Uninformed/Blind Search

Artificial Intelligence
Slides are mostly adapted from AIMA, MIT Open Courseware and
Svetlana Lazebnik (UIUC)

Search problems

Markov decision processes Constraint satisfaction problems
Adversarial games Bayesian networks
Reflex States Variables Logic
" Low-level intelligence” "High-level intelligence”

Machine learning

agent
entity that perceives its environment and acts upon
that environment

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Types of agents

Reflex agent

Consider how the world
IS

Choose action based on
current percept

Do not consider the future
conseguences of actions

Planning agent

Consider how the world WOULD
BE

Decisions based on (hypothesized)
consequences of actions

Must have a model of how the world
evolves in response to actions

Must formulate a goal

Reflex Agents

* Reflex Agents:

— Choose action based

L] - L]

on current percept D
(and maybe memory) c e e e e e e

e

— May have memory or ¢ o s e
a model of the world’s
current state

— Do not consider the future
consequences
of their actions

— Act on how the world IS

* Can areflex agent be
rational?

Goal Based Agents

* Goal-based agents:
— Plan ahead

— Decisions based on
(hypothesized)
consequences of actions

— Must have a model of
how the world evolves in
response to actions

— Act on how the world
WOQOULD BE

Simple-reflex vs goal based agents

« Simple-reflex agents directly maps states to actions.

* Therefore, they cannot operate well In environments
where the mapping is too large to store or takes too much
to learn

« Goal-based agents can succeed by considering future
actions and desirability of their outcomes

* Problem solving agent Is a goal-based agent that decides
what to do by finding sequences of actions that lead to
desirable states

A farmer wants to get his cabbage, goat, and wolf across a river.

He has a boat that only holds two. He cannot leave the cabbage
and goat alone or the goat and wolf alone.
How many river crossings does he need

When you solve this problem, try to think about how you did it.
You probably simulated the scenario in your head, trying to
send the farmer over with the goat, observing the consequences.
If nothing got eaten, you might continue with the next action.
Otherwise, you undo that move and try something else.

How can we get a machine to do this automatically? One of the
things we need Is a systematic approach that considers all the
possibilities. We will see that search problems define the
possibilities, and search algorithms explore these possibilities.

=N
= oy~ -
£
/ 7
/)
N A
/ Va7)

Farmer Cabbage Coat Wolf

Actions:
Fo> Fq
FC> FC«
FGD> FG«
FWp FW<«

Approach: build a search tree ("what if?")

W||FC

FLCLW|

/‘—'—N\

CG|[FW

FCp:o0 FGp:1 FWp:00
Wi
Ff:.ll:l
FC\.;\!H
FCI:>:1I T:WD:].
W||FC‘ E FCW
Fﬂ:c;c:z F\ <l F-f:]:r:;c;« F\ <1
FW||(; F‘WHC FC|| ;N FE W
FWI*I::»:I FCIl::-:l
||I;CW ||I;CW
F«:Il:l F<11:1
FOllcW FCllcw
F IL:>:1 F Il:»:l
||FCT W ||FC1r W

[Exoren) THE. GOAT ONLY HOLDS Twl, BUT YOU
CAN'T LEAVE. THE GOAT WITH THE

? E CABBAGE OR THE WOLF WITH THE GOAT.

12

N e o AR

(4. LEAVE THE WOLE |

(WHY DID YoU HAVE. A WOLF? | ?

Sometimes you can do better
If you change the model
(perhaps the value of having
a wolf is zero) instead of
focusing on the algorithm.

13

Problem solving agents

* Intelligent agents are supposed to maximize their
performance measure

 This can be simplified If the agent can adopt a goal and aim
at satisfying it

« Goals help organize behaviour by limiting the objectives
that the agent is trying to achieve

« Goal formulation, based on the current situation and the
aglen_t’s performance measure, Is the first step in problem
solving

« Goal Is a set of states. The agent’s task Is to find out which
sequence of actions will get it to a goal state

« Problem formulation is the process of deciding what sorts of
actions and states to consider, given a goal

14

Problem solving agents

 An agent with several immediate options of unknown value
can decide what to do by first examining different possible
sequences of actions that lead to states of known value, and
then choosing the best sequence

 Looking for such a sequence is called search

A search algorithm takes a problem as input and returns a
solution In the form of action sequence

 One asolution is fom_md the actions 1t recommends can be
carried out — execution phase

15

Problem solving agents

« “formulate, search, execute” design for the agent

 After formulating a goal and a problem to solve the agent
calls a search procedure to solve it

* It then uses the solution to guide its actions, doing whatever
the solution recommends as the next thing to do (typically
the first action in the sequence)

 Then removing that step from the sequence

 Once the solution has been executed, the agent will
formulate a new goal

17

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

18

Search Problems

* A search problem consists of:

e 8 5 N O

“N”. 1.0
— A successor function '

E , 1.0
— A start state and a goal test
A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

— The performance measure is defined by (a) reaching
the goal and (b) how “expensive” the path to the goal is

22

State
a configuration of the agent and its environment

2 4 5 7 12 9 4 2 15 4 106 3
g 3 1 11 8 7 3 14 13 1 11 12

14 6 10 1 6 11 9 5 14 7

9 13 15 12 5 13 10 15 6 8 2

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

23

actions
choices that can be
made in a state

ACTIONS(s) returns the set of actions that can
be executed in state s

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

24

transition model
a description of what state results from performing
any applicable action in any state

RESULT (s, a)
returns the state
resulting from
performing action a
in state s

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

2 4 5 7
g8 3 1 11
14 6 10 12

9 13

state space

the set of all states
reachable

from the initial state by 1l L

8 3 1 11 g8 3 1

any sequence of actions 1 c| [0 oG |

9 13 15 9 13 15 12

goal test

way to determine
whether a given state is a
goal state

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

path cost
numerical cost associated
with a given path

solution

a sequence of actions that
leads from the initial state to a
goal state

optimal solution
a solution that has the lowest
path cost among all solutions

Slide credit : HarvardX CS50AICS50's Introd
David J. Malan and Brian Yu

Search problem components

27

Initial state Initial
e Actions site

 Transition model

— What state results from
performing a given action
In a given state?

 Goal state
 Path cost
— Assume that it is a sum of - Goal
nonnegative step costs state

« The optimal solution is the sequence of actions that gives the
lowest path cost for reaching the goal

30

Example: Romania

* On vacation in Romania; currently in Arad
 Flight leaves tomorrow from Bucharest

e |Initial state
— Arad

« Actions
— Go from one city to another

 Transition model

— If you go from city A to
city B, you end up in city B

 Goal state
— Bucharest

« Path cost |
— Sum of edge costs (total distance ! : Efo e

112

traveled)

Vacuum world state space graph

35

&
(e [T O (&L T D
=)

-

S S

» states integer dirt and robot location.

