
1

Uninformed/Blind Search

Artificial Intelligence

Slides are mostly adapted from AIMA, MIT Open Courseware and

Svetlana Lazebnik (UIUC)

2

3

agent
entity that perceives its environment and acts upon
that environment

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

4

Types of agents

Reflex agent

• Consider how the world
IS

• Choose action based on
current percept

• Do not consider the future
consequences of actions

Planning agent

• Consider how the world WOULD
BE

• Decisions based on (hypothesized)
consequences of actions

• Must have a model of how the world
evolves in response to actions

• Must formulate a goal

Source: D. Klein, P. Abbeel

5

6

7

Simple-reflex vs goal based agents

• Simple-reflex agents directly maps states to actions.

• Therefore, they cannot operate well in environments
where the mapping is too large to store or takes too much
to learn

• Goal-based agents can succeed by considering future
actions and desirability of their outcomes

• Problem solving agent is a goal-based agent that decides
what to do by finding sequences of actions that lead to
desirable states

8

A farmer wants to get his cabbage, goat, and wolf across a river.

He has a boat that only holds two. He cannot leave the cabbage

and goat alone or the goat and wolf alone.

How many river crossings does he need?

9

When you solve this problem, try to think about how you did it.

You probably simulated the scenario in your head, trying to

send the farmer over with the goat, observing the consequences.

If nothing got eaten, you might continue with the next action.

Otherwise, you undo that move and try something else.

How can we get a machine to do this automatically? One of the

things we need is a systematic approach that considers all the

possibilities. We will see that search problems define the

possibilities, and search algorithms explore these possibilities.

10

11

12

Sometimes you can do better

if you change the model

(perhaps the value of having

a wolf is zero) instead of

focusing on the algorithm.

13

Problem solving agents

• Intelligent agents are supposed to maximize their
performance measure

• This can be simplified if the agent can adopt a goal and aim
at satisfying it

• Goals help organize behaviour by limiting the objectives
that the agent is trying to achieve

• Goal formulation, based on the current situation and the
agent’s performance measure, is the first step in problem
solving

• Goal is a set of states. The agent’s task is to find out which
sequence of actions will get it to a goal state

• Problem formulation is the process of deciding what sorts of
actions and states to consider, given a goal

14

Problem solving agents

• An agent with several immediate options of unknown value
can decide what to do by first examining different possible
sequences of actions that lead to states of known value, and
then choosing the best sequence

• Looking for such a sequence is called search

• A search algorithm takes a problem as input and returns a
solution in the form of action sequence

• One a solution is found the actions it recommends can be
carried out – execution phase

15

Problem solving agents

• “formulate, search, execute” design for the agent

• After formulating a goal and a problem to solve the agent
calls a search procedure to solve it

• It then uses the solution to guide its actions, doing whatever
the solution recommends as the next thing to do (typically
the first action in the sequence)

• Then removing that step from the sequence

• Once the solution has been executed, the agent will
formulate a new goal

17

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

18

22

State
a configuration of the agent and its environment

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

23

actions
choices that can be
made in a state

ACTIONS(s) returns the set of actions that can
be executed in state s

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

24

transition model
a description of what state results from performing
any applicable action in any state

RESULT(s, a)
returns the state
resulting from
performing action a
in state s

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

25

state space
the set of all states
reachable
from the initial state by
any sequence of actions

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

goal test
way to determine
whether a given state is a
goal state

26

path cost
numerical cost associated
with a given path

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

solution
a sequence of actions that
leads from the initial state to a
goal state

optimal solution
a solution that has the lowest
path cost among all solutions

27

Search problem components

• Initial state

• Actions

• Transition model

– What state results from

performing a given action

in a given state?

• Goal state

• Path cost

– Assume that it is a sum of

nonnegative step costs

• The optimal solution is the sequence of actions that gives the

lowest path cost for reaching the goal

Initial

state

Goal

state

30

Example: Romania

• On vacation in Romania; currently in Arad

• Flight leaves tomorrow from Bucharest

• Initial state

– Arad

• Actions

– Go from one city to another

• Transition model

– If you go from city A to

city B, you end up in city B

• Goal state

– Bucharest

• Path cost

– Sum of edge costs (total distance

traveled)

35

Vacuum world state space graph

• states integer dirt and robot location.
– The agent is in one of two locations, each of which might or might not

contain dirt – 8 possible states

• Initial state: any state

• actions Left, Right, Suck

• goal test no dirt at all locations

• path cost 1 per action

37

Example: The 8-puzzle

• states: locations of tiles

• Initial state: any state

• actions: move blank left, right, up, down

• goal test: goal state (given)

