distributions?




Naive Bayes model

e Posterior:

P(X=x|E, =€, .., E ,=¢)
LP(X=x)P(E =¢, ..., E, =¢,|X=X)
- P(x=x)OP(E =& |X=X)
« MAP decision: =

= argmax, P(x| &)t PO P(e | %)

\ | L 1= )
Y Y

|
posterior  prior  likelihood




_Case study: Text document classification

« MAP decision: assign a document to the class with the highest posterio
P(class | document)

« Example: spam classification
— Classify a message as spam if P(spam | message) > P(—spam | message)

Dear Sir.
x First, | must solicit your confidence in this
transaction, this is by virture of its nature OK, lknow this is blatantly OT but I'm
as being utterly confidencial and top beginning to go insane. Had an old Dell
secret. ... Dimension XPS sitting in the corner and
decided to put it to use, | know it was
TO BE REMOVED FROM FUTURE working pre being stuck in the corner, but
MAILINGS, SIMPLY REPLY TO THIS when | plugged it in, hit the power nothing
x MESSAGE AND PUT "REMOVE" IN THE happened.
SUBJECT.
99 MILLION EMAIL ADDRESSES
- FOR ONLY $99




_Case study: Text document classification

* MAP decision: assign a document to the class with the highest
posterior P(class | document)

« We have P(class | document) oc P(document | class)P(class)

« To enable classification, we need to be able to estimate the likelihoods
P(document | class) for all classes and
priors P(class)




Naive Bayes Representation

« Goal: estimate likelthoods P(document | class)
and priors P(class)

 Likelithood: bag of words representation
— The document is a sequence of words (w,, ..., w,)

— The order of the words in the document is not important
— Each word is conditionally independent of the others given document

class
Dear Sir.
First, | must solicit your confidence in this
transaction, this is by virture of its nature OK, lknow this is blatantly OT but I'm
as being utterly confidencial and top beginning to go insane. Had an old Dell
secret. ... Dimension XPS sitting in the corner and
decided to put it to use, | know it was
TO BE REMOVED FROM FUTURE working pre being stuck in the corner, but
MAILINGS, SIMPLY REPLY TO THIS when | plugged it in, hit the power nothing
MESSAGE AND PUT "REMOVE" IN THE happened
SUBJECT. :
99 MILLION EMAIL ADDRESSES
_ FOR ONLY $99




Naive Bayes Representation

« Goal: estimate likelthoods P(document | class)
and priors P(class)

 Likelithood: bag of words representation
— The document is a sequence of words (w,, ..., w,)

— The order of the words in the document is not important

— Each word is conditionally independent of the others given document
class

P
P(document | class) = P(w,, ..., w. |class)= (O P(w, | class)
=1




Naive Bayes Representation

» Goal: estimate likelthoods P(document | class) and P(class)

 Likelithood: bag of words representation
— The document is a sequence of words (W, ..., w,)
— The order of the words in the document is not important

— Each word is conditionally independent of the others given document
class

P
P(document | class) = P(w,, ..., w. |class)= (O P(w, | class)

i=1
— Thus, the problem is reduced to estimating margilnal likelthoods of
Individual words P(w; | class)




Parameter estimation

» Model parameters: feature likelihoods P(word | class) and priors
P(class)

— How do we obtain the values of these parameters?

prior P(word | spam) P(word | —spam)
. |the : 0.0156 the : 0.0210
| to 0.0153 to 0.0133
| and 0.0115 of : 0.0119
of 0.0095 2002: 0.0110
vou 0.0093 with: 0.0108
al : 0.0086 from: 0.0107
with: 0.0080 and 0.0105
from: 0.0075 a 0.0100




Parameter estimation

» Model parameters: feature likelihoods P(word | class) and priors
P(class)

— How do we obtain the values of these parameters?
— Need training set of labeled samples from both classes

# of occurrences of this word in docs from this class
P(word | class) =

total # of words in docs from this class

— This Is the maximum likelihood (ML) estimate, or estimate that
maximizes the likelihood of the training data:

HH P(w, ;| class, ;)

d=1 i=1




Parameter estimation

e Parameter estimate:

# of occurrences of this word in docs from this class
P(word | class) =

total # of words in docs from this class

« Parameter smoothing: dealing with words that were never seen or
seen too few times

— Laplacian smoothing: pretend you have seen every vocabulary word one
more time than you actually did

# of occurrences of this word in docs from this class + 1

P(word | class) =
total # of words in docs from this class + V

(V: total number of unique words)