— The agent is in one of two locations, each of which might or might not
contain dirt — 8 possible states

o Initial state: any state

e actions Left, Right, Suck
 goal test no dirt at all locations
 path cost 1 per action

Example: The 8-puzzle

37

7 2 4 1

5 6 3 4

8 3 1 6 7
Start State Goal State

» states: locations of tiles

« Initial state: any state

» actions: move blank left, right, up, down
 goal test: goal state (given)

 path cost: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

38

Example: 8-queens problem

« states: any arrangement of 0-8 queens on the board is a
state

« [Initial state: no queens on the board
 actions: add a queen to any empty square
« goal test: 8 queens are on the board, none attacked

64.63...57 = 1.8x10'* possible sequences

Application: route finding

Objective: shortest? fastest? most scenic?

Actions: go straight, turn left, turn right

39

40

Example: Route finding problem

« states: each is represented by a location (e.g. An airport) and the
current time

» [nitial state: specified by the problem

» Successor function: returns the states resulting from taking any
scheduled flight, leaving later than the current time plus the within
alrport transit time, from the current airport to another

 goal test: are we at the destination by some pre-specified time

- Path cost:monetary cost, waiting time, flight time, customs and
Immigration procedures, seat quality, time of day, type of airplane,
frequent-flyer mileage awards, etc

* Route finding algorithms are used in a variety of applications, such
as routing in computer networks, military operations planning,
airline travel planning systems

41

Application: robot motion planning

f

Objective: fastest? most energy efficient? safest?

Actions: translate and rotate joints

Example: robotic assembly

42

» states: real-valued coordinates of robot joint angles parts of
the object to be assembled

e actions: continuous motions of robot joints
» goal test: complete assembly
 path cost: time to execute

44

Other example problems

» Touring problems: visit every city at least once, starting
and ending at Bucharest

 Travelling salesperson problem (TSP) : each city must be
visited exactly once — find the shortest tour

» VLSI layout design: positioning millions of components
and connections on a chip to minimize area, minimize
circuit delays, minimize stray capacitances, and maximize
manufacturing yield

- Robot navigation Many Real-Life Examples

- Internet searching .. = =

« Automatic assembly sequencing

° protein design Protein design Manufacturing
\\ ! H\"\'.; &
Scheduling/Science Driving
GOOGLE!

The structure of the search problem?

47

node
a data structure that keeps track of

a state

a parent (node that generated this node)

an action (action applied to parent to get node)
a path cost (from initial state to node)

48

Approach

Start with a frontier that contains the initial state.
Repeat:

If the frontier is empty, then no solution.
Remove a node from the frontier.
If node contains goal state, return the solution.

Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

Find a path from A to E.

Frontier

» Start with a frontier that contains the initial state.
* Repeat:
e |[f the frontier is empty, then no solution.
* Remove a node from the frontier.
* |f node contains goal state, return the solution.
e Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Find a path from A to E.

Frontier

A

» Start with a frontier that contains the initial state.
* Repeat:
» |f the frontier is empty, then no solution.
* Remove a node from the frontier.
* |f node contains goal state, return the solution.
e Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python
David J. Malan and Brian Yu

Find a path from A to E.

Frontier

» Start with a frontier that contains the initial state.
* Repeat:
e |[f the frontier is empty, then no solution.
* Remove a node from the frontier.
* |f node contains goal state, return the solution.
e Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Find a path from A to E.

Frontier

=

e Start with a frontier that contains the initial state.
* Repeat:
e [f the frontier is empty, then no solution.
* Remove a node from the frontier.
* |f node contains goal state, return the solution.
e Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Find a path from A to E.

Frontier

» Start with a frontier that contains the initial state.
* Repeat:
e |f the frontier is empty, then no solution.
* Remove a node from the frontier.
* |f node contains goal state, return the solution.
e Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Find a path from A to E.

Frontier

C D

» Start with a frontier that contains the initial state.
* Repeat:
» |f the frontier is empty, then no solution.
* Remove a node from the frontier.
* |f node contains goal state, return the solution.
e Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Find a path from A to E.

Frontier

» Start with a frontier that contains the initial state.
* Repeat:
e |f the frontier is empty, then no solution.
» Remove a node from the frontier.
* |f node contains goal state, return the solution.
e Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Find a path from A to E.

Frontier

E D

» Start with a frontier that contains the initial state.
* Repeat:
e |f the frontier is empty, then no solution.
*» Remove a node from the frontier.
* |f node contains goal state, return the solution.
e Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Find a path from A to E.

Frontier

» Start with a frontier that contains the initial state.
* Repeat:
e |f the frontier is empty, then no solution.
* Remove a node from the frontier.
* [f node contains goal state, return the solution.
¢ Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Find a path from A to E.

Frontier

D

» Start with a frontier that contains the initial state.
* Repeat:
 |f the frontier is empty, then no solution.
* Remove a node from the frontier.
* |f node contains goal state, return the solution.

e Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Search: Basic idea

60

Search: Basic idea

61

Search: Basic idea

62

Search: Basic i1dea

63

Search: Basic i1dea

64

Search: Basic i1dea

65

Search: Basic i1dea

66

Search: Basic i1dea

67

Search: Basic i1dea

68

Search: Basic i1dea

69

Search: Basic i1dea

70

Search: Basic i1dea

71

72

Search tree

The root node corresponds to the starting
State

The children of a node correspond to the
successor states of that node’s state

A path through the tree corresponds to a
seguence of actions

— Assolution is a path ending in the goal state

Nodes vs. states

— Astate is a representation of the world,
while a node is a data structure that is
part of the search tree

» Node has to keep pointer to parent, path cost,
possibly other info

Graph Search as Tree Search

73

« Trees are directed graphs without cycles and with nodes having <=1 parent

= Witz can lum graph search problems (from 5 o G) nto Fee search
problems by

« replacing undirected nks by 2 directad links

« gvoiding loops in path (or keeping rack of waited nodes globally)

77

Example: Romania

=] Cradea
MNeamt
- a7
T5
=] lasi
AradlT
T . g2
Sibiu g Fagams
113 a0 u M Vas|ui
o Rimnicu Vilcea
TIITIIEEIEFH -
142
: : 11
L1l - Lugl:lj Pitesti
7 - " Hirs owva
4 M ehadia 101 e 2 TIrziceni
T 1 24
5 138 "
Dobreta L 130 Huchamst
[. 90
Craiova Eforie

-] Giurgiu

Tree search example

78

—

7 Shbin

" Timisoara’

——

. Zaiind Ty

Tree search example

79

Aad

imiscara

-

¢ MArad Ty ¢ Fagaras ¥ ¢ Oradea Td Fimnicu Vilesay

Tree search example

80

< Amd

ST

imiscara

~Arad ._ ™) Luggj ._ >

~ " Arad T3

& Oradea ¥

What could go wrong?

