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Rocchio, a simple vector space classifier

TrainRocchio(C,D)
1 for each cj ∈ C

2 do Dj ← {d : 〈d , cj 〉 ∈ D}
3 ~µj ← 1

|Dj |

∑

d∈Dj
~v(d)

4 return {~µ1, . . . , ~µJ}

ApplyRocchio({~µ1, . . . , ~µJ}, d)
1 return argminj |~µj − ~v(d)|
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A linear classifier in 1D

A linear classifier in 1D is
a point described by the
equation w1d1 = θ

The point at θ/w1

Points (d1) with w1d1 ≥ θ
are in the class c .

Points (d1) with w1d1 < θ
are in the complement
class c .
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A linear classifier in 2D

A linear classifier in 2D is
a line described by the
equation w1d1 +w2d2 = θ

Example for a 2D linear
classifier

Points (d1 d2) with
w1d1 + w2d2 ≥ θ are in
the class c .

Points (d1 d2) with
w1d1 + w2d2 < θ are in
the complement class c .
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A linear classifier in 3D

A linear classifier in 3D is
a plane described by the
equation
w1d1 + w2d2 + w3d3 = θ

Example for a 3D linear
classifier

Points (d1 d2 d3) with
w1d1 + w2d2 + w3d3 ≥ θ
are in the class c .

Points (d1 d2 d3) with
w1d1 + w2d2 + w3d3 < θ
are in the complement
class c .
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Learning algorithms for vector space classification

In terms of actual computation, there are two types of
learning algorithms.

(i) Simple learning algorithms that estimate the parameters of
the classifier directly from the training data, often in one
linear pass.

Naive Bayes, Rocchio, kNN are all examples of this.

(ii) Iterative algorithms

Support vector machines
Perceptron (example available as PDF on website:
http://cislmu.org)

The best performing learning algorithms usually require
iterative learning.
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Linear classifiers: Discussion

Many common text classifiers are linear classifiers: Naive
Bayes, Rocchio, logistic regression, linear support vector
machines etc.

Each method has a different way of selecting the separating
hyperplane

Huge differences in performance on test documents

Can we get better performance with more powerful nonlinear
classifiers?

Not in general: A given amount of training data may suffice
for estimating a linear boundary, but not for estimating a
more complex nonlinear boundary.
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Take-away today

Support vector machines: State-of-the-art text classification
methods (linear and nonlinear)

Introduction to SVMs

Formalization

Soft margin case for nonseparable problems

Discussion: Which classifier should I use for my problem?
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Support vector machines

Machine-learning research in the last two decades has
improved classifier effectiveness.

New generation of state-of-the-art classifiers: support vector
machines (SVMs), boosted decision trees, regularized logistic
regression, maximum entropy, neural networks, and random
forests

As we saw in IIR: Applications to IR problems, particularly
text classification
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What is a support vector machine – first take

Vector space classification (similar to Rocchio, kNN, linear
classifiers)

Difference from previous methods: large margin classifier

We aim to find a separating hyperplane (decision boundary)
that is maximally far from any point in the training data

In case of non-linear-separability: We may have to discount
some points as outliers or noise.
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Which hyperplane?
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(Linear) Support Vector Machines

binary classification
problem
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Why maximize the margin?

Points near the decision
surface are uncertain
classification decisions.
A classifier with a large
margin makes no low
certainty classification
decisions (on the
training set).
Gives classification
safety margin with
respect to errors and
random variation
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boundary
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Why maximize the margin?

SVM classification = large
margin around decision
boundary

We can think of the margin
as a “fat separator” – a
fatter version of our regular
decision hyperplane.

unique solution

increased ability to correctly
generalize to test data

Schütze: Support vector machines 18 / 49
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Separating hyperplane: Recap

Hyperplane

An n-dimensional generalization of a plane (point in 1-D space,
line in 2-D space, ordinary plane in 3-D space).