Summary: Naive Bayes for Document Classification

 Assign the document to the class with the highest
posterior

P(class| document) 1 P(cl ass)é P(w | class)

» Model parameters:

_ Likelihood Likelihood
prior of class 1 of class K
P(w, | class,) P(w;, | classy)
P(class,)
P(w, | class,) P(w, | classy)
P(classy)
) P(w,|class,) P(wofelassy)




Summary: Naive Bayes for Document Classification

 Assign the document to the class with the highest
posterior

P(class| document) 1 P(cl ass)é P(w | class)
« Note: by convention, one typicallzlly works with logs of
probabilities instead:

L (class| document) = log P(class) + élog P(w | class)
— Can help to avoid underflow -




Bayesian networks

« More commonly called graphical models

« A way to depict conditional independence
relationships between random variables

A compact specification of full joint distributions

PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:

Networks of Plausible Inference

PROBABILISTIC GRAPHICAL MODELS

Judea Pear(
REVISEOSPDRNEPRINTING




Bayesian networks: Structure

» data structure that represents
the dependencies among

random variables @

» adirected, acyclic graph

- Nodes: random variables @

e ArcS: Interactions

e arrow from Xto Y means Xis a
parent of Y

e each node X has probability
distribution P(X [ Parents(X))




Example: N independent coin flips

« Complete independence: no interactions

OO0




Example: Naive Bayes document model

« Random variables:
— X: document class
— W, ..., W, words in the document




Rain
{none, light, heavy}

Maintenance
{ves, no}

l }

[ {on time, delayed} j

Appointment
{attend, miss}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Rain
{none, light, heavy}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Rain

{none, light, heavy}

1

Maintenance

{yes, no}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Rain
{none, light, heavy}

1

Maintenance

{yes, no}

delayed

0.2

0.1

0.4

Irain
{on time, delayed}

0.3

0.6

0.5

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu




Maintenance

{yes, no}

l

Train

{on time, delayed}

1 ;

Appointment T
{attend, miss} delayed

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




{none, light, heavy}

v

Maintenance
{yes, no}

v v

Train
{on time, delayed}

( Rain ] Computing Joint Probabilities

'

Appointment
{attend, miss}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




{none, light, heavy}

v

Maintenance
{yes, no}

v v

Train
{on time, delayed}

‘

[ Rain ] Computing Joint Probabilities

[ Appoiﬂtmgnr J
{attend, miss} P(hght, ”O)

P(light) P(no | light)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




[ Rain ] Computing Joint Probabilities

{none, light, heavy}

v

Maintenance
{yes, no}

v v

Train
{on time, delayed}

‘
( frromment ) |
P(light, no, delayed)

P(light) P(no | light) P(delayed | light, no)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




[ Rain ] Computing Joint Probabilities

{none, light, heavy}

v

Maintenance
{yes, no}

v v

Train
{on time, delayed}

'

Appointment
{attend, miss}

P(light, no, delayed, miss)

P(light) P(no | light) P(delayed | light, no) P(miss | delayed)

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Example: Burglar Alarm

* | have a burglar alarm that is sometimes set off by minor
earthquakes. My two neighbors, John and Mary, promised
to call me at work if they hear the alarm

« Example inference tasks

— Suppose Mary calls and John doesn’t call. What 1s the probability
of a burglary?

— Suppose there is a burglary and no earthquake. What is the
probability of John calling?

— Suppose the alarm went off. What is the probability of burglary?




Example: Burglar Alarm

* | have a burglar alarm that is sometimes set off by minor
earthquakes. My two neighbors, John and Mary, promised
to call me at work if they hear the alarm

« What are the random variables?
— Burglary, Earthquake, Alarm, John, Mary

« What are the direct influence relationships?
— Aburglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— The alarm can cause John to call




Example: Burglar Alarm

Burglary Earthquake




Conditional independence relationships . §C
AL
@/ \®

« Suppose the alarm went off. Does knowing whether there was a
burglary change the probability of John calling?

P(John | Alarm, Burglary) = P(John | Alarm)




Conditional independence relationships ®
v

g ®
« Suppose the alarm went off. Does knowing whether there was a
burglary change the probability of John calling?

P(John | Alarm, Burglary) = P(John | Alarm)
« Suppose the alarm went off. Does knowing whether John called
change the probability of Mary calling?
P(Mary | Alarm, John) = P(Mary | Alarm)




Conditional independence relationships ~ @_ ®
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J ®

« Suppose the alarm went off. Does knowing whether there was a
burglary change the probability of John calling?