81

n to Artificial Intelligence with Python,

Revised Approach

 Start with a frontier that contains the initial state.
e Start with an empty explored set.
* Repeat:
e |f the frontier is empty, then no solution.
* Remove a node from the frontier.
 |[f node contains goal state, return the solution.
* Add the node to the explored set.

e Expand node, add resulting nodes to the frontier if they
aren't already in the frontier or the explored set.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Search without repeated states

92

imisoara

H7=118+329

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni
Vashui
Zerind

156
0
160
242
151
176
TI
151
28
244
241
234

10
193
253
e

1o
T4

Search without repeated states

93

G46=2804366 415=239+176 &71= 231-!-350 413=220+193

imisoara

H7=118+329

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui
Zerind

156
0
160
242
151
176
TI
151
28
244
241
234

10
193
253
e

1o
T4

Search without repeated states

94

imisoara

H7=118+329 4489=75+374

G46=2804366 415=239+176 &71= 2‘31-!-350 ,r C;-

{Clalcwa) (F'IIBEU ¥ %
H53=30

526=366+160 417=317+100

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui
Zerind

156
0
160
242
151
176
TI
151
28
244
241
234

10
193
253
e

1o
T4

Search without repeated states

95

-
— x H47=118+329 449=7E+374
c:g;) -
G45=280+366 \\ 671= 2;1+aau ; o

/ ‘ - T

526=366+160 417=317+100 553=300%253

541 —§EE +253 4-50:11-534-0

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui
Zerind

156
0
160
242
151
176
TI
151
28
244
241
234

10
193
253
e

1o
T4

Search without repeated states

96

LS‘““_T)

o H47=118+329

c:g:
64622804366 J,

\N 5?1 2‘31-!-350

59153&‘ Y253 q.ﬁug EEE_EEE+1EU ,_.af' -~-..%_ 5533004253
.
418=418+0 515355150 G0T=414+183

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui
Zerind

]
a
L&0
242
lal
-]
T
L5l
il]
4+
41
1+

10
193
253
e

1o
T4

Search without repeated states

97

LS‘““_T)

o H47=118+329

c:g:
64622804366 J,

\N 5?1 2‘31-!-350

59153&‘ Y253 q.ﬁug EEE_EEE+1EU ,_.af' -~-..%_ 5533004253
.
418=418+0 515355150 G0T=414+183

Straight-line distance

© Buchamrst
Arad
Bucharest
Cralova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
MMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikea
Sibiu
Timisoara
Urziceni

Vashui
Zerind

]
a
L&0
242
lal
-]
T
L5l
il]
4+
41
1+

10
193
253
e

1o
T4

Implementation: states vs. nodes

99

« Astate is a (representation of) a physical configuration

« Anode is a data structure constituting part of a search tree includes
state, parent node, action, path cost g(x), depth

parent, action

State || 5 ||| 4 Node depth =6
g=6
6 (|| 11l 8
ale
71l 3|l 2 st

100

Implementation: general tree search

» Fringe: the collection of nodes that have been
generated but not yet been expanded

» Each element of a fringe Is a leaf node, a node with
NO SUCCESSOrS

 Search strategy: a function that selects the next
node to be expanded from fringe

 We assume that the collection of nodes Is
Implemented as a queue

» The operations on the queue are:
— Make-queue(queue)
— Empty?(queue)
— first(queue)
— remove-first(queue)
— Insert(element, queue)
— Insert-all(elements, queue)

102

Simple search algorithms - revisited

« Asearch node Is a path from state X to the start state (e.g. XBAYS)
« The state of a search node is the most recent state of the path (e.g. X)
. Let Q be a list of search nodes (e.g. (XBAS) (C B AS)) and S be the start state

« Algorithm
1. Initialize Q with search node (S) as only entry, set Visited = (S)
2. 1T Q is empty, fail. Else pick some search node N from Q
3. Ifstate(N) is a goal, return N (we have reached the goal)
4, Otherwise remove N from Q
5. Find all the children of state(N) not in visited and create all the one-step
extensions of N to each descendant
6. Add the extended paths to Q, add children of state(N) to Visited
/. Gotostep 2

« Critical decisions
— Step2: picking N from Q
— Step 6: adding extensions of N to Q

103

Examples: Simple search strategies

* Depth first search
— Pick first element of Q
— Add path extensions to front of Q

 Breadth first search
— Pick first element of Q
— Add path extensions to the end of Q

104

Visited versus expanded

 Visited: a state M is first visited when a path to M first gets added to
Q. In general, a state is said to have been visited if it has ever shown
up in a search node in Q. The intuition is that we have briefly visited
them to place them on Q, but we have not yet examined them
carefully

« Expanded: a state M is expanded when it is the state of a search node
that is pulled off of Q. At that point, the descendants of M are visited
and the path that led to M is extended to the eligible descendants. In
principle, a state may be expanded multiple times. We sometimes
refer to the search node that led to M as being expanded. However,
once a node Is expanded, we are done with it, we will not need to
expand it again. In fact, we discard it from Q

105

Testing for the goal

 This algorithm stops (in step 3) when state(N) = G or, In
general when state(N) satisfies the goal test
» We could have performed the test in step 6 as each

extended path i1s added to Q. This would catch termination
earlier

« However, performing the test in step 6 will be incorrect
for the optimal searches

108

Breadth-first search

The root node Is expanded first, then all the successors of
the root node, and their successors and so on

* In general, all the nodes are expanded at a given depth in
the search tree before any nodes at the next level are
expanded

 Expand shallowest unexpanded node

* Implementation:
— fringe is a FIFO queue,

— the nodes that are visited first will be expanded first

— All newly generated successors will be put at the end of
the queue

— Shallow nodes are expanded before deeper nodes

109

Breadth-first search

110

Breadth-first search

>@ G

111

Breadth-first search

Breadth-first search

PO © © ¢

8-puzzle problem

114

Breadth-first search of the 8-puzzle, showing order in

which states were removed from open.