• path cost: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

38

Example: 8-queens problem

• states: any arrangement of 0-8 queens on the board is a
state

• Initial state: no queens on the board

• actions: add a queen to any empty square

• goal test: 8 queens are on the board, none attacked

64.63...57 = 1.8x1014 possible sequences

39

40

Example: Route finding problem

• states: each is represented by a location (e.g. An airport) and the
current time

• Initial state: specified by the problem

• Successor function: returns the states resulting from taking any
scheduled flight, leaving later than the current time plus the within
airport transit time, from the current airport to another

• goal test: are we at the destination by some pre-specified time

• Path cost:monetary cost, waiting time, flight time, customs and
immigration procedures, seat quality, time of day, type of airplane,
frequent-flyer mileage awards, etc

• Route finding algorithms are used in a variety of applications, such
as routing in computer networks, military operations planning,
airline travel planning systems

41

42

Example: robotic assembly

• states: real-valued coordinates of robot joint angles parts of
the object to be assembled

• actions: continuous motions of robot joints

• goal test: complete assembly

• path cost: time to execute

44

Other example problems

• Touring problems: visit every city at least once, starting
and ending at Bucharest

• Travelling salesperson problem (TSP) : each city must be
visited exactly once – find the shortest tour

• VLSI layout design: positioning millions of components
and connections on a chip to minimize area, minimize
circuit delays, minimize stray capacitances, and maximize
manufacturing yield

• Robot navigation

• Internet searching

• Automatic assembly sequencing

• Protein design

47

node
a data structure that keeps track of
- a state
- a parent (node that generated this node)
- an action (action applied to parent to get node)
- a path cost (from initial state to node)

48

Approach
Start with a frontier that contains the initial state.
Repeat:

If the frontier is empty, then no solution.

Remove a node from the frontier.

If node contains goal state, return the solution.

Expand node, add resulting nodes to the frontier.

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

49

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

50

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

51

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

52

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

53

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

54

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

55

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

56

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

57

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

58

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

60

Search: Basic idea

start

61

Search: Basic idea

62

Search: Basic idea

63

Search: Basic idea

64

Search: Basic idea

65

Search: Basic idea

66

Search: Basic idea

67

Search: Basic idea

68

Search: Basic idea

69

Search: Basic idea

70

Search: Basic idea

71

Search: Basic idea

72

Search tree

• The root node corresponds to the starting

state

• The children of a node correspond to the

successor states of that node’s state

• A path through the tree corresponds to a

sequence of actions

– A solution is a path ending in the goal state

• Nodes vs. states

– A state is a representation of the world,

while a node is a data structure that is

part of the search tree

• Node has to keep pointer to parent, path cost,

possibly other info

…

Startin

g state

Success

or state

Action

Goal

state

Frontier

73

Graph Search as Tree Search

77

Example: Romania

78

Tree search example

79

Tree search example

80

Tree search example

81

What could go wrong?

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

90

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

92

Search without repeated states

Start: Arad

Goal: Bucharest

93

Search without repeated states

Start: Arad

Goal: Bucharest

94

Search without repeated states

Start: Arad

Goal: Bucharest

95

Search without repeated states

Start: Arad

Goal: Bucharest

96

Search without repeated states

Start: Arad

Goal: Bucharest

97

Search without repeated states

Start: Arad

Goal: Bucharest

99

Implementation: states vs. nodes

• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree includes
state, parent node, action, path cost g(x), depth

100

Implementation: general tree search

• Fringe: the collection of nodes that have been
generated but not yet been expanded

• Each element of a fringe is a leaf node, a node with
no successors

• Search strategy: a function that selects the next
node to be expanded from fringe

• We assume that the collection of nodes is
implemented as a queue

• The operations on the queue are:
– Make-queue(queue)

– Empty?(queue)

– first(queue)
– remove-first(queue)

– insert(element, queue)
– insert-all(elements, queue)

102

Simple search algorithms - revisited
• A search node is a path from state X to the start state (e.g. X B A S)
• The state of a search node is the most recent state of the path (e.g. X)
• Let Q be a list of search nodes (e.g. (X B A S) (C B A S)) and S be the start state

