Introduction to Information Retrieval http://informationretrieval.org

IIR 18: Latent Semantic Indexing

Hinrich Schütze

Center for Information and Language Processing, University of Munich
2013-07-10

Overview

(1) Recap
(2) Latent semantic indexing
(3) Dimensionality reduction
(4) LSI in information retrieval
(5) Clustering

Outline

(2) Latent semantic indexing
(3) Dimensionality reduction
(4) LSI in information retrieval
(5) Clustering

Indexing anchor text

- Anchor text is often a better description of a page's content than the page itself.
- Anchor text can be weighted more highly than the text on the page.
- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- [dangerous cult] on Google, Bing, Yahoo

PageRank

- Model: a web surfer doing a random walk on the web
- Formalization: Markov chain
- PageRank is the long-term visit rate of the random surfer or the steady-state distribution.
- Need teleportation to ensure well-defined PageRank
- Power method to compute PageRank
- PageRank is the principal left eigenvector of the transition probability matrix.

Computing PageRank: Power method

	x_{1}	x_{2}			
	$P_{t}\left(d_{1}\right)$	$P_{t}\left(d_{2}\right)$			
			$P_{11}=0.1$	$P_{12}=0.9$	
			$P_{21}=0.3$	$P_{22}=0.7$	
t_{0}	0	1	0.3	0.7	$=\vec{x} P$
t_{1}	0.3	0.7	0.24	0.76	$=\vec{x} P^{2}$
t_{2}	0.24	0.76	0.252	0.748	$=\vec{x} P^{3}$
t_{3}	0.252	0.748	0.2496	0.7504	$=\vec{x} P^{4}$
				\ldots	
t_{∞}	0.25	0.75	0.25	0.75	$=\vec{x} P^{\infty}$

PageRank vector $=\vec{\pi}=\left(\pi_{1}, \pi_{2}\right)=(0.25,0.75)$

$$
\begin{aligned}
& P_{t}\left(d_{1}\right)=P_{t-1}\left(d_{1}\right) * P_{11}+P_{t-1}\left(d_{2}\right) * P_{21} \\
& P_{t}\left(d_{2}\right)=P_{t-1}\left(d_{1}\right) * P_{12}+P_{t-1}\left(d_{2}\right) * P_{22}
\end{aligned}
$$

HITS: Hubs and authorities

HITS update rules

- A: link matrix
- \vec{h} : vector of hub scores
- \vec{a} : vector of authority scores
- HITS algorithm:
- Compute $\vec{h}=A \vec{a}$
- Compute $\vec{a}=A^{T} \vec{h}$
- Iterate until convergence
- Output (i) list of hubs ranked according to hub score and (ii) list of authorities ranked according to authority score

Take-away today

Take-away today

- Latent Semantic Indexing (LSI) / Singular Value Decomposition: The math

Take-away today

- Latent Semantic Indexing (LSI) / Singular Value Decomposition: The math
- SVD used for dimensionality reduction

Take-away today

- Latent Semantic Indexing (LSI) / Singular Value Decomposition: The math
- SVD used for dimensionality reduction
- LSI: SVD in information retrieval

Take-away today

- Latent Semantic Indexing (LSI) / Singular Value Decomposition: The math
- SVD used for dimensionality reduction
- LSI: SVD in information retrieval
- LSI as clustering

Outline

(1) Recap
 (2) Latent semantic indexing

(3) Dimensionality reduction
(4) LSI in information retrieval
(5) Clustering

Recall: Term-document matrix

| Anthony | Julius | The Hamlet | Othello Macbeth |
| :---: | :---: | :---: | :---: | :---: |
| and | Caesar | Tempest | |

Cleopatra

anthony	5.25	3.18	0.0	0.0	0.0	0.35
brutus	1.21	6.10	0.0	1.0	0.0	0.0
caesar	8.59	2.54	0.0	1.51	0.25	0.0
calpurnia	0.0	1.54	0.0	0.0	0.0	0.0
cleopatra	2.85	0.0	0.0	0.0	0.0	0.0
mercy	1.51	0.0	1.90	0.12	5.25	0.88
worser	1.37	0.0	0.11	4.15	0.25	1.95

Recall: Term-document matrix

| Anthony | Julius | The Hamlet | Othello Macbeth |
| :---: | :---: | :---: | :---: | :---: |
| and | Caesar | Tempest | |

Cleopatra

anthony	5.25	3.18	0.0	0.0	0.0	0.35
brutus	1.21	6.10	0.0	1.0	0.0	0.0
caesar	8.59	2.54	0.0	1.51	0.25	0.0
calpurnia	0.0	1.54	0.0	0.0	0.0	0.0
cleopatra	2.85	0.0	0.0	0.0	0.0	0.0
mercy	1.51	0.0	1.90	0.12	5.25	0.88
worser	1.37	0.0	0.11	4.15	0.25	1.95

This matrix is the basis for computing the similarity between documents and queries.