8

Breadth-first search

11213
8 4
7|6]5

46
Goal

4

45

4]7]1

218]3(2]|8]3

N

44

811]3
4

43

42

w|m| <
o|wn| M
m &
o]~
w|o|wn
m|o|<
o~ ol
B o -l &
w|w|wn - o — |~
m|o|=
N~ oo«
©) ~—
D @ || en
o~ o =
(e 0] A
- m|wo|=
g5 |
2B =[] Q
jo|ofw ™
wo|<|w© 2._,;
o=~
o~
m|w|o©
<t 3.5 M~ o))
-— o|<
o|<|w© [aV]
|-~
EERNEC
| |w©o wlm|w
o0 o0}
o]~ Tl d
6 S|~~~
—
-]
)
e A
M|
Mo~ |~
||~ ad
Tp] o|=|w
o|<|w o|=|w —
anjoo|©
s) © wo|w©
o|=|w ~
N =]~ o[-l
el i 2345
[ap] M~
_coleE
<t
— o~ o
| |wn 2345
|~ |w© ~|of
o Ions
(a0} <t
il Bl - Ql
w|~|w©
o|<|w
H?_ = o|<|wn
w0 |~
|0
w|o|~ @ .27 Sl B A
(89]
o~ od
(aV] o< |w 3.5
w0 ~ ||~
| D)~ || —

22

 ARARAAR B BARRRARRRARARR |

2

21

1
B8|6]3
X

6(8(4(|6]8|4(6[4]3||6]4(5(6]/7[4]|6]7(42][1]4]2

- HBE
264
1]7]5
A E
2|64
1]7]5
s sl

IEENEENEENEENEENE | AEAE BERAEnERnEnE

2(6]14]2

813
6|4
715
10 /x 12
3
6184
715

20

Taken from htt3p4://iis?ﬁaist?gc.k?ies/ 3 39 40 4

115

Depth-first search

« Expand deepest unexpanded node

* Implementation:
— fringe = LIFO queue (stack) , i.e., put successors at front

2©.

116

Depth-first search

117

Depth-first search

118

Depth-first search

119

Depth-first search

120

Depth-first search

121

Depth-first search

122

Depth-first search

123

Depth-first search

124

Depth-first search

125

Depth-first search

126

Depth-first search

PREFPRING FOR A DATE:

\WHAT SITUATIONS
MIGHT T PREPARE. RR7

1) MEDICAL EMERGENCY

2) DANUING

[DF0D TOOBFPENSVE

O
o

127

HM. WHICH SNAKES ARE
EMERGENCIES (AN HOPPEN? DENGEROUS? LETS SEE... THE RESEARCH (OMPARING

OkAY, WHAT KINDS OF

) A) SNAKEBITE
B) LIGHTNING STRIKE.

A O PALLFRM CHAR

O
O

A

SNAKE VENOMS 1S SCATTERED —————

b) GARTER SNAKE 7

uw A SPREADSHEET T ORGANIZE IT:
O

0

o]

O

IMHERE O PIK. BY LDy, THE INUAND
YOUUR. YOURE TAIPAN HAS THE DEADUEST
NWDRES&ED\ ? VENOM OF ANY SNAKE

)

S

I REALLY NEED To STop
USING DEPTH-FIRST SEARCHES. ——

http://xkcd.com/761/

128

Breadth first search

Q Visited)
118 S
2 D)
3
: S <D
5 (B
6

Fick first element of Q; Add path extensions to end of Q

Added paths in blue

We show the paths in reversed order; the node's state is the first entry.

Breadth first search

129

Q Visited
(5) S
(A S) (B S) ABS

L=r B I+, B I N L (L T I

130

Breadth first search

Q Visited

(
(A S) (BS) ABS 2 P
J(CAS)DAS) C,0,BAS 1 o)

[—r I 3 N S " (L T I S T

131

Breadth first search

Q Visited
1 |(s) s
2 |{(AS)(ES) ABS
3 |(BS)(CAS)(DAY) C,DBAS
4 ((CAS)DAS)(GBSY G,C,.D,BAS
5
6

* We could have stopped here, when the first path to the goal was generated.

Breadth first search

132

Q Visited
1 |(8) 5
2 | (AS)(BS) AB,S
3 |(BS)(CAS)(DAS) CDBAS
4 |[(CAS)(DAS)(GBS) G,C,DBAS
5
]

Breadth first search

133

Q Visited
1[(9) 5
2 [(AS)(BS) ABS
3 [(BS){CAS)DAS) C,D,BAS
4 [(CASY(DAS)(GBSY G,C,0,BAS
5 |(DAS)(GBS) G,C,DBAS
6

Breadth first search

134

Q Visited
1 {(8) S
2 [(AS)(BS) ABS
3 [(BS){CAS)(DAS) C,DBAS
4 [(CASYDAS)(GBSY G,C,D,BAS
5 |[(DAS)(GBS) G,C,D,BAS
6

Breadth first search

135

Q Visited
1 [(S) S
2 |(AS)(BS) ABS
3 |(BS)(CAS)DAS) C,D.BAS
4 [(CAS)(DAS)(GBSy G,C.DBAS
5 [(DAS)(GBS) G,C,.DBAS
6 [(GBS) G,C.DBAS

Breadth first search

136

Q Visited
1 1(S) S
2 |(AS)(BS) AB,S
3 |BS)(CAS)[DAS) C,.DBAS
4 |((CAS)(DAS)(GBSY G,C,D,BAS
5 |(DAS)(GBS) G,C,D,BAS
6 |(GBS) G,C,D,BAS

137

Breadth first search

NE: D is not
visited again

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

138

Breadth first (Without visited list)

Pick first elemert of (0 Add palh extansions to end of O

4.

(3]

(A 5} (BS)

[BSICASIDAS

(CAS)DAS)DES) (GBS
DAS)DBS)(GES)
[DBS)I(GBS)(CDAS)(GDAS)
(GBS)(CDASHGDAS)(CDBS)(GDES)
Added paths in blue

We show the paths in reversed order; the node's state is the first emtry.
Ylife could have stopped hare, when the first path to the goal was gansrated.