P(John | Alarm, Burglary) = P(John | Alarm)
« Suppose the alarm went off. Does knowing whether John called
change the probability of Mary calling?
P(Mary | Alarm, John) = P(Mary | Alarm)
 Suppose the alarm went off. Does knowing whether there was an
earthquake change the probability of burglary?
P(Burglary | Alarm, Earthquake) !'= P(Burglary | Alarm)




Conditional independence relationships 8. ®
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« Suppose the alarm went off. Does knowing whether there was a
burglary change the probability of John calling?

P(John | Alarm, Burglary) = P(John | Alarm)
« Suppose the alarm went off. Does knowing whether John called
change the probability of Mary calling?
P(Mary | Alarm, John) = P(Mary | Alarm)
 Suppose the alarm went off. Does knowing whether there was an
earthquake change the probability of burglary?
P(Burglary | Alarm, Earthquake) !'= P(Burglary | Alarm)
 Suppose there was a burglary. Does knowing whether John called
change the probability that the alarm went off?
P(Alarm | Burglary, John) 1= P(Alarm | Burglary)




Conditional independence relationships Jo,
o

g ®
« John and Mary are conditionally independent of Burglary and Earthquake given
Alarm

— Children are conditionally independent of ancestors given parents




Conditional independence relationships ®
Al

g ®
« John and Mary are conditionally independent of Burglary and Earthquake given
Alarm
— Children are conditionally independent of ancestors given parents

« Johnand Mary are conditionally independent of each other given Alarm
— Siblings are conditionally independent of each other given parents




Conditional independence relationships ~ @&  ®
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« John and Mary are conditionally independent of Burglary and Earthquake given
Alarm
— Children are conditionally independent of ancestors given parents
« John and Mary are conditionally independent of each other given Alarm
— Siblings are conditionally independent of each other given parents

« Burglary and Earthquake are not conditionally independent of each other given
Alarm

— Parents are not conditionally independent given children




Conditional independence relationships 8. B
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« John and Mary are conditionally independent of Burglary and Earthquake given
Alarm

— Children are conditionally independent of ancestors given parents
« Johnand Mary are conditionally independent of each other given Alarm
— Siblings are conditionally independent of each other given parents

« Burglary and Earthquake are not conditionally independent of each other given
Alarm

— Parents are not conditionally independent given children

« Alarm is not conditionally independent of John and Mary given Burglary and
Earthquake

— Nodes are not conditionally independent of children given parents

» General rule: each node is conditionally independent of its non-
descendants given its parents




Conditional independence and the joint distribution

« General rule: each node is conditionally independent of its
non-descendants given its parents

 Suppose the nodes X, ..., X, are sorted in topological
order (parents before children)

» To get the joint distribution P(X,, ..., X,),
use chain rule:

— f[ P(X, | Parents(X,))




Conditional probability distributions

 To specify the full joint distribution, we need to specify a

conditional distribution for each node given its parents:
P (X| Parents(X))

Y.

P (X112, ..., Zy)




Example: Burglar Alarm

Burglary Earthquake

The conditional
probability tables are
the model parameters




The joint probability distribution

n

P(Xy,.... X,) =] [P(X; | Parents(X,))

« Forexample, P(j, m, a, —b, —e)
= P(=b) P(—e) P(a | —b, —e) P(j | &) P(m | &) ®

G)'/@l@




Compactness

 Suppose we have a Boolean variable X; with k Boolean
parents. How many rows does its conditional probability
table have?

— 2%rows for all the combinations of parent values
— Each row requires one number for P(X; = true | parent values)

« |f each variable has no more than k parents, how many
numbers does the complete network require?

— O(n - 2¥) numbers — vs. O(2") for the full joint distribution

« How many nodes for the burglary network?
1+1+4+2+2=10numbers (vs. 2°>-1 = 31)

©
@}‘5\@)




Conditional independence

« Common cause « Common effect
Y: Project due X: Raining
X: Newsgroup Z: Ballgame
busy
Y: Traffic
Z: Lab full
« Are X and Z independent? « Are X and Z independent?

— No — Yes

« Are they conditionally Are they conditionally
Independent given Y? Independent given Y?