• Algorithm

1. Initialize Q with search node (S) as only entry, set Visited = (S)
2. If Q is empty, fail. Else pick some search node N from Q
3. If state(N) is a goal, return N (we have reached the goal)
4. Otherwise remove N from Q
5. Find all the children of state(N) not in visited and create all the one-step

extensions of N to each descendant
6. Add the extended paths to Q, add children of state(N) to Visited
7. Go to step 2

• Critical decisions
– Step2: picking N from Q
– Step 6: adding extensions of N to Q

103

Examples: Simple search strategies

• Depth first search
– Pick first element of Q
– Add path extensions to front of Q

• Breadth first search
– Pick first element of Q
– Add path extensions to the end of Q

104

Visited versus expanded

• Visited: a state M is first visited when a path to M first gets added to
Q. In general, a state is said to have been visited if it has ever shown
up in a search node in Q. The intuition is that we have briefly visited
them to place them on Q, but we have not yet examined them
carefully

• Expanded: a state M is expanded when it is the state of a search node
that is pulled off of Q. At that point, the descendants of M are visited
and the path that led to M is extended to the eligible descendants. In
principle, a state may be expanded multiple times. We sometimes
refer to the search node that led to M as being expanded. However,
once a node is expanded, we are done with it, we will not need to
expand it again. In fact, we discard it from Q

105

Testing for the goal

• This algorithm stops (in step 3) when state(N) = G or, in

general when state(N) satisfies the goal test

• We could have performed the test in step 6 as each

extended path is added to Q. This would catch termination

earlier

• However, performing the test in step 6 will be incorrect

for the optimal searches

108

Breadth-first search

• The root node is expanded first, then all the successors of
the root node, and their successors and so on

• In general, all the nodes are expanded at a given depth in
the search tree before any nodes at the next level are
expanded

• Expand shallowest unexpanded node

• Implementation:
– fringe is a FIFO queue,

– the nodes that are visited first will be expanded first

– All newly generated successors will be put at the end of
the queue

– Shallow nodes are expanded before deeper nodes

109

Breadth-first search

110

Breadth-first search

111

Breadth-first search

112

Breadth-first search

113

8-puzzle problem

114

Breadth-first search
Breadth-first search of the 8-puzzle, showing order in
which states were removed from open.

Taken from http://iis.kaist.ac.kr/es/

115

Depth-first search

• Expand deepest unexpanded node

• Implementation:
– fringe = LIFO queue (stack) , i.e., put successors at front

116

Depth-first search

117

Depth-first search

118

Depth-first search

119

Depth-first search

120

Depth-first search

121

Depth-first search

122

Depth-first search

123

Depth-first search

124

Depth-first search

125

Depth-first search

126

Depth-first search

127

http://xkcd.com/761/

http://xkcd.com/761/

128

Breadth first search

129

Breadth first search

130

Breadth first search

131

Breadth first search

132

Breadth first search

133

Breadth first search

134

Breadth first search

135

Breadth first search

136

Breadth first search

137

Breadth first search

138

Breadth first (Without visited list)

139

Depth first search

140

Depth first search

141

Depth first search

142

Depth first search

143

Depth first search

144

Depth first search

145

Depth first search

146

Depth-first search

147

Depth-first search

148

Depth-first search

149

Depth-first search

150

Depth-first search

151

Depth-first search

157

BFS vs. DFS

158

BFS vs. DFS

159

BFS vs. DFS

160

BFS vs. DFS

161

BFS vs. DFS

162

BFS vs. DFS

163

BFS vs. DFS

164

BFS vs. DFS

165

BFS vs. DFS

166

BFS vs. DFS

167

BFS vs. DFS

168

BFS vs. DFS

169

BFS vs. DFS

170

BFS vs. DFS

171

BFS vs. DFS

172

BFS vs. DFS

173

BFS vs. DFS

174

BFS vs. DFS

175

BFS vs. DFS

176

BFS vs. DFS

177

BFS vs. DFS

178

BFS vs. DFS

179

Uninformed search strategies

• A search strategy is defined by picking the order of node
expansion

• Uninformed search (blind search) strategies use only the
information available in the problem definition

• Can only distinguish goal states from non-goal state

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Depth-limited search

• Iterative deepening search

180

Breadth First Search

181

Breadth-first search

182

Breadth-first search

• Expand shallowest unexpanded node

• Implementation: frontier is a FIFO queue

Example state space
graph for a tiny search

problem

Example from P. Abbeel and D. Klein

183

Breadth-first search

• Expansion order:

(S,d,e,p,b,c,e,h,r,q,a,a,

h,r,p,q,f,p,q,f,q,c,G)

184

185

Depth-first search

186

Depth-first search

• Expand deepest unexpanded node

• Implementation: frontier is a LIFO queue

187

Depth-first search

• Expansion order:

(S,d,b,a,c,a,e,h,p,q,q,

r,f,c,a,G)

188

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

189

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

190

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

191

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

192

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

193

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

194

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

195

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

196

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

197

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

198

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

199

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

200

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

201

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

202

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

203

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python,

David J. Malan and Brian Yu

204

Analysis of Search strategies

• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?