Xy | iR | e | LD | RO | e

;

139

Depth first search

Q Visited /®

9
5
Ve
)

Fick first element of Q; Add path extensions to front of 0

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

140

Depth first search
Q Visited
(S) g

3, N I O L I W P

Depth first search

141

Q Visited
(S) 5
(A S) (B 5) A B,S

[, N - S L T L i P

142

Depth first search

Q Visited
(S) 5

(AS) B9) AB,S
(CAS)DAS)(BS) |CDBAS

L+ B - P R S R

Depth first search

143

Q Visited
1 (S) 5
2 (AS)(BS) A B, S
3 [(CAS)DAS){(BS) |CDBAS
4 |(DAS)BSY) CDBAS
b

144

Depth first search

Q Visited
1 (S) S
2 (A S)(BS) A B, S
3 (CAS)DAS)(BS) |CDBAS
4 |(DASBS) C,DBAS
5 (GDAS)(BS) G,C,D,BAS

145

Depth first search

Q Visited
1 [(8) 5
2 |[(AS)(BS) AB,S
3 |(CAS)DAS)(BS |CDBAS
4 |(DAS)BSY) C.DBAS
5 |[cDAs)BS) 6,C,D,BAS

146

Depth-first search

Another (sasier?) way to see it

Numbers indicate order pulled off of Q {expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

147

Depth-first search

Ancthar (easiar?) way to see it

1

& e

2

Numbers indicate order pulled off of Q (expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

148

Depth-first search

Anolher (gasier?) way losee |

Numbers indicate ordar pulled off of Q (axpandsd)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

149

Depth-first search

Anclher (gasier?) way losse Il

NB: C is not
visited again
Numbers indicate order pulled off of Q {expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

150

Depth-first search

Ancther {easier?) way to see |l

Numbers indicate order pulled off of Q {expanded)

Dark blue fill = Visited & Expanded
Light gray fill = Visited

151

Depth-first search

Pick frstalament of [, Add path exdensiona to frani of ()

Q
(S)

(AS) (BS)
(CAS)DAS)(BS)
(DAS)BS)
(CDASHGDAS)(BS)

[GDAS)BS)

Added paths in blue
We show the paths in reversed order; the node's state is the first entry.

Do not extend a path to a state if the resulting path would have a loop.

H O | WA -

BFS vs. DFS

BFS vs. DFS

158

BFS vs. DFS

159

BFS vs. DFS

160

BFS vs. DFS

BFS vs. DFS

BFS vs. DFS

163

BFS vs. DFS

BFS vs. DFS

165

BFS vs. DFS

166

NN A
v A A

BFS vs. DFS

BFS vs. DFS

168

BFS vs. DFS

169

BFS vs. DFS

BFS vs. DFS

172

BFS vs. DFS

)

A\
/

e E:f“
“ .,‘\,“K{“\

- /’:ﬂ 1 1 k
B J .ﬂ.

a
] 4
&
\)
._ ,f\, d 6 d
o g b g &
@ @ @ @ - H‘_:ﬂ.,‘
AN

173

BFS vs. DFS

)

A\
/

e E:f“
“ .,‘\,“K{“\

- /’:ﬂ 1 1 k
B J .ﬂ.

a
] 4
&
\)
._ ,f\, d 6 d
o g b g &
@ @ @ @ - H‘_:ﬂ.,‘
AN

174

BFS vs. DFS

)

A\
/

e E:f“
“ .,‘\,“K{“\

- /’:ﬂ 1 1 k
B J .ﬂ.

L]
L] 4
&
\ #
._ ,f\, g6 d B
NIy
. /n’\ s a
d s g m .f\., T e
KRN KA

A TN OA K {\,

175

BFS vs. DFS

)

A\
/

e E:f“
“ .,‘\,“K{“\

- /’:ﬂ 1 1 k
H‘F. J .ﬂ.

a
CE
&
\ #
,f\, LR
l"-\n 6/ d/ \h A e e

A T TA f‘f}\ {\,

176

BFS vs. DFS

)

A\
/

e E:f“
“ .,‘\,“K{“\

- /’:ﬂ 1 1 k
B J .ﬂ.

C j\, j{\ ﬁ_,..ﬁ-.__h s ﬁ:_ﬁ::h...b
n e n/n/\u Jf\n jﬁhhm":u
., 5\ FANFANFAN A i
VAN AN

177

BFS vs. DFS

)

A\
/

< E‘i:a
“ .,‘\,"\:("3

- /’:ﬂ 1 1 k
H‘F. J .ﬂ.

a
LE
&
\)
o A % g b ﬁﬁﬁ o
l"-\n 6/ d/ \h A e e

A T TA f‘f}\ {\,

178

BFS vs. DFS

=0

Al
/

< E‘i:a
“ .,‘\,"\:(Q

. /’:ﬂ 1 @ k
H‘F. J .ﬂ.

5 '\ /6 ;}\5{\ /(6\ f&“

179

Uninformed search strategies

« A search strategy Is defined by picking the order of node
expansion

« Uninformed search (blind search) strategies use only the
Information available in the problem definition

« Can only distinguish goal states from non-goal state
 Breadth-first search

« Uniform-cost search

* Depth-first search

* Depth-limited search

* lterative deepening search

180

Breadth First Search

function BREADTH-FIRST-SEARCH (problem) returns a solution or failure
return GENERAL-SEARCH (problem, ENQUEUE-AT-END)

R

Breadth-first search tree after 0.1.2 and 3 node expansions

Expand: red nodes: Goal: green node

In this example.b=2. and d =2

181

Breadth-first search

20 NN e
|| |

Se Te Ue Open

Breadth-first search

« Expand shallowest unexpanded node
 Implementation: frontier is a FIFO queue

183

Breadth-first search

« EXpansion order:
(S.d.e,p,b,c.e,h,r,q,a,3,

h,r,p,q,f,p,q,f,q,c,G)
e
@ R ®
g K

184

function DEPTH-FIRST-SEARCH (problem) returns a solution or failure
GENERAL-SEARCH (problem, ENQUEUE-AT-FRONT)

: o ®
Alternatively can
use a recursive e o 4% 4
implementation.
]] © @
® 3
® @ @ ©
e © o o e @ e o
® e o @ o e o

Depth-first search

Depth-first search

» EXxpand deepest unexpanded node
* Implementation: frontier is a LIFO queue

187

Depth-first search

« EXpansion order:
(S.d,b,a,c,a,e,h,p,q,q,
r,f,c,a,G)

Depth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Depth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Depth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Depth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Depth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Depth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Depth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Breadth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Breadth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Breadth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Breadth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Breadth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Breadth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Breadth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Depth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

Breadth-First Search

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,
David J. Malan and Brian Yu