— Yes — No




A more realistic Bayes Network: Car diagnosis

Initial observation: car won’t start
. “broken, so fix it” nodes
Green: testable evidence
“hidden variables” to ensure sparse structure, reduce parameteres

alternator fanbelt
broke broke

battery -
battery fuel line starter
ﬂat blockec broke




Car Insurance

SocioEcon
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Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data

Karen Sachs, Omar Perez, Dana Pe'er, Douglas A. Lauffenburger, and Garry P. Nolan
(22 April 2005) Science 308 (5721), 523.
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Fig. 3 A parametric, fixed-order model which describes the visual by assignments zj; ~ m,; to latent parts. The cartoon example illus-
appearance of L object categories via a common set of K shared parts. trates how a wheel part might be shared among two categories, bicycle
The j* image depicts an instance of object category o;. whose posi- and cannon. We show feature positions (but not appearance) for two

tion is determined by the reference transformation p;. The appearance
w j; and position v;, relative to p;, of visual features are determined

hypothetical samples from each category
Describing Visual Scenes Using Transformed Objects and Parts

E. Sudderth, A. Torralba, W. T. Freeman, and A. Willsky.

International Journal of Computer Vision, No. 1-3, May 2008, pp. 291-330.
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phone_name_glottis

~phone_index_tongue

phone_name_tongue

. phone_index_lips

phone_name_lips

observations

Mark Hasegawa-Johnson, Karen Livescu, Partha Lal and Kate Saenko
International Congress on Phonetic Sciences 1719:299-302, 2007
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sSummary

 Bayesian networks provide a natural
representation for (causally induced) conditional
Independence

 Topology + conditional probability tables
» Generally easy for domain experts to construct




Bayes network inference

. A general scenario:
- Query variables: X
- variable for which to compute distribution

~ Evidence variables and their values: E = e
~ observed variables for event e
_ Unobserved/Hidden variables: Y

- non-evidence, non-query variable.

Inference problem: answer questions about the query
variables given the evidence variables

Goal: Calculate P(X | e)




Bayes network inference

A general scenario:
- Query variables: X
- Evidence (observed) variables and their values: E = e
- Unobserved variables: Y

Inference problem: answer questions about the query

variables given the evidence variables

Example: what is the o
probability of a burglary

given that John and
Mary called?




Bayes network inference

A general scenario:
- Query variables: X
- Evidence (observed) variables and their values: E = e
- Unobserved variables: Y

Inference problem: answer questions about the query
variables given the evidence variables

- This can be done using the posterior distribution P(X | E = e)
P(X|E =e)

- The posterior can be derived from the full joint P(X, E, Y)

Since Bayesian networks can afford exponential savings in
representing joint distributions, can they afford similar
savings for inference?




Full Joint distribution

@ Consider a Bayes network with n variables x1,....z,.
@ Denote the parents of a node z; as P(x;).

@ Then, we can decompose the joint distribution into the product of
conditionals

P (1. %) = Pl 5 2Pt 1)
= P(an Xpal, o XJ)P(Xn-Jlxn-?."' Xl)'-'P(X2li‘)P(XJ)
=ITi= Pxilx, ... x))
=TT.-, P (x;| Parents(X))




@ What is the distribution at a single

node, given the rest of the network and o parents of X
the evidence e? P(xla) Pexjb)
@ Parents of X, the set P are the nodes o
on which X is conditioned. Plep)f \ Prdjx)
children of X

@ Children of X, the set C are the nodes @ o
conditioned on X.

@ Use the Bayes Rule, for the case on the right:

P(a,b,z,c,d) = P(a,b,z|c,d)P(c,d) (
= P(a,blz)P(z|c,d)P(c,d) (

or more generally,

P(C(x),z,P(z)|e) = P(C(z)|z,e)P(z[P(x),e)P(P(z)|,e) |




Rain
{none, light, heavy}

P(Appomtment | light, no)

= oo P(Appointment, /ight, no)

( {on time, delayed} J

= o [P(Appointment, /ight, no, on time) 1
+ P(Appointment, /ight, no, delayed)] [Appainfmenf J

{attend, miss}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Burglary example

* Query:P(b|], m)

P(b] ), m)




Burglary Earthquake

L

Alarm
JohnCalls MaryCalls
P(x, ...,x)) =[li=4P (x;| Parents(X))

P(JohnCalls » MaryCalls A Alarm ” Burglary * Earthquake)
= P(JohnCalls|Alarm) x P(MaryCalls|Alarm) x P(Alarm|Burglary™Earthquake)
x P(Burglary) x P(Earthquake)




Example

P(E)
002

Burglary Earthquake

M=
£

=

=

A P T POD
90

@ Key: given knowledge of the values of some nodes in the network, we can

apply Bayesian inference to determine the maximum posterior values of the
unknown variables!