Recall: Term-document matrix

| Anthony | Julius | The Hamlet | Othello Macbeth |
| :---: | :---: | :---: | :---: | :---: |
| and | Caesar | Tempest | |

Cleopatra

anthony	5.25	3.18	0.0	0.0	0.0	0.35
brutus	1.21	6.10	0.0	1.0	0.0	0.0
caesar	8.59	2.54	0.0	1.51	0.25	0.0
calpurnia	0.0	1.54	0.0	0.0	0.0	0.0
cleopatra	2.85	0.0	0.0	0.0	0.0	0.0
mercy	1.51	0.0	1.90	0.12	5.25	0.88
worser	1.37	0.0	0.11	4.15	0.25	1.95

This matrix is the basis for computing the similarity between documents and queries.

Today: Can we transform this matrix, so that we get a better measure of similarity between documents and queries?

Latent semantic indexing: Overview

Latent semantic indexing: Overview

- We will decompose the term-document matrix into a product of matrices.

Latent semantic indexing: Overview

- We will decompose the term-document matrix into a product of matrices.
- The particular decomposition we'll use: singular value decomposition (SVD).

Latent semantic indexing: Overview

- We will decompose the term-document matrix into a product of matrices.
- The particular decomposition we'll use: singular value decomposition (SVD).
- SVD: $C=U \Sigma V^{T}$ (where $C=$ term-document matrix)

Latent semantic indexing: Overview

- We will decompose the term-document matrix into a product of matrices.
- The particular decomposition we'll use: singular value decomposition (SVD).
- SVD: $C=U \Sigma V^{T}$ (where $C=$ term-document matrix)
- We will then use the SVD to compute a new, improved term-document matrix C^{\prime}.

Latent semantic indexing: Overview

- We will decompose the term-document matrix into a product of matrices.
- The particular decomposition we'll use: singular value decomposition (SVD).
- SVD: $C=U \Sigma V^{T}$ (where $C=$ term-document matrix)
- We will then use the SVD to compute a new, improved term-document matrix C^{\prime}.
- We'll get better similarity values out of C^{\prime} (compared to C).

Latent semantic indexing: Overview

- We will decompose the term-document matrix into a product of matrices.
- The particular decomposition we'll use: singular value decomposition (SVD).
- SVD: $C=U \Sigma V^{T}$ (where $C=$ term-document matrix)
- We will then use the SVD to compute a new, improved term-document matrix C^{\prime}.
- We'll get better similarity values out of C^{\prime} (compared to C).
- Using SVD for this purpose is called latent semantic indexing or LSI.

Example of $C=U \Sigma V^{\top}$: The matrix C

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

This is a standard term-document matrix.

Example of $C=U \Sigma V^{T}$: The matrix C

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

This is a standard term-document matrix.
Actually, we use a non-weighted matrix here to simplify the example.

Example of $C=U \Sigma V^{\top}$: The matrix U

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

Example of $C=U \Sigma V^{\top}$: The matrix U

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

One row per term, one column per $\min (M, N)$ where M is the number of terms and N is the number of documents.

Example of $C=U \Sigma V^{\top}$: The matrix U

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

One row per term, one column per $\min (M, N)$ where M is the number of terms and N is the number of documents.

This is an orthonormal matrix: (i) Row vectors have unit length.
(ii) Any two distinct row vectors are orthogonal to each other.

Example of $C=U \Sigma V^{T}$: The matrix U

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

One row per term, one column per $\min (M, N)$ where M is the number of terms and N is the number of documents.

This is an orthonormal matrix: (i) Row vectors have unit length. (ii) Any two distinct row vectors are orthogonal to each other.

Think of the dimensions as "semantic" dimensions that capture distinct topics like politics, sports, economics. 2 = land/water

Example of $C=U \Sigma V^{T}$: The matrix U

U	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25
boat	-0.13	-0.33	-0.59	0.00	0.73
ocean	-0.48	-0.51	-0.37	0.00	-0.61
wood	-0.70	0.35	0.15	-0.58	0.16
tree	-0.26	0.65	-0.41	0.58	-0.09

One row per term, one column per $\min (M, N)$ where M is the number of terms and N is the number of documents.

This is an orthonormal matrix: (i) Row vectors have unit length. (ii) Any two distinct row vectors are orthogonal to each other.