204

Analysis of Search strategies

 Strategies are evaluated along the following dimensions:
— completeness: does it always find a solution if one exists?
— time complexity: number of nodes generated
— space complexity: maximum number of nodes in memory
— optimality: does It always find a least-cost solution?
« Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution
— m: maximum depth of the state space (may be «)

Properties of breadth-first search

205

Complete? Yes (if b Is finite)
Time?
Number of nodes in a b-ary tree of depth d:
(d 1s the depth of the optimal solution)

1+b+b2+b3+... +bd = O(bd)

Space? O(bY) (keeps every node in memory)
Optimal? Yes (if cost = 1 per step)
Space Is the bigger problem (more than time)

Depth | Nodes Time Memory
0 1 1 millisecond 100 kbytes
2 111 0.1 second 11 kilobytes
4 11,111 11 seconds 1 megabyte
6 108 18 mintes 111 megabytes
g 108 31 hours 11 gigabytes
10 101¢ 128 days 1 terabyte
12 1012 35 years 111 terabytes
| 14 10 3500 vears 11,111 terabytes

206

Properties of depth-first search

Complete? No: fails in infinite-depth spaces,
spaces with loops

— Modify to avoid repeated states along path
—> complete in finite spaces

« Time?
Could be the time to reach a solution at maximum depth
m: O(b™)
Terrible if m is much larger than d

But if there are lots of solutions, may be much faster than
BFS

Space? O(bm), 1.e., linear space!
Optimal? No - — returns the first solution it finds

207

Depth-limited search

= depth-first search with depth limit I,
1.e., nodes at depth | have no successors

* Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE- DLS(node, problem, limit) returns soln/fail / cutoff
cutoff-occurred? « false
if GOAL-TEST[problem](STATE[node]) then return SoLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result + RECURSIVE- DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? + true
else if result + faidure then return result
if cutoff-occurred? then return cutoff else return failure

search of the 8-puzzle with a dep#®

ted search

Imi

Depth |

= | w0

8

-~

4
5

3
4
5

2
7
6

4
6|5
23

2
7

s[sJl] [8[1]s

2(1]4

2\25\ 30
3 218

114 7(1]4
5 6 5

8
B

3
4
15l [7]e]5

2
6

3
4

8
7

15
3

6|74 2
Kﬂs

2
6
1k § EE

3
5

12

of<+|w of+|w
© [7°) I w|w
o |~ —| M~
foe) o0}
— al
of<s|w
W|—|©
<~
of|<|w D
—
ofw|~
of —
(a\|
ofs|w
||~

6
1

AR 1BR BBRE
4
7

4
5

8
7

6
1

2|6

117
2|16(4
7|5

26

11 13 14 16 17 22

10

6

Taken from http://iis.kaist.ac.kr/es/

Goal

209

Example: Romania

210

Depth limited search

Like depth-first search, except:
- Depth limit 1n the expand functin

L = depth linmut
Complete 1f L = d (dis the depth of the shallowest goal)

Not optimal (even if one continues the search after the
first solution has been found, because an optimal solution may
not be within the depth limit L)

O(b") time
O(bL) space

211

Iterative deepening search

« Use DFS as a subroutine
1. Check the root
2. Do a DFS searching for a path of length 1

3. If there is no path of length 1, do a DFS searching for
a path of length 2

4. If there Is no path of length 2, do a DFS searching for
a path of length 3...

212

Iterative deepening search

- —

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence
inputs: problem,a problem

for depth — 0 to oo do

if DEPTH-LIMITED-SEARCH(problem, depth) succeeds then return its result
end |

return failure

Limit=0 &

Limii=1 @

Depth-first search Unit=2 @

A
for each depth. _ A A\ />\

Four iterations of iterative deepening search on a binary tree.

213

Iterative deepening search | =0

Limit=0 10N LN

214

Iterative deepening search | =1

S »@/@\a o/@\@ o/‘\o

215

Iterative deepening search | =2

Limit =2 »(2)

- .f(b% K@K P

216

Iterative deepening search | =3

Limit =3 10 () Q

217

Iterative deepening search

Number of nodes generated in a depth-limited search to depth d with

branching factor b:
NpLs =00 + b+ b2 + ... + b2 + b + p?

« Number of nodes generated in an iterative deepening search to depth d
with branching factor b:

Nips = (d+1)b% + d b + (d-1)b™ + ... + 3b%2 +2pd-1 + 1pd

e Forb=10,d =5,
— Np,s=1+10+100 + 1,000 + 10,000 + 100,000 = 111,111
— N,ps =6+ 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

« Overhead = (123,456 - 111,111)/111,111 = 11%

218

Iterative deepening search

|

|

|

} If branching factor is large.,
} most of the work 1s done at
| ~

| the deepest level of search,
| ; : :

| so iterative deepening does
| not cost much relatively to
: breadth-first search.

I

|

|

{1-1/8)"2

L 1 ' 1
1 2 3 4 5 6 7 8 9
Branching Factor B

Graph of branching factor vs. constant coefficient as search depth goes to infinity.

Conclusion:

+ Iterative deepening 1s preferred when search space 1s large and
depth of (optimal) solution 1s unknown

* Not preferred 1f branching factor 1s tiny (near 1)

219

Properties of Iterative deepening search

Complete? Yes

Time? (d+1)b° + d b + (d-1)b2 + ... + b9 = O(bd)
» Space? O(bd)

« Optimal? Yes, If step cost =1

DEPTH-FIRST SEARCH

BREADTH-FIRST SEARCH

220

BREPTH-FIRST SEARCH

221

Search with varying step costs

« BFS finds the path with the fewest steps, but does not
always find the cheapest path

222

Uniform-cost search

 For each frontier node, save the total cost of the path
from the initial state to that node

» EXxpand the frontier node with the lowest path cost

» Implementation: frontier Is a priority queue ordered by
path cost

« Equivalent to breadth-first if step costs all equal

* Equivalent to Dijkstra’s algorithm in general

223

Uniform-cost search

Insert nodes onto open list in ascending order of cost of path to root.