Decision hyperplane

Can be defined by:

intercept term b (we were calling this θ before)

normal vector ~w (weight vector) which is perpendicular to the
hyperplane

All points ~x on the hyperplane satisfy:

~wT~x + b = 0

Schütze: Support vector machines 19 / 49
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Notation: Different conventions for linear separator

~wT~x + b = 0

Used in SVM literature

~wT~x = 0

Often used in perceptron literature, folds threshold into vector
by adding a constant dimension (set to 1 or -1 for all vectors)

∑M
i=1 widi = θ

“Spelled out” version we used in the last chapter for linear
separators
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Formalization of SVMs
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Consider a binary classification problem:

~xi are the input vectors

yi are the labels
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Formalization of SVMs

Training set

Consider a binary classification problem:

~xi are the input vectors

yi are the labels

For SVMs, the two classes are yi = +1 and yi = −1.

The linear classifier is then:

f (~x) = sign(~wT~x + b)

A value of −1 indicates one class, and a value of +1 the other
class.

Schütze: Support vector machines 23 / 49
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Functional margin of a point

SVM makes its decision based on the score ~wT~x + b.
Clearly, the larger |~wT~x + b| is, the more confidence we can have
that the decision is correct.

Functional margin

The functional margin of the vector ~xi w.r.t the hyperplane
〈~w , b〉 is: yi (~wT~xi + b)

The functional margin of a data set w.r.t a decision surface is
twice the functional margin of any of the points in the data
set with minimal functional margin

Factor 2 comes from measuring across the whole width of the
margin.

Problem: We can increase functional margin by scaling ~w and b.
→ We need to place some constraint on the size of ~w .
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Geometric margin

Geometric margin of the classifier: maximum width of the band
that can be drawn separating the support vectors of the two
classes.
To compute the geometric margin, we need to compute the
distance of a vector ~x from the hyperplane:

r = y
~wT~x + b

|~w |
(why? we will see that this is so graphically in a few moments)
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classes.
To compute the geometric margin, we need to compute the
distance of a vector ~x from the hyperplane:

r = y
~wT~x + b

|~w |
(why? we will see that this is so graphically in a few moments)
Distance is of course invariant to scaling: if we replace ~w by 5~w
and b by 5b, then the distance is the same because it is normalized
by the length of ~w .
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Optimization problem solved by SVMs

Assume canonical “functional margin” distance
Assume that every data point has at least distance 1 from the
hyperplane, then:

yi (~w
T~xi + b) ≥ 1

Since each example’s distance from the hyperplane is
ri = yi (~w

T~xi + b)/|~w |, the margin is ρ = 2/|~w |.
We want to maximize this margin.
That is, we want to find ~w and b such that:

For all (~xi , yi ) ∈ D, yi (~w
T~xi + b) ≥ 1

ρ = 2/|~w | is maximized
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~wT~w ′ + b = 0

b = −~wT~w ′

b

|~w | = −
~wT~w ′

|~w |

Distance of support vector from separator =
(length of projection of ~x onto ~w) minus (length of ~w ′)

~wT~x

|~w | −
~wT~w ′

|~w |

=
~wT~x

|~w | +
b

|~w |

=
~wT~x + b

|~w |
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Distance of support vector from separator =
(length of projection of ~x = (1 5)T onto ~w) minus (length of ~w ′)

~wT~x

|~w | −
~wT~w ′

|~w |

(0.5 · 1 + 0.5 · 5)/(1/
√
2)− (0.5 · 2 + 0.5 · 2)/(1/

√
2)

3/(1/
√
2)− 2/(1/

√
2)

~wT~x

|~w | +
b

|~w |

3/(1/
√
2) + (−2)/(1/

√
2)

3− 2

1/
√
2

√
2
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Find ~w and b such that:
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2 ~w

T~w is minimized (because |~w | =
√
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Optimization problem solved by SVMs (2)

Maximizing 2/|~w | is the same as minimizing |~w |/2.
This gives the final standard formulation of an SVM as a
minimization problem:

Optimization problem solved by SVMs

Find ~w and b such that:
1
2 ~w

T~w is minimized (because |~w | =
√
~wT~w), and

for all {(~xi , yi )}, yi (~wT~xi + b) ≥ 1

We are now optimizing a quadratic function subject to linear
constraints. Quadratic optimization problems are standard
mathematical optimization problems, and many algorithms exist
for solving them (e.g. Quadratic Programming libraries).
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Given a new point ~x to classify, the classification function
f (~x) computes the functional margin of the point (=
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The sign of this function determines the class to assign to the
point.

If the point is within the margin of the classifier, the classifier
can return “don’t know” rather than one of the two classes.
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Recap

We start with a training set.