Think of the dimensions as "semantic" dimensions that capture distinct topics like politics, sports, economics. $2=$ land/water

Each number $u_{i j}$ in the matrix indicates how strongly related term i is to the topic represented by semantic dimension j.

Example of $C=U \Sigma V^{T}$: The matrix Σ

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00	0.00	0.00	0.39

Example of $C=U \Sigma V^{\top}$: The matrix Σ

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00	0.00	0.00	0.39

This is a square, diagonal matrix of dimensionality $\min (M, N) \times \min (M, N)$.

Example of $C=U \Sigma V^{\top}$: The matrix Σ

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00	0.00	0.00	0.39

This is a square, diagonal matrix of dimensionality $\min (M, N) \times \min (M, N)$.

The diagonal consists of the singular values of C.

Example of $C=U \Sigma V^{T}$: The matrix Σ

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00	0.00	0.00	0.39

This is a square, diagonal matrix of dimensionality $\min (M, N) \times \min (M, N)$.

The diagonal consists of the singular values of C.
The magnitude of the singular value measures the importance of the corresponding semantic dimension.

Example of $C=U \Sigma V^{T}$: The matrix Σ

Σ	1	2	3	4	5
1	2.16	0.00	0.00	0.00	0.00
2	0.00	1.59	0.00	0.00	0.00
3	0.00	0.00	1.28	0.00	0.00
4	0.00	0.00	0.00	1.00	0.00
5	0.00	0.00	0.00	0.00	0.39

This is a square, diagonal matrix of dimensionality $\min (M, N) \times \min (M, N)$.

The diagonal consists of the singular values of C.
The magnitude of the singular value measures the importance of the corresponding semantic dimension.

We'll make use of this by omitting unimportant dimensions.

Example of $C=U \Sigma V^{T}$: The matrix V^{T}

V^{\top}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

Example of $C=U \Sigma V^{T}$: The matrix V^{T}

V^{\top}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

One column per document, one row per $\min (M, N)$ where M is the number of terms and N is the number of documents.

Example of $C=U \Sigma V^{T}$: The matrix V^{T}

V^{\top}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

One column per document, one row per $\min (M, N)$ where M is the number of terms and N is the number of documents.

Again: This is an orthonormal matrix: (i) Column vectors have unit length. (ii) Any two distinct column vectors are orthogonal to each other.

Example of $C=U \Sigma V^{T}$: The matrix V^{\top}

V^{\top}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

One column per document, one row per $\min (M, N)$ where M is the number of terms and N is the number of documents.

Again: This is an orthonormal matrix: (i) Column vectors have unit length. (ii) Any two distinct column vectors are orthogonal to each other.

These are again the semantic dimensions from matrices U and Σ that capture distinct topics like politics, sports, economics.

Example of $C=U \Sigma V^{T}$: The matrix V^{T}

V^{\top}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

One column per document, one row per $\min (M, N)$ where M is the number of terms and N is the number of documents.

Again: This is an orthonormal matrix: (i) Column vectors have unit length. (ii) Any two distinct column vectors are orthogonal to each other.

These are again the semantic dimensions from matrices U and Σ that capture distinct topics like politics, sports, economics.
Each number $v_{i j}$ in the matrix indicates how strongly related document i is to the topic represented by semantic dimension

Example of $C=U \Sigma V^{T}$: All four matrices

C	$\begin{array}{ll}d_{1} & d_{2}\end{array}$	$d_{2} \quad d_{3}$	$d_{4} \quad d_{5}$	d_{6}							
ship	10	1	00	0							
boat	01	0	00	0							
ocean	$1 \quad 1$	0	00	0							
wood	10	0	1	0							
tree	00	0	0	1							
U	1	2	2	4	5	Σ	1	2	3	4	5
ship	-0.44	-0.30	0.57	0.58	0.25	1	2.16	0.00	0.00	0.00	0.00
boat	-0.13	-0.33	-0.59	0.00	0.73	2	0.00	1.59	0.00	0.00	0.00
ocean	-0.48	-0.51	-0.37	0.00	$-0.61{ }^{\text {x }}$	$\times 3$	0.00	0.00	1.28	0.00	0.00
wood	-0.70	0.35	0.15	-0.58	0.16	4	0.00	0.00	0.00	1.00	0.00
tree	-0.26	0.65	-0.41	0.58	-0.09	5	0.00	0.00	0.00	0.00	0.39
V^{T}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}					
1	-0.75	-0.28	-0.20	-0.45	-0.33 -	-0.12					
2	-0.29	-0.53	-0.19	0.63	0.22	0.41					
3	0.28	-0.75	0.45	-0.20	$0.12-$	-0.33					
4	0.00	0.00	0.58	0.00	-0.58	0.58					
5	-0.53	0.29	0.63	0.19	0.41 -	-0.22					

LSI is decomposition of C into a representation of the terms, a representation of the documents and a representation of the importance of the "semantic" dimensions.