S@®
() (; |
P> N ‘
// T |
A® B \co |

| h 15

S
/I\
. e
: r d oo

Taken from http://www.cs.nott.ac.uk/~gxk/courses/g5aiai/003blindsearches/blind_searches.htm

224

Uniform cost search

 Each link has a length or cost (which is always
greater than 0)

» \We want shortest or least cost path

Total path cost:

(SAC) 4
(SBDG) g
(SADC) 9

225

Uniform cost search

D

2 |2AS)5BS)

226

Uniform cost search

Q

05)

2AS)(5BS)
(4CAS)EDAS)5BS)

Uniform cost search

227

Q

{05)

2AS)BBS)

(4CAS)6DAS)EBS)

| p | =

6DAS)(BBS)

Uniform cost search

228

Q
1 |@s)
2 |2AS)6BS)
3 [4CAS)(6DAS)5BS)
4 |6DAS)(5BS)
5

(6DBS)(10GBS)EDAS)

229

Uniform cost search

Q

{08S)

(2AS)5BSY)
(4CAS)EDAS)5BS)

GDAS) (5B S)
(6DBS)(I0GBS) EDAS)

BGDBS)(O9CDBS) (10GES)EDAS)

o e || | po [=

230

Uniform cost search

Q

{05S)

2AS)5BY
(4CAS)(6DAS)GBS)

6DAS)(5BS)
GDBS) (10GBS) GDAS) <D

(BGDBS)(9CDBS)I0GBS)EDAS)

; |BGDAS)(9CDAS)BGDBS)OCDBS)
(10GBS)

L= BRI+, B I O L R LS]

231

Uniform cost search

Q

{0 S)

(2AS)(5B3)
4CAS)EDAS)(GBS)

€DAS)5BS)
GDBS)10GBS) §DAS) (B

8GDBS5)(9CDBS)0GBS)EDAS)

; |BGDAS)|ICDAS)BGDBS)ECDBS)
(10GBS)

L= B &, B - L D LR]

232

Why not stop on the first goal

+ When doing Uniform Cost, it is not correct to stop the search when the first

path to a goal is generated, that is, when a node whose state is a goal is
added to Q.

We must wait until such a path is pulled off the @ and tested in step 3. Itis
only at this point that we are sure it is the shortest path to a goeal since
there are no other shorter paths that remain unexpanded.

+ This contrasts with the Any Path searches where the choice of where to
test for a goal was a matter of convenience and efficiency, not correctness.

* Inthe previous example, a path to G was generated at step 5, but it was a
different, shorter, path at step 7 that we accepted.

233

Uniform-cost search example

« EXpansion order:
(S,p,d,b,e,a,rfeG)

Cost @6 a (h)13 (P?
N

contours

234

Another example of uniform-cost search

http://en.wikipedia.org/wiki/File:Dijkstras_progress_animation.gif

235

Properties of uniform-cost search

Expand least-cost unexpanded node
Implementation:

— fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal

Complete?

Yes, If step cost Is greater than some positive constant ¢ (we
don’t want infinite sequences of steps that have a finite total
cost)

Optimal?
Yes

236

Optimality of uniform-cost search

» Graph separation property: every path
from the initial state to an unexplored state
has to pass through a state on the frontier

— Proved inductively G

» Optimality of UCS: proof by contradiction

— Suppose UCS terminates at goal state n
with path cost g(n) but there exists
another goal state »” with g(» ") < g(n)

— By the graph separation property, there
must exist a node n”’ on the frontier that is
on the optimal path to n’

— But because g(n ") <g(n”) <g(n),
n” should have been expanded first!

237

Uniform-cost search

o Complete? Yes, if step cost> ¢

 Time? # of nodes with pathn cost g < cost of optimal
solution,

O(beelling(C* 2)) where C™ is the cost of the optimal solution

 This can be greater than O(h9): the search can explore long
paths consisting of small steps before exploring shorter
paths consisting of larger steps

« Space? # of nodes with g < cost of optimal solution,
O(bceiling(C*/ g))

« Optimal? Yes — nodes expanded in increasing order of g(n)

238

Review: Uninformed search strategies

Algorithm Complete? Optimal? Time Space
complexity complexity

If all step d d
costs are equal O(b*) O(b*)

DES No No O(b™) O(bm)
If all ste
IDS Yes costs are egual O(b) O(bd)
Yes Yes Number of nodes with
UCS g(n) O

b: maximum branchm% factor of the search tree

d: depth of the optlm solution

m: maximum en%t of any path in the state space
cost of optimal solution

L@
%

(n) cost of path from start state to node n

239

Bidirectional search

 Run two simultaneous searches — one forward from the
Initial state, and the other backward from the goal, stopping
when two searches meet in the middle

«is g,;a
FionE o

Forb=10,d=6, BFS 1,111, 111 nodes, BS 2,222 nodes

Bi-directional Search discussion

240

* Need to have operators that calculate predecessors.

* Need a way to check that states meet (are the same)
« Efficient way to check when searches meet: hash table
e Can use IDS or BFS or DFS 1n each half

« Optimal, complete, O(b%?2) time.

« Still O(b92) space (even with iterative deepening)
because the nodes of at least one of the searches have to
be stored to check matches.

241

Repeated states

« Failure to detect repeated states can turn a linear
problem into an exponential one!

—

I AN

242

Handling repeated states

* Do not return to the state just you came from

» Do not create paths with cycles in them

« Do not generate any state that was ever generated
before

243

Worst Case Running Time
Max Time oc [Aax #Yisited

+ The number of states in the search d=0
space may be exponential in some
“depth” parameter, e.g. number of
actlons In a plan, number of moves In d=1
a game.

+ All the searches, with or without
visited list, may have to visit each d=2
state at least once, in the worst case.

+ 50, all searches will have worst case ,
running times that are at least 060000000
proportional to the total number of
states and therefore exponential in
the “depth” parameter.

d is depth

b is branching factor

bd < (b*1 =1} [(b - 1) < b
states in tree

244

Worst Case Space
fax Q) size = Max (#Visited — #Expanded)

0 visited
@ expanded

ANN AN

Depth First max Q size Breadth First max) size
{bo="1jd rs b b

Summary

245

« Problem formulation usually requires abstracting away real-world

details to define a state space that can feasibly be explored

« Variety of uninformed search strategies

« lterative deepening search uses only linear space and not much more
time than other uninformed algorithms

- Breadth- Uniform- Depth- Depth- [terative Bidirectional
CHIEnon First Cost First Limited Deepening (if applicable)
Time b b b" b' b pes
Space b b bm bl bd i
Optimal? Yes Yes No No Yes Yes
Complete? Yes Yes No Yes, ifl > d Yes Yes

b = branching factor

d = depth of shallowest goal state

m = maximum depth of the search tree
| = depth limit of the algorithm

Classes of Search

246

Class Mame Operation

Any Path Depth-First svstematic exploraton of whole tree
Uninformed Breadth-First untll a goal node 5 found.

Any Path Best-First Lzea heuristic meaaure of goodneas
Informed of a state, e 0 estimated distance to goal
Optimal Uniform-Cost lses pat ‘lendth® measure.
Uninformed Finds “shortest” path.