The data set defines the maximum-margin separating
hyperplane (if it is separable).

We use quadratic optimization to find this plane.

Given a new point ~x to classify, the classification function
f (~x) computes the functional margin of the point (=
normalized distance).

The sign of this function determines the class to assign to the
point.

If the point is within the margin of the classifier, the classifier
can return “don’t know” rather than one of the two classes.

The value of f (~x) may also be transformed into a probability
of classification
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Exercise

0

1

2

3

0 1 2 3

b

b

ut

Which vectors are the support vectors? Draw the maximum margin
separator. What values of w1, w2 and b (for w1x + w2y + b = 0)
describe this separator? Recall that we must have
w1x + w2y + b ∈ {1,−1} for the support vectors.
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Working geometrically:

The maximum margin weight vector
will be parallel to the shortest line
connecting points of the two classes,
that is, the line between (1, 1) and
(2, 3), giving a weight vector of (1, 2).

The optimal decision surface is
orthogonal to that line and intersects
it at the halfway point. Therefore, it
passes through (1.5, 2).

The SVM decision boundary is:

b−b = (1·x+2·y)−(1·1.5+2·2) ⇔ 0 =
2

5
x+

4

5
y−11

5
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With the constraint
sign(yi (~w

T~xi + b)) ≥ 1, we seek to
minimize |~w |.
We know that the solution is
~w = (a, 2a) for some a. So:
a + 2a + b = −1, 2a + 6a + b = 1

Hence, a = 2/5 and b = −11/5. So
the optimal hyperplane is given by
~w = (2/5, 4/5) and b = −11/5.
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Walkthrough example

Working algebraically:

With the constraint
sign(yi (~w

T~xi + b)) ≥ 1, we seek to
minimize |~w |.
We know that the solution is
~w = (a, 2a) for some a. So:
a + 2a + b = −1, 2a + 6a + b = 1

Hence, a = 2/5 and b = −11/5. So
the optimal hyperplane is given by
~w = (2/5, 4/5) and b = −11/5.
The margin ρ is 2/|~w | =
2/
√

4/25 + 16/25 = 2/(2
√
5/5) =√

5 =
√

(1− 2)2 + (1− 3)2.
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Standard approach: allow the fat decision margin to make a
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some points, outliers, noisy examples are inside or on the
wrong side of the margin
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it is from meeting the margin requirement

Slack variable ξi : A non-zero value for ξi allows ~xi to not meet the
margin requirement at a cost proportional to the value of ξi .
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it is from meeting the margin requirement

Slack variable ξi : A non-zero value for ξi allows ~xi to not meet the
margin requirement at a cost proportional to the value of ξi .
Optimization problem: trading off how fat it can make the margin
vs. how many points have to be moved around to allow this
margin.
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Soft margin classification

What happens if data is not linearly separable?

Standard approach: allow the fat decision margin to make a
few mistakes

some points, outliers, noisy examples are inside or on the
wrong side of the margin

Pay cost for each misclassified example, depending on how far
it is from meeting the margin requirement

Slack variable ξi : A non-zero value for ξi allows ~xi to not meet the
margin requirement at a cost proportional to the value of ξi .
Optimization problem: trading off how fat it can make the margin
vs. how many points have to be moved around to allow this
margin.
The sum of the ξi gives an upper bound on the number of training
errors. Soft-margin SVMs minimize training error traded off
against margin.
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Recall how to use binary linear classifiers (k classes) for
one-of: train and run k classifiers and then select the class
with the highest confidence

Another strategy used with SVMs: build k(k − 1)/2
one-versus-one classifiers, and choose the class that is selected
by the most classifiers. While this involves building a very
large number of classifiers, the time for training classifiers may
actually decrease, since the training data set for each classifier
is much smaller.
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Using SVM for one-of classification

Recall how to use binary linear classifiers (k classes) for
one-of: train and run k classifiers and then select the class
with the highest confidence

Another strategy used with SVMs: build k(k − 1)/2
one-versus-one classifiers, and choose the class that is selected
by the most classifiers. While this involves building a very
large number of classifiers, the time for training classifiers may
actually decrease, since the training data set for each classifier
is much smaller.