Problem 1

P(B)

S J: JohnCalls

M: MaryCalls
A: Alarm

B: Burglary

E: Earthquake

PAIBE)

95
94
29

001
A | PJIA) A [AMIA)
05 F| Ol

What is the probability of the event that the alarm has sounded and
no burglary but an earthquake has occurred and both Mary and John
call?
P*M~"AM~BME) =P(J|A) x P(M|A) x P(A|~B"E) x P(~B) x P(E)

= 0.90 x 0.70 x 0.29 x 0.999 x 0.002 = 0.00036

MM - |
me—am |

m ~




Problem 2

- P(B) NE)

' o J: JohnCalls
B E [PALE) M: MaryCalls
l ; g; A: Alarm
F 1| 29 B: Burglary
F F| .00l

E: Earthquake

: A |PMIA)
F| 05 F| Ol

What is the probability of the event that the alarm has sounded but
neither a burglary nor an earthquake has occurred and John call and
Mary didn’t call?
PJ»~M"MAN~BN~E) =P(J|A) x P(~M|A) x P(A|~B"~E) x P(~B) x P(~E)
=0.90 x 0.30 x 0.001 x 0.999 x 0.998 = 0.00027




Inference by Enumeration

P(X |e)=aP(X,e)=a) PX, e, y)

X is the query variable.

e is the evidence.

y ranges over values of hidden variables.
a normalizes the result.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




SPRINKLER RAIN
RAIN‘ T F ‘ T F

04 06 '
0.01 0.99
What is P(S|G)? Comsswer

GRASS WET

F 0.2 0.8

T

SPRINKLER RAIN| T F

P(S|G) = P(SAG)IP(G) F F |00 10
0.6467 FooT |08 o2
T F |09 01

T T | 099 0.01

P(S"G) = P(SAG"R) + P(S"G"~R) = 0.00198+0.288 = .28998
P(G) = P(S"G) + P(~S"G) =.28998 + 0.1584 = 0.44838

P(~S"G) =P(~S"G"R) + P(~S"G*~R) =0.1584 + 0
P(S"G*R)=P(S|R)P(G|S*R)P(R) = (0.01)(0.99)(0.2) = 0.00198
P(S"G*~R) = P(S|~R)P(G|S"~R)P(~R) = (0.4)(0.9)(0.8) = 0.288
P(~S"G*R) = P(~S|R)P(G|~S*R)P(R) = (0.99)(0.8)(0.2) = 0.1584
P(~S"G*~R) = P(~S|~R)P(G|~S"~R)P(~R) = (0.6)(0.0)(0.8) = 0




Another example

 Variables: Cloudy, Sprinkler, Rain, WetGrass




Another example

 Given that the grass Is wet, what Is the probability
that It has rained?

P(r{w)

GO ©
&>




Another example

« What determines whether you will pass the exam?
— A: Do you attend class?
— S: Do you study?
— Pr: Are you prepared

for the exam?
— F: Is the grading fair? @
— Pa: Do you get a passing \
grade on the exam? @




A s P(Pr|A,S)
T T 0.9
T F 0.5
F T 0.7
F F 0.1

o
-

P(Pa|A,Pr,F)

0.9

0.6

0.2

0.1

0.4

0.2

0.1

MMM M| ===

M M- =7 —- |- (>

M= MM|A m|A M| ™

0.2




|

—

/®

& P(a| pa) uP(a pa)
a Pasf,pr pa)

S=s,F=f,Pr=pr

= A P@P(9P(f)P(pr|as)P(pala, pr, f)

S=s,F=f,Pr=pr




Efficient inference

* Query: P(b |}, m) ;@f®
O ©

P(b,
( Jm)u a P(.ea, j,m)
P( ’ ) E=e A=a
= A P(b)P(e)P(alb e)P(j |a)P(m|a)
E=e A=a
« Can we compute this sum efficiently?