– time complexity: number of nodes generated

– space complexity: maximum number of nodes in memory

– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of

– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum depth of the state space (may be ∞)

205

Properties of breadth-first search
• Complete? Yes (if b is finite)

• Time?

Number of nodes in a b-ary tree of depth d:

(d is the depth of the optimal solution)

1+b+b2+b3+… +bd = O(bd)

• Space? O(bd) (keeps every node in memory)

• Optimal? Yes (if cost = 1 per step)

• Space is the bigger problem (more than time)

206

Properties of depth-first search

• Complete? No: fails in infinite-depth spaces,
spaces with loops
– Modify to avoid repeated states along path

→ complete in finite spaces

• Time?

Could be the time to reach a solution at maximum depth

m: O(bm)

Terrible if m is much larger than d

But if there are lots of solutions, may be much faster than

BFS

• Space? O(bm), i.e., linear space!

• Optimal? No - – returns the first solution it finds

207

Depth-limited search

= depth-first search with depth limit l,

i.e., nodes at depth l have no successors

• Recursive implementation:

208

Depth limited search
Depth-first search of the 8-puzzle with a depth
bound of 5.

Taken from http://iis.kaist.ac.kr/es/

209

Example: Romania

210

Depth limited search

211

Iterative deepening search

• Use DFS as a subroutine

1. Check the root

2. Do a DFS searching for a path of length 1

3. If there is no path of length 1, do a DFS searching for

a path of length 2

4. If there is no path of length 2, do a DFS searching for

a path of length 3…

212

Iterative deepening search

213

Iterative deepening search l =0

214

Iterative deepening search l =1

215

Iterative deepening search l =2

216

Iterative deepening search l =3

217

Iterative deepening search

• Number of nodes generated in a depth-limited search to depth d with
branching factor b:

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening search to depth d
with branching factor b:

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,

– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

• Overhead = (123,456 - 111,111)/111,111 = 11%

218

Iterative deepening search

219

Properties of iterative deepening search

• Complete? Yes

• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space? O(bd)

• Optimal? Yes, if step cost = 1

220

221

Search with varying step costs

• BFS finds the path with the fewest steps, but does not

always find the cheapest path

222

Uniform-cost search

• For each frontier node, save the total cost of the path

from the initial state to that node

• Expand the frontier node with the lowest path cost

• Implementation: frontier is a priority queue ordered by

path cost

• Equivalent to breadth-first if step costs all equal

• Equivalent to Dijkstra’s algorithm in general

223

Uniform-cost search

Taken from http://www.cs.nott.ac.uk/~gxk/courses/g5aiai/003blindsearches/blind_searches.htm

224

Uniform cost search

• Each link has a length or cost (which is always

greater than 0)

• We want shortest or least cost path

225

Uniform cost search

226

Uniform cost search

227

Uniform cost search

228

Uniform cost search

229

Uniform cost search

230

Uniform cost search

231

Uniform cost search

232

Why not stop on the first goal

233

Uniform-cost search example

• Expansion order:

(S,p,d,b,e,a,r,f,e,G)

234

Another example of uniform-cost search

Source: Wikipedia

http://en.wikipedia.org/wiki/File:Dijkstras_progress_animation.gif

235

Properties of uniform-cost search

• Expand least-cost unexpanded node

• Implementation:

– fringe = queue ordered by path cost

• Equivalent to breadth-first if step costs all equal

• Complete?

Yes, if step cost is greater than some positive constant ε (we

don’t want infinite sequences of steps that have a finite total

cost)

• Optimal?

