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Uninformed/Blind Search

Artificial Intelligence

Slides are mostly adapted from AIMA, MIT Open Courseware and 

Svetlana Lazebnik (UIUC)
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agent 
entity that perceives its environment and acts upon 
that environment 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Types of agents

Reflex agent

• Consider how the world 
IS

• Choose action based on 
current percept 

• Do not consider the future 
consequences of actions

Planning agent

• Consider how the world WOULD 
BE

• Decisions based on (hypothesized) 
consequences of actions

• Must have a model of how the world 
evolves in response to actions

• Must formulate a goal 

Source: D. Klein, P. Abbeel
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Simple-reflex vs goal based agents

• Simple-reflex agents directly maps states to actions.

• Therefore, they cannot operate well in environments
where the mapping is too large to store or takes too much
to learn

• Goal-based agents can succeed by considering future
actions and desirability of their outcomes

• Problem solving agent is a goal-based agent that decides
what to do by finding sequences of actions that lead to
desirable states
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A farmer wants to get his cabbage, goat, and wolf across a river. 

He has a boat that only holds two. He cannot leave the cabbage 

and goat alone or the goat and wolf alone. 

How many river crossings does he need?
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When you solve this problem, try to think about how you did it. 

You probably simulated the scenario in your head, trying to 

send the farmer over with the goat, observing the consequences. 

If nothing got eaten, you might continue with the next action. 

Otherwise, you undo that move and try something else. 

How can we get a machine to do this automatically? One of the 

things we need is a systematic approach that considers all the 

possibilities. We will see that search problems define the 

possibilities, and search algorithms explore these possibilities.
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Sometimes you can do better 

if you change the model 

(perhaps the value of having 

a wolf is zero) instead of 

focusing on the algorithm.
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Problem solving agents

• Intelligent agents are supposed to maximize their
performance measure

• This can be simplified if the agent can adopt a goal and aim
at satisfying it

• Goals help organize behaviour by limiting the objectives
that the agent is trying to achieve

• Goal formulation, based on the current situation and the
agent’s performance measure, is the first step in problem
solving

• Goal is a set of states. The agent’s task is to find out which
sequence of actions will get it to a goal state

• Problem formulation is the process of deciding what sorts of
actions and states to consider, given a goal
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Problem solving agents

• An agent with several immediate options of unknown value 
can decide what to do by first examining different possible 
sequences of actions that lead to states of known value, and 
then choosing the best sequence

• Looking for such a sequence is called search

• A search algorithm takes a problem as input and returns a 
solution in the form of action sequence

• One a solution is found the actions it recommends can be 
carried out – execution phase
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Problem solving agents

• “formulate, search, execute” design for the agent

• After formulating a goal and a problem to solve the agent 
calls a search procedure to solve it

• It then uses the solution to guide its actions, doing whatever 
the solution recommends as the next thing to do (typically 
the first action in the sequence)

• Then removing that step from the sequence

• Once the solution has been executed, the agent will 
formulate a new goal
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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State
a configuration of the agent and its environment 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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actions 
choices that can be 
made in a state 

ACTIONS(s) returns the set of actions that can 
be executed in state s 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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transition model 
a description of what state results from performing 
any applicable action in any state 

RESULT(s, a) 
returns the state 
resulting from 
performing action a 
in state s 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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state space 
the set of all states 
reachable 
from the initial state by 
any sequence of actions 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu

goal test 
way to determine 
whether a given state is a 
goal state 
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path cost 
numerical cost associated 
with a given path 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu

solution 
a sequence of actions that 
leads from the initial state to a 
goal state 

optimal solution 
a solution that has the lowest 
path cost among all solutions 
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Search problem components

• Initial state

• Actions

• Transition model

– What state results from

performing a given action 

in a given state?

• Goal state

• Path cost

– Assume that it is a sum of 

nonnegative step costs

• The optimal solution is the sequence of actions that gives the 

lowest path cost for reaching the goal

Initial

state

Goal 

state
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Example: Romania

• On vacation in Romania; currently in Arad

• Flight leaves tomorrow from Bucharest

• Initial state

– Arad

• Actions

– Go from one city to another

• Transition model

– If you go from city A to 

city B, you end up in city B

• Goal state

– Bucharest

• Path cost

– Sum of edge costs (total distance 

traveled)
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Vacuum world state space graph

• states integer dirt and robot location.
– The agent is in one of two locations, each of which might or might not 

contain dirt – 8 possible states

• Initial state: any state

• actions Left, Right, Suck

• goal test no dirt at all locations

• path cost 1 per action
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Example: The 8-puzzle

• states: locations of tiles 

• Initial state: any state

• actions: move blank left, right, up, down 

• goal test: goal state (given)

• path cost: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Example: 8-queens problem