LSI: Summary

LSI: Summary

- We've decomposed the term-document matrix C into a product of three matrices: $U \Sigma V^{T}$.

LSI: Summary

- We've decomposed the term-document matrix C into a product of three matrices: $U \Sigma V^{T}$.
- The term matrix U - consists of one (row) vector for each term

LSI: Summary

- We've decomposed the term-document matrix C into a product of three matrices: $U \Sigma V^{T}$.
- The term matrix U - consists of one (row) vector for each term
- The document matrix V^{T} - consists of one (column) vector for each document

LSI: Summary

- We've decomposed the term-document matrix C into a product of three matrices: $U \Sigma V^{T}$.
- The term matrix U - consists of one (row) vector for each term
- The document matrix V^{T} - consists of one (column) vector for each document
- The singular value matrix Σ - diagonal matrix with singular values, reflecting importance of each dimension

LSI: Summary

- We've decomposed the term-document matrix C into a product of three matrices: $U \Sigma V^{T}$.
- The term matrix U - consists of one (row) vector for each term
- The document matrix V^{T} - consists of one (column) vector for each document
- The singular value matrix Σ - diagonal matrix with singular values, reflecting importance of each dimension
- Next: Why are we doing this?

Exercise

V^{\top}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

Verify that the first document has unit length.
Verify that the first two documents are orthogonal.

Exercise

V^{\top}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

Verify that the first document has unit length.
Verify that the first two documents are orthogonal.

Exercise

V^{T}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

Verify that the first document has unit length.
Verify that the first two documents are orthogonal.
$0.75^{2}+0.29^{2}+0.28^{2}+0.00^{2}+0.53^{2}=1.0059$
$-0.75 *-0.28+-0.29 *-0.53+0.28 *-0.75+0.00 * 0.00+$
$-0.53 * 0.29=0$

Outline

(1) Recap
 (2) Latent semantic indexing

(3) Dimensionality reduction
(4) LSI in information retrieval
(5) Clustering

How we use the SVD in LSI

How we use the SVD in LSI

- Key property: Each singular value tells us how important its dimension is.

How we use the SVD in LSI

- Key property: Each singular value tells us how important its dimension is.
- By setting less important dimensions to zero, we keep the important information, but get rid of the "details".

How we use the SVD in LSI

- Key property: Each singular value tells us how important its dimension is.
- By setting less important dimensions to zero, we keep the important information, but get rid of the "details".
- These details may

How we use the SVD in LSI

- Key property: Each singular value tells us how important its dimension is.
- By setting less important dimensions to zero, we keep the important information, but get rid of the "details".
- These details may
- be noise - in that case, reduced LSI is a better representation because it is less noisy.

How we use the SVD in LSI

- Key property: Each singular value tells us how important its dimension is.
- By setting less important dimensions to zero, we keep the important information, but get rid of the "details".
- These details may
- be noise - in that case, reduced LSI is a better representation because it is less noisy.
- make things dissimilar that should be similar - again, the reduced LSI representation is a better representation because it represents similarity better.

How we use the SVD in LSI

- Key property: Each singular value tells us how important its dimension is.
- By setting less important dimensions to zero, we keep the important information, but get rid of the "details".
- These details may
- be noise - in that case, reduced LSI is a better representation because it is less noisy.
- make things dissimilar that should be similar - again, the reduced LSI representation is a better representation because it represents similarity better.
- Analogy for "fewer details is better"

How we use the SVD in LSI

- Key property: Each singular value tells us how important its dimension is.
- By setting less important dimensions to zero, we keep the important information, but get rid of the "details".
- These details may
- be noise - in that case, reduced LSI is a better representation because it is less noisy.
- make things dissimilar that should be similar - again, the reduced LSI representation is a better representation because it represents similarity better.
- Analogy for "fewer details is better"
- Image of a blue flower

How we use the SVD in LSI

- Key property: Each singular value tells us how important its dimension is.
- By setting less important dimensions to zero, we keep the important information, but get rid of the "details".
- These details may
- be noise - in that case, reduced LSI is a better representation because it is less noisy.
- make things dissimilar that should be similar - again, the reduced LSI representation is a better representation because it represents similarity better.
- Analogy for "fewer details is better"
- Image of a blue flower
- Image of a yellow flower