P(b] ), m)=




Efficient inference

P(b] j,m)oc P(b)D P(G)Z P(a|b,e)P(J[a)P(m]|a)

P(alb,e)

P(-albe)  P(alb,—e)




Efficient inference

« Key Idea: compute the results of
sub-expressions in a bottom-up way and cache them
for later use

— Form of dynamic programming

— Polynomial time and space complexity for polytrees:
networks at most one undirected path between any two
nodes




Approximate Inference : Sampling

Rain
{none, light, heavy}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Approximate Inference : Sampling

Rain

{none, light, heavy}

l

Maintenance

{yes, no}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Approximate Inference : Sampling

Rain
{none, light, heavy}

R = none

M = yes

l

Maintenance

{yes, no}

T = on time

Train
{on time, delayed}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu




Approximate Inference : Sampling

Maintenance

{yes, no}

R = none

M = yes

1 T = on time

Trafn A= atl‘end

{on time, delayed}

1 ;

Appointment .
{attend, miss}

delayed

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Approximate Inference

: Sampling

R = light

R = light

R = none

R = none

M =no

M = yes

M =no

M = yes

T = on time

T = delayed

T = on time

T = on time

A = miss

A = attend

A = attend

A = attend

R = none

R = none

R = heavy

R = light

M = yes

M = yes

M =no

M =no

T = on time

T =on time

T = delayed

T = on time

A = attend

A = attend

A = miss

A = attend

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Approximate Inference : Sampling

P(1rain = on time)

R = light

R = light

R = none

R = none

M =no

M = yes

M =no

M = yes

T = on time

T = delayed

T = on time

T = on time

A = miss

A = attend

A = attend

A = attend

R = none

R = none

R = heavy

R = light

M = yes

M = yes

M =no

M =no

T = on time

T =on time

T =delayed

T = on time

A = attend

A = attend

A = miss

A = attend

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Approximate Inference

® P(Rain = /ight | Train = on time)

R = light

R = none

R = none

M =no

M =no

M = yes

T = on time

T = on time

T =on time

A = miss

A = attend

A = attend

R = none

R = none

R = light

M = yes

M = yes

M =no

T = on time

T =on time

T = on time

A = attend

A = attend

A = attend

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Approximate Inference : Rejection Sampling — Likelihood Weighting

e Start by fixing the values for evidence variables.

e Sample the non-evidence variables using conditional probabilities in the
Bayesian Network.

*Weight each sample by its likelihood: the probability of all of the evidence.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Approximate Inference : Rejection Sampling — Likelihood Weighting

R = light

T = on time

Rain
{none, light, heavy}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Approximate Inference : Rejection Sampling — Likelihood Weighting

Rain

{none, light, heavy}

1

Maintenance

{yes, no}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Approximate Inference : Rejection Sampling — Likelihood Weighting

Rain R = light
{none, light, heavy} M = yes

1 T = on time

Maintenance

{yes, no}

Irain
{on time, delayed}

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu




Approximate Inference : Rejection Sampling — Likelihood Weighting

Maintenance

{yes, no}

l

Train

{on time, delayed}

l

R = light

M = yes

T = on time

A = attend

Appointment
{attend, miss}

T

attend

on time

0.9

delayed

0.6

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu




Approximate Inference : Rejection Sampling — Likelihood Weighting

Rain
{none, light, heavy}

l

Maintenance

{yes, no}

R = light

M = yes

T = on time

A = attend

on time | delayed

0.8 0.2

0.9 0.1

Train
{on time, delayed}

0.6 0.4

0.7 0.3

04 0.6

0.5 0.5

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu




A

Uncertainty over time

4

v
»

»

\4

Xi. Weather at time t

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu



Markov assumption

the assumption that the current state

depends on only a finite fixed number of
previous states

Markov chain

a sequence of random variables where the
distribution of each variable follows the
Markov assumption
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Uncertainty over time

Transition Model

Tomorrow (Xi+1)

@

}‘,4

0.8 0.2

Today (X¢)
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Uncertainty over time
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Sensor Models

Hidden State Observation

robot's position robot's sensor data

words spoken audio waveforms

user engagement website or app analytics

weather umibrella
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Uncertainty over time

Hidden Markov Model

a Markov model for a system with hidden
states that generate some observed event
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Uncertainty over time

Sensor Model

Observation (Ey)

State (Xp)
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Uncertainty over time

sensor Markov assumption

the assumption that the evidence variable
depends only the corresponding state
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Uncertainty over time

Task Definition

given observations from start until now,

filtering calculate distribution for current state

given observations from start until now,

prediction calculate distribution for a future state

given observations from start until now,

smoothing calculate distribution for past state

most likely given observations from start until now,
explanation calculate most likely sequence of states
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