• states: any arrangement of  0-8 queens on the board is a 
state

• Initial state: no queens on the board

• actions: add a queen to any empty square 

• goal test: 8 queens are on the board, none attacked

64.63...57 = 1.8x1014 possible sequences
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Example: Route finding problem

• states: each is represented by a location (e.g. An airport) and the 
current time

• Initial state: specified by the problem

• Successor function: returns the states resulting from taking any 
scheduled flight, leaving later than the current time plus the within 
airport transit time, from the current airport to another

• goal test: are we at the destination by some pre-specified time

• Path cost:monetary cost, waiting time, flight time, customs and 
immigration procedures, seat quality, time of day, type of airplane, 
frequent-flyer mileage awards, etc

• Route finding algorithms are used in a variety of applications, such 
as routing in computer networks, military operations planning, 
airline travel planning systems
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Example: robotic assembly

• states: real-valued coordinates of robot joint angles parts of 
the object to be assembled

• actions: continuous motions of robot joints

• goal test: complete assembly

• path cost: time to execute
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Other example problems 

• Touring problems: visit every city at least once, starting 
and ending at Bucharest

• Travelling salesperson problem (TSP) : each city must be 
visited exactly once – find the shortest tour

• VLSI layout design: positioning millions of components 
and connections on a chip to minimize area, minimize 
circuit delays, minimize stray capacitances, and maximize 
manufacturing yield

• Robot navigation

• Internet searching

• Automatic assembly sequencing

• Protein design 
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node 
a data structure that keeps track of 
- a state 
- a parent (node that generated this node) 
- an action (action applied to parent to get node) 
- a path cost (from initial state to node) 
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Approach 
Start with a frontier that contains the initial state. 
Repeat: 

If the frontier is empty, then no solution. 

Remove a node from the frontier. 

If node contains goal state, return the solution. 

Expand node, add resulting nodes to the frontier. 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Search: Basic idea

start
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Search: Basic idea
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Search: Basic idea
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Search: Basic idea
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Search: Basic idea
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Search: Basic idea
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Search: Basic idea
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Search: Basic idea
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Search: Basic idea
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Search: Basic idea
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Search: Basic idea
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Search: Basic idea
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Search tree

• The root node corresponds to the starting 

state

• The children of a node correspond to the 

successor states of that node’s state

• A path through the tree corresponds to a 

sequence of actions

– A solution is a path ending in the goal state

• Nodes vs. states

– A state is a representation of the world, 

while a node is a data structure that is 

part of the search tree

• Node has to keep pointer to parent, path cost, 

possibly other info

…

Startin

g state

Success

or state

Action

Goal 

state

Frontier



73

Graph Search as Tree Search
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Example: Romania



78

Tree search example
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Tree search example
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Tree search example
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What could go wrong? 

Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Search without repeated states

Start: Arad

Goal: Bucharest
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Search without repeated states

Start: Arad

Goal: Bucharest
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Search without repeated states

Start: Arad

Goal: Bucharest
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Search without repeated states

Start: Arad

Goal: Bucharest
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Search without repeated states

Start: Arad

Goal: Bucharest
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Search without repeated states

Start: Arad

Goal: Bucharest
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Implementation: states vs. nodes

• A state is a (representation of) a physical configuration

• A node is a data structure constituting part of a search tree includes 
state, parent node, action, path cost g(x), depth
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Implementation: general tree search

• Fringe: the collection of nodes that have been 
generated but not yet been expanded

• Each element of a fringe is a leaf node, a node with 
no successors

• Search strategy: a function that selects the next 
node to be expanded from fringe

• We assume that the collection of nodes is 
implemented as a queue

• The operations on the queue are:
– Make-queue(queue)

– Empty?(queue)

– first(queue)
– remove-first(queue)

– insert(element, queue)
– insert-all(elements, queue)
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Simple search algorithms  - revisited
• A search node is a path from state X to the start state (e.g. X B A S)
• The state of  a search node is the most recent state of the path (e.g. X)
• Let Q be a list of search nodes (e.g. (X B A S) (C B A S)) and S be the start state

• Algorithm

1. Initialize Q with search node (S) as only entry, set Visited = (S)
2. If Q is empty, fail. Else pick some search node N from Q
3. If state(N) is a goal, return N (we have reached the goal)
4. Otherwise remove N from Q
5. Find all the children of state(N) not in visited and create all the one-step 

extensions of N to each descendant
6. Add the extended paths to Q, add children of state(N) to Visited
7. Go to step 2

• Critical decisions
– Step2: picking N from Q
– Step 6: adding extensions of N to Q



103

Examples: Simple search strategies

• Depth first search
– Pick first element of Q
– Add path extensions to front of Q

• Breadth first search
– Pick first element of Q
– Add path extensions to the end of Q
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Visited versus expanded