Yes

236

Optimality of uniform-cost search

• Graph separation property: every path

from the initial state to an unexplored state

has to pass through a state on the frontier

– Proved inductively

• Optimality of UCS: proof by contradiction

– Suppose UCS terminates at goal state n

with path cost g(n) but there exists

another goal state n’ with g(n’) < g(n)

– By the graph separation property, there

must exist a node n” on the frontier that is

on the optimal path to n’

– But because g(n”) ≤ g(n’) < g(n),

n” should have been expanded first! n

n’

n’’

start
fronti

er

237

Uniform-cost search

• Complete? Yes, if step cost ≥ ε

• Time? # of nodes with pathn cost g ≤ cost of optimal
solution,

O(bceiling(C*/ ε)) where C* is the cost of the optimal solution

• This can be greater than O(bd): the search can explore long
paths consisting of small steps before exploring shorter
paths consisting of larger steps

• Space? # of nodes with g ≤ cost of optimal solution,
O(bceiling(C*/ ε))

• Optimal? Yes – nodes expanded in increasing order of g(n)

238

Review: Uninformed search strategies

Algorithm Complete? Optimal?
Time

complexity

Space

complexity

BFS

DFS

IDS

UCS

b: maximum branching factor of the search tree
d: depth of the optimal solution
m: maximum length of any path in the state space
C*: cost of optimal solution
g(n): cost of path from start state to node n

Yes

Yes

No

Yes

If all step
costs are equal

If all step
costs are equal

Yes

No

O(bd)

O(bm)

O(bd)

O(bd)

O(bm)

O(bd)

Number of nodes with
g(n) ≤ C*

239

Bidirectional search

• Run two simultaneous searches – one forward from the

initial state, and the other backward from the goal, stopping

when two searches meet in the middle

bd/2 + bd/2 < bd

For b = 10, d= 6 , BFS 1,111, 111 nodes, BS 2,222 nodes

240

Bi-directional Search discussion

• Need to have operators that calculate predecessors.

• Need a way to check that states meet (are the same)

• Efficient way to check when searches meet: hash table

• Can use IDS or BFS or DFS in each half

• Optimal, complete, O(bd/2) time.

• Still O(bd/2) space (even with iterative deepening)

because the nodes of at least one of the searches have to

be stored to check matches.

241

Repeated states

• Failure to detect repeated states can turn a linear
problem into an exponential one!

242

Handling repeated states

• Do not return to the state just you came from

• Do not create paths with cycles in them

• Do not generate any state that was ever generated

before

243

244

245

Summary

• Problem formulation usually requires abstracting away real-world
details to define a state space that can feasibly be explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not much more
time than other uninformed algorithms