Optimal AF Uses path “lendth” measure and heunstc
Informed Finds "shortest” path

	Slide 1: Uninformed/Blind Search
	Slide 2
	Slide 3
	Slide 4: Types of agents
	Slide 5
	Slide 6
	Slide 7: Simple-reflex vs goal based agents
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Problem solving agents
	Slide 14: Problem solving agents
	Slide 15: Problem solving agents
	Slide 17
	Slide 18
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Search problem components
	Slide 30: Example: Romania
	Slide 35: Vacuum world state space graph
	Slide 37: Example: The 8-puzzle
	Slide 38: Example: 8-queens problem
	Slide 39
	Slide 40: Example: Route finding problem
	Slide 41
	Slide 42: Example: robotic assembly
	Slide 44: Other example problems
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 60: Search: Basic idea
	Slide 61: Search: Basic idea
	Slide 62: Search: Basic idea
	Slide 63: Search: Basic idea
	Slide 64: Search: Basic idea
	Slide 65: Search: Basic idea
	Slide 66: Search: Basic idea
	Slide 67: Search: Basic idea
	Slide 68: Search: Basic idea
	Slide 69: Search: Basic idea
	Slide 70: Search: Basic idea
	Slide 71: Search: Basic idea
	Slide 72: Search tree
	Slide 73: Graph Search as Tree Search
	Slide 77: Example: Romania
	Slide 78: Tree search example
	Slide 79: Tree search example
	Slide 80: Tree search example
	Slide 81: What could go wrong?
	Slide 90
	Slide 92: Search without repeated states
	Slide 93: Search without repeated states
	Slide 94: Search without repeated states
	Slide 95: Search without repeated states
	Slide 96: Search without repeated states
	Slide 97: Search without repeated states
	Slide 99: Implementation: states vs. nodes
	Slide 100: Implementation: general tree search
	Slide 102: Simple search algorithms - revisited
	Slide 103: Examples: Simple search strategies
	Slide 104: Visited versus expanded
	Slide 105: Testing for the goal
	Slide 108: Breadth-first search
	Slide 109: Breadth-first search
	Slide 110: Breadth-first search
	Slide 111: Breadth-first search
	Slide 112: Breadth-first search
	Slide 113: 8-puzzle problem
	Slide 114: Breadth-first search
	Slide 115: Depth-first search
	Slide 116: Depth-first search
	Slide 117: Depth-first search
	Slide 118: Depth-first search
	Slide 119: Depth-first search
	Slide 120: Depth-first search
	Slide 121: Depth-first search
	Slide 122: Depth-first search
	Slide 123: Depth-first search
	Slide 124: Depth-first search
	Slide 125: Depth-first search
	Slide 126: Depth-first search
	Slide 127
	Slide 128: Breadth first search
	Slide 129: Breadth first search
	Slide 130: Breadth first search
	Slide 131: Breadth first search
	Slide 132: Breadth first search
	Slide 133: Breadth first search
	Slide 134: Breadth first search
	Slide 135: Breadth first search
	Slide 136: Breadth first search
	Slide 137: Breadth first search
	Slide 138: Breadth first (Without visited list)
	Slide 139: Depth first search
	Slide 140: Depth first search
	Slide 141: Depth first search
	Slide 142: Depth first search
	Slide 143: Depth first search
	Slide 144: Depth first search
	Slide 145: Depth first search
	Slide 146: Depth-first search
	Slide 147: Depth-first search
	Slide 148: Depth-first search
	Slide 149: Depth-first search
	Slide 150: Depth-first search
	Slide 151: Depth-first search
	Slide 157: BFS vs. DFS
	Slide 158: BFS vs. DFS
	Slide 159: BFS vs. DFS
	Slide 160: BFS vs. DFS
	Slide 161: BFS vs. DFS
	Slide 162: BFS vs. DFS
	Slide 163: BFS vs. DFS
	Slide 164: BFS vs. DFS
	Slide 165: BFS vs. DFS
	Slide 166: BFS vs. DFS
	Slide 167: BFS vs. DFS
	Slide 168: BFS vs. DFS
	Slide 169: BFS vs. DFS
	Slide 170: BFS vs. DFS
	Slide 171: BFS vs. DFS
	Slide 172: BFS vs. DFS
	Slide 173: BFS vs. DFS
	Slide 174: BFS vs. DFS
	Slide 175: BFS vs. DFS
	Slide 176: BFS vs. DFS
	Slide 177: BFS vs. DFS
	Slide 178: BFS vs. DFS
	Slide 179: Uninformed search strategies
	Slide 180: Breadth First Search
	Slide 181: Breadth-first search
	Slide 182: Breadth-first search
	Slide 183: Breadth-first search
	Slide 184
	Slide 185: Depth-first search
	Slide 186: Depth-first search
	Slide 187: Depth-first search
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204: Analysis of Search strategies
	Slide 205: Properties of breadth-first search
	Slide 206: Properties of depth-first search
	Slide 207: Depth-limited search
	Slide 208: Depth limited search
	Slide 209: Example: Romania
	Slide 210: Depth limited search
	Slide 211: Iterative deepening search
	Slide 212: Iterative deepening search
	Slide 213: Iterative deepening search l =0
	Slide 214: Iterative deepening search l =1
	Slide 215: Iterative deepening search l =2
	Slide 216: Iterative deepening search l =3
	Slide 217: Iterative deepening search
	Slide 218: Iterative deepening search
	Slide 219: Properties of iterative deepening search
	Slide 220
	Slide 221: Search with varying step costs
	Slide 222: Uniform-cost search
	Slide 223: Uniform-cost search
	Slide 224: Uniform cost search
	Slide 225: Uniform cost search
	Slide 226: Uniform cost search
	Slide 227: Uniform cost search
	Slide 228: Uniform cost search
	Slide 229: Uniform cost search
	Slide 230: Uniform cost search
	Slide 231: Uniform cost search
	Slide 232: Why not stop on the first goal
	Slide 233: Uniform-cost search example
	Slide 234: Another example of uniform-cost search
	Slide 235: Properties of uniform-cost search
	Slide 236: Optimality of uniform-cost search
	Slide 237: Uniform-cost search
	Slide 238: Review: Uninformed search strategies
	Slide 239: Bidirectional search
	Slide 240: Bi-directional Search discussion
	Slide 241: Repeated states
	Slide 242: Handling repeated states
	Slide 243
	Slide 244
	Slide 245: Summary
	Slide 246: Classes of Search