• Visited: a state M is first visited when a path to M first gets added to 
Q. In general, a state is said to have been visited if it has ever shown 
up in a search node in Q. The intuition is that we have briefly visited 
them to place them on Q, but we have not yet examined them 
carefully

• Expanded: a state M is expanded when it is the state of a search node 
that is pulled off of Q. At that point, the descendants of M are visited 
and the path that led to M is extended to the eligible descendants. In 
principle, a state may be expanded  multiple times. We sometimes 
refer to the search node that led to M as being expanded. However, 
once a node is expanded, we are done with it, we will not need to 
expand it again. In fact, we discard it from Q
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Testing for the goal

• This algorithm stops (in step 3) when state(N) = G or, in 

general when state(N) satisfies the goal test

• We could have performed the test in step 6 as each 

extended path is added to Q. This would catch termination 

earlier

• However, performing the test in step 6 will be incorrect 

for the optimal searches 
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Breadth-first search

• The root node is expanded first, then all the successors of 
the root node, and their successors and so on

• In general, all the nodes are expanded at a given depth in 
the search tree before any nodes at the next level are 
expanded

• Expand shallowest unexpanded node

• Implementation:
– fringe is a FIFO queue, 

– the nodes that are visited first will be expanded first

– All newly generated successors will be put at the end of 
the queue

– Shallow nodes are expanded before deeper nodes
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Breadth-first search



110

Breadth-first search
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Breadth-first search
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Breadth-first search
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8-puzzle problem
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Breadth-first search
Breadth-first search of the 8-puzzle, showing order in 
which states were removed from open.

Taken from http://iis.kaist.ac.kr/es/
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Depth-first search

• Expand deepest unexpanded node

• Implementation:
– fringe = LIFO queue (stack) , i.e., put successors at front
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search



126

Depth-first search



127

http://xkcd.com/761/

http://xkcd.com/761/
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first search
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Breadth first (Without visited list)
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Depth first search
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Depth first search
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Depth first search
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Depth first search
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Depth first search
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Depth first search
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Depth first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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Depth-first search
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS



163

BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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BFS vs. DFS
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Uninformed search strategies 

• A search strategy is defined by picking the order of node 
expansion

• Uninformed search (blind search) strategies use only the 
information available in the problem definition

• Can only distinguish goal states from non-goal state

• Breadth-first search

• Uniform-cost search

• Depth-first search

• Depth-limited search

• Iterative deepening search
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Breadth First Search
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Breadth-first search
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Breadth-first search

• Expand shallowest unexpanded node

• Implementation: frontier is a FIFO queue

Example state space 
graph for a tiny search 

problem

Example from P. Abbeel and D. Klein
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Breadth-first search

• Expansion order: 

(S,d,e,p,b,c,e,h,r,q,a,a, 

h,r,p,q,f,p,q,f,q,c,G)
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Depth-first search



186

Depth-first search

• Expand deepest unexpanded node

• Implementation: frontier is a LIFO queue
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Depth-first search

• Expansion order: 

(S,d,b,a,c,a,e,h,p,q,q, 

r,f,c,a,G)
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Slide credit : HarvardX CS50AICS50's Introduction to Artificial Intelligence with Python, 

David J. Malan and Brian Yu
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Analysis of Search strategies

• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?

– time complexity: number of nodes generated

– space complexity: maximum number of nodes in memory

– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of 

– b: maximum branching factor of the search tree

– d: depth of the least-cost solution

– m: maximum depth of the state space (may be ∞)
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Properties of breadth-first search
• Complete? Yes (if b is finite)

• Time?

Number of nodes in a b-ary tree of depth d: 

(d is the depth of the optimal solution)

1+b+b2+b3+… +bd = O(bd)

• Space? O(bd) (keeps every node in memory)

• Optimal? Yes (if cost = 1 per step)

• Space is the bigger problem (more than time)
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Properties of depth-first search

• Complete? No: fails in infinite-depth spaces, 
spaces with loops
– Modify to avoid repeated states along path

→ complete in finite spaces

• Time?

Could be the time to reach a solution at maximum depth 

m: O(bm)

Terrible if m is much larger than d

But if there are lots of solutions, may be much faster than 

BFS

• Space? O(bm), i.e., linear space!

• Optimal? No - – returns the first solution it finds
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Depth-limited search

= depth-first search with depth limit l,

i.e., nodes at depth l have no successors

• Recursive implementation:
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Depth limited search
Depth-first search of the 8-puzzle with a depth 
bound of 5.