Yet another possibility: structured prediction. Generalization
of classification where the classes are not just a set of
independent, categorical labels, but may be arbitrary
structured objects with relationships defined between them
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There are many applications of text classification for corporate
Intranets, government departments, and Internet publishers.
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Text classification

Many commercial applications

There are many applications of text classification for corporate
Intranets, government departments, and Internet publishers.

Often greater performance gains from exploiting
domain-specific text features than from changing from one
machine learning method to another.

Understanding the data is one of the keys to successful
categorization, yet this is an area in which many
categorization tool vendors are weak.
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When building a text classifier, first question: how much training
data is there currently available?

Practical challenge: creating or obtaining enough training data

Hundreds or thousands of examples from each class are required to
produce a high performance classifier and many real world contexts
involve large sets of categories.

None?

Very little?

Quite a lot?

A huge amount, growing every day?
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If you have no labeled training data

Use hand-written rules!

Example

IF (wheat OR grain) AND NOT (whole OR bread) THEN
c = grain

In practice, rules get a lot bigger than this, and can be phrased
using more sophisticated query languages than just Boolean
expressions, including the use of numeric scores.
With careful crafting, the accuracy of such rules can become very
high (high 90% precision, high 80% recall).
Nevertheless the amount of work to create such well-tuned rules is
very large. A reasonable estimate is 2 days per class, and extra
time has to go into maintenance of rules, as the content of
documents in classes drifts over time.
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A Verity topic (a complex classification rule)
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Westlaw: Example queries

Information need: Information on the legal theories involved in
preventing the disclosure of trade secrets by employees formerly
employed by a competing company

Query: “trade secret” /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to
access a workplace

Query: disab! /p access! /s work-site work-place (employment /3
place)

Information need: Cases about a host’s responsibility for drunk
guests

Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest
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If you have fairly little data and you are going to train a

supervised classifier

Work out how to get more labeled data as quickly as you can.

Best way: insert yourself into a process where humans will be
willing to label data for you as part of their natural tasks.

Example

Often humans will sort or route email for their own purposes, and
these actions give information about classes.

Active Learning

A system is built which decides which documents a human should
label.
Usually these are the ones on which a classifier is uncertain of the
correct classification.
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If you have labeled data

Good amount of labeled data, but not huge

Use everything that we have presented about text classification.
Consider hybrid approach (overlay Boolean classifier)

Huge amount of labeled data

Choice of classifier probably has little effect on your results.
Choose classifier based on the scalability of training or runtime
efficiency.
Rule of thumb: each doubling of the training data size produces a
linear increase in classifier performance, but with very large
amounts of data, the improvement becomes sub-linear.
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Large and difficult category taxonomies

If you have a small number of well-separated categories, then many
classification algorithms are likely to work well. But often: very
large number of very similar categories.

Example

Web directories (e.g. the Yahoo! Directory consists of over
200,000 categories or the Open Directory Project), library
classification schemes (Dewey Decimal or Library of Congress), the
classification schemes used in legal or medical applications.

Accurate classification over large sets of closely related classes is
inherently difficult. – No general high-accuracy solution.
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Recap

Is there a learning method that is optimal for all text
classification problems?

No, because there is a tradeoff between bias and variance.

Factors to take into account:

How much training data is available?
How simple/complex is the problem? (linear vs. nonlinear
decision boundary)
How noisy is the problem?
How stable is the problem over time?

For an unstable problem, it’s better to use a simple and robust

classifier.
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Exercise

You are tasked with building a system that monitors the sentiment
expressed by tweeters about a company.
Functionality: the user enters a set of #hashtags, @usernames and
keyword queries that are related to the company of interest. The
system then computes the proportion of positive and negative
sentiment in the messages containing these #hashtags,
@usernames and queries.
A key part of this system is a classifier that takes a tweet and
classifies it as having positive or negative polarity.
How would you build this classifier? You can use a rule-based or a
statistical or a hybrid approach.
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Take-away today

Support vector machines: State-of-the-art text classification
methods (linear and nonlinear)

Introduction to SVMs

Formalization

Soft margin case for nonseparable problems

Discussion: Which classifier should I use for my problem?
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Resources

Chapter 14 of IIR (basic vector space classification)

Chapter 15 of IIR (SVMs)

Discussion of “how to select the right classifier for my
problem” in Russell and Norvig

Resources at http://cislmu.org
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