246

Classes of Search

	Slide 1: Uninformed/Blind Search
	Slide 2
	Slide 3
	Slide 4: Types of agents
	Slide 5
	Slide 6
	Slide 7: Simple-reflex vs goal based agents
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Problem solving agents
	Slide 14: Problem solving agents
	Slide 15: Problem solving agents
	Slide 17
	Slide 18
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Search problem components
	Slide 30: Example: Romania
	Slide 35: Vacuum world state space graph
	Slide 37: Example: The 8-puzzle
	Slide 38: Example: 8-queens problem
	Slide 39
	Slide 40: Example: Route finding problem
	Slide 41
	Slide 42: Example: robotic assembly
	Slide 44: Other example problems
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 60: Search: Basic idea
	Slide 61: Search: Basic idea
	Slide 62: Search: Basic idea
	Slide 63: Search: Basic idea
	Slide 64: Search: Basic idea
	Slide 65: Search: Basic idea
	Slide 66: Search: Basic idea
	Slide 67: Search: Basic idea
	Slide 68: Search: Basic idea
	Slide 69: Search: Basic idea
	Slide 70: Search: Basic idea
	Slide 71: Search: Basic idea
	Slide 72: Search tree
	Slide 73: Graph Search as Tree Search
	Slide 77: Example: Romania
	Slide 78: Tree search example
	Slide 79: Tree search example
	Slide 80: Tree search example
	Slide 81: What could go wrong?
	Slide 90
	Slide 92: Search without repeated states
	Slide 93: Search without repeated states
	Slide 94: Search without repeated states
	Slide 95: Search without repeated states
	Slide 96: Search without repeated states
	Slide 97: Search without repeated states
	Slide 99: Implementation: states vs. nodes
	Slide 100: Implementation: general tree search
	Slide 102: Simple search algorithms - revisited
	Slide 103: Examples: Simple search strategies
	Slide 104: Visited versus expanded
	Slide 105: Testing for the goal
	Slide 108: Breadth-first search
	Slide 109: Breadth-first search
	Slide 110: Breadth-first search
	Slide 111: Breadth-first search
	Slide 112: Breadth-first search
	Slide 113: 8-puzzle problem
	Slide 114: Breadth-first search
	Slide 115: Depth-first search
	Slide 116: Depth-first search
	Slide 117: Depth-first search
	Slide 118: Depth-first search
	Slide 119: Depth-first search
	Slide 120: Depth-first search
	Slide 121: Depth-first search
	Slide 122: Depth-first search
	Slide 123: Depth-first search
	Slide 124: Depth-first search
	Slide 125: Depth-first search
	Slide 126: Depth-first search
	Slide 127
	Slide 128: Breadth first search
	Slide 129: Breadth first search
	Slide 130: Breadth first search
	Slide 131: Breadth first search
	Slide 132: Breadth first search
	Slide 133: Breadth first search
	Slide 134: Breadth first search
	Slide 135: Breadth first search
	Slide 136: Breadth first search
	Slide 137: Breadth first search
	Slide 138: Breadth first (Without visited list)
	Slide 139: Depth first search
	Slide 140: Depth first search
	Slide 141: Depth first search
	Slide 142: Depth first search
	Slide 143: Depth first search
	Slide 144: Depth first search
	Slide 145: Depth first search
	Slide 146: Depth-first search
	Slide 147: Depth-first search
	Slide 148: Depth-first search
	Slide 149: Depth-first search
	Slide 150: Depth-first search
	Slide 151: Depth-first search
	Slide 157: BFS vs. DFS
	Slide 158: BFS vs. DFS
	Slide 159: BFS vs. DFS
	Slide 160: BFS vs. DFS
	Slide 161: BFS vs. DFS
	Slide 162: BFS vs. DFS
	Slide 163: BFS vs. DFS
	Slide 164: BFS vs. DFS
	Slide 165: BFS vs. DFS
	Slide 166: BFS vs. DFS
	Slide 167: BFS vs. DFS
	Slide 168: BFS vs. DFS
	Slide 169: BFS vs. DFS
	Slide 170: BFS vs. DFS
	Slide 171: BFS vs. DFS
	Slide 172: BFS vs. DFS
	Slide 173: BFS vs. DFS
	Slide 174: BFS vs. DFS
	Slide 175: BFS vs. DFS
	Slide 176: BFS vs. DFS
	Slide 177: BFS vs. DFS
	Slide 178: BFS vs. DFS
	Slide 179: Uninformed search strategies
	Slide 180: Breadth First Search
	Slide 181: Breadth-first search
	Slide 182: Breadth-first search
	Slide 183: Breadth-first search
	Slide 184
	Slide 185: Depth-first search
	Slide 186: Depth-first search
	Slide 187: Depth-first search
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204: Analysis of Search strategies
	Slide 205: Properties of breadth-first search
	Slide 206: Properties of depth-first search
	Slide 207: Depth-limited search
	Slide 208: Depth limited search
	Slide 209: Example: Romania
	Slide 210: Depth limited search
	Slide 211: Iterative deepening search
	Slide 212: Iterative deepening search
	Slide 213: Iterative deepening search l =0
	Slide 214: Iterative deepening search l =1
	Slide 215: Iterative deepening search l =2
	Slide 216: Iterative deepening search l =3
	Slide 217: Iterative deepening search
	Slide 218: Iterative deepening search
	Slide 219: Properties of iterative deepening search
	Slide 220
	Slide 221: Search with varying step costs
	Slide 222: Uniform-cost search
	Slide 223: Uniform-cost search
	Slide 224: Uniform cost search
	Slide 225: Uniform cost search
	Slide 226: Uniform cost search
	Slide 227: Uniform cost search
	Slide 228: Uniform cost search
	Slide 229: Uniform cost search
	Slide 230: Uniform cost search
	Slide 231: Uniform cost search
	Slide 232: Why not stop on the first goal
	Slide 233: Uniform-cost search example
	Slide 234: Another example of uniform-cost search
	Slide 235: Properties of uniform-cost search
	Slide 236: Optimality of uniform-cost search
	Slide 237: Uniform-cost search
	Slide 238: Review: Uninformed search strategies
	Slide 239: Bidirectional search
	Slide 240: Bi-directional Search discussion
	Slide 241: Repeated states
	Slide 242: Handling repeated states
	Slide 243
	Slide 244
	Slide 245: Summary
	Slide 246: Classes of Search