Taken from http://iis.kaist.ac.kr/es/
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Example: Romania
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Depth limited search
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Iterative deepening search

• Use DFS as a subroutine

1. Check the root

2. Do a DFS searching for a path of length 1

3. If there is no path of length 1, do a DFS searching for 

a path of length 2

4. If there is no path of length 2, do a DFS searching for 

a path of length 3…
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Iterative deepening search
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Iterative deepening search l =0
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Iterative deepening search l =1
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Iterative deepening search l =2
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Iterative deepening search l =3
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Iterative deepening search

• Number of nodes generated in a depth-limited search to depth d with 
branching factor b: 

NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening search to depth d
with branching factor b: 

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,

– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

• Overhead = (123,456 - 111,111)/111,111 = 11%
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Iterative deepening search
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Properties of iterative deepening search

• Complete? Yes

• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)

• Space? O(bd)

• Optimal? Yes, if step cost = 1
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Search with varying step costs

• BFS finds the path with the fewest steps, but does not 

always find the cheapest path
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Uniform-cost search

• For each frontier node, save the total cost of the path 

from the initial state to that node

• Expand the frontier node with the lowest path cost

• Implementation: frontier is a priority queue ordered by 

path cost 

• Equivalent to breadth-first if step costs all equal

• Equivalent to Dijkstra’s algorithm in general
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Uniform-cost search

Taken from http://www.cs.nott.ac.uk/~gxk/courses/g5aiai/003blindsearches/blind_searches.htm
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Uniform cost search

• Each link has a length or cost (which is always 

greater than 0)

• We want shortest or least cost path
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Uniform cost search
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Uniform cost search
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Uniform cost search
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Uniform cost search
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Uniform cost search
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Uniform cost search
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Uniform cost search
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Why not stop on the first goal
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Uniform-cost search example

• Expansion order:

(S,p,d,b,e,a,r,f,e,G)
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Another example of uniform-cost search

Source: Wikipedia

http://en.wikipedia.org/wiki/File:Dijkstras_progress_animation.gif
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Properties of uniform-cost search

• Expand least-cost unexpanded node

• Implementation:

– fringe = queue ordered by path cost

• Equivalent to breadth-first if step costs all equal

• Complete? 

Yes, if step cost is greater than some positive constant ε (we 

don’t want infinite sequences of steps that have a finite total 

cost)

• Optimal?

Yes
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Optimality of uniform-cost search

• Graph separation property: every path 

from the initial state to an unexplored state 

has to pass through a state on the frontier

– Proved inductively

• Optimality of UCS: proof by contradiction

– Suppose UCS terminates at goal state n

with path cost g(n) but there exists 

another goal state n’ with g(n’) < g(n)

– By the graph separation property, there 

must exist a node n” on the frontier that is 

on the optimal path to n’

– But because g(n”) ≤ g(n’) < g(n), 

n” should have been expanded first! n

n’

n’’

start
fronti

er
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Uniform-cost search

• Complete? Yes, if step cost ≥ ε

• Time? # of nodes with pathn cost g ≤ cost of optimal 
solution, 

O(bceiling(C*/ ε)) where C* is the cost of the optimal solution

• This can be greater than O(bd): the search can explore long 
paths consisting of small steps before exploring shorter 
paths consisting of larger steps 

• Space? # of nodes with g ≤ cost of optimal solution, 
O(bceiling(C*/ ε))

• Optimal? Yes – nodes expanded in increasing order of g(n)
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Review: Uninformed search strategies

Algorithm Complete? Optimal?
Time 

complexity

Space 

complexity

BFS

DFS

IDS

UCS

b:    maximum branching factor of the search tree
d:    depth of the optimal solution
m:   maximum length of any path in the state space
C*:  cost of optimal solution
g(n): cost of path from start state to node n

Yes

Yes

No

Yes

If all step 
costs are equal

If all step 
costs are equal

Yes

No

O(bd)

O(bm)

O(bd)

O(bd)

O(bm)

O(bd)

Number of nodes with 
g(n) ≤ C*
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Bidirectional search

• Run two simultaneous searches – one forward from the 

initial state, and the other backward from the goal, stopping 

when two searches meet in the middle

bd/2 + bd/2 < bd

For b = 10, d= 6 , BFS 1,111, 111 nodes, BS 2,222 nodes
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Bi-directional Search discussion

• Need to have operators that calculate predecessors.

• Need a way to check that states meet (are the same)

• Efficient way to check when searches meet: hash table

• Can use IDS or BFS or DFS in each half

• Optimal, complete, O(bd/2) time.

• Still O(bd/2) space (even with iterative deepening) 

because the nodes of at least one of the searches have to 

be stored to check matches.
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Repeated states

• Failure to detect repeated states can turn a linear 
problem into an exponential one!
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Handling repeated states

• Do not return to the state just you came from

• Do not create paths with cycles in them

• Do not generate any state that was ever generated 

before
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Summary

• Problem formulation usually requires abstracting away real-world 
details to define a state space that can feasibly be explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not much more 
time than other uninformed algorithms
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Classes of Search
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