How we use the SVD in LSI

- Key property: Each singular value tells us how important its dimension is.
- By setting less important dimensions to zero, we keep the important information, but get rid of the "details".
- These details may
- be noise - in that case, reduced LSI is a better representation because it is less noisy.
- make things dissimilar that should be similar - again, the reduced LSI representation is a better representation because it represents similarity better.
- Analogy for "fewer details is better"
- Image of a blue flower
- Image of a yellow flower
- Omitting color makes is easier to see the similarity

Reducing the dimensionality to 2

U	1	2	3	4	5		
ship	-0.44	-0.30	0.00	0.00	0.00		
boat	-0.13	-0.33	0.00	0.00	0.00		
ocean	-0.48	-0.51	0.00	0.00	0.00		
wood	-0.70	0.35	0.00	0.00	0.00		
tree	-0.26	0.65	0.00	0.00	0.00		
Σ_{2}	1	2	3	4	5		
1	2.16	0.00	0.00	0.00	0.00		
2	0.00	1.59	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00		
V^{T}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12	
2	-0.29	-0.53	-0.19	0.63	0.22	0.41	
3	0.00	0.00	0.00	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00	0.00	0.00	
5	0.00	0.00	0.00	0.00	0.00	0.00	

Reducing the dimensionality to 2

U		1	2	3	4	5	
ship	-0.44	-0.30	0.00	0.00	0.00		
boat	-0.13	-0.33	0.00	0.00	0.00		
ocean	-0.48	-0.51	0.00	0.00	0.00		
wood	-0.70	0.35	0.00	0.00	0.00		
tree	-0.26	0.65	0.00	0.00	0.00		
Σ_{2}	1	2	3	4	5		
1	2.16	0.00	0.00	0.00	0.00		
2	0.00	1.59	0.00	0.00	0.00		
3	0.00	0.00	0.00	0.00	0.00		
4	0.00	0.00	0.00	0.00	0.00		
5	0.00	0.00	0.00	0.00	0.00		
V^{T}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}	
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12	
2	-0.29	-0.53	-0.19	0.63	0.22	0.41	
3	0.00	0.00	0.00	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00	0.00	0.00	
5	0.00	0.00	0.00	0.00	0.00	0.00	

Actually, we only zero out singular values in Σ. This has the effect of setting the corresponding dimensions in U and V^{T} to zero when
computing the product $C=$ $U \Sigma V^{T}$.

Reducing the dimensionality to 2

| C_{2} | d_{1} | d_{2} | d_{3} | d_{4} | d_{5} | d_{6} | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ship | 0.85 | 0.52 | 0.28 | 0.13 | 0.21 | -0.08 | | | | | | |
| boat | 0.36 | 0.36 | 0.16 | -0.20 | -0.02 | -0.18 | | | | | | |
| ocean | 1.01 | 0.72 | 0.36 | -0.04 | 0.16 | -0.21 | | | | | | |
| wood | 0.97 | 0.12 | 0.20 | 1.03 | 0.62 | 0.41 | | | | | | |
| tree | 0.12 | -0.39 | -0.08 | 0.90 | 0.41 | 0.49 | | | | | | |
| U | 1 | 2 | 3 | 4 | 5 | Σ_{2} | 1 | 2 | 3 | 4 | 5 | |
| ship | -0.44 | -0.30 | 0.57 | 0.58 | 0.25 | 1 | 2.16 | 0.00 | 0.00 | 0.00 | 0.00 | |
| boat | -0.13 | -0.33 | -0.59 | 0.00 | 0.73 | 2 | 0.00 | 1.59 | 0.00 | 0.00 | 0.00 | |
| ocean | -0.48 | -0.51 | -0.37 | 0.00 | -0.61 | 3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| wood | -0.70 | 0.35 | 0.15 | -0.58 | 0.16 | 4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| tree | -0.26 | 0.65 | -0.41 | 0.58 | -0.09 | 5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| V^{T} | d_{1} | d_{2} | d_{3} | d_{4} | d_{5} | d_{6} | | | | | | |
| 1 | -0.75 | -0.28 | -0.20 | -0.45 | -0.33 | -0.12 | | | | | | |
| 2 | -0.29 | -0.53 | -0.19 | 0.63 | 0.22 | 0.41 | | | | | | |
| 3 | 0.28 | -0.75 | 0.45 | -0.20 | 0.12 | -0.33 | | | | | | |
| 4 | 0.00 | 0.00 | 0.58 | 0.00 | -0.58 | 0.58 | | | | | | |
| 5 | -0.53 | 0.29 | 0.63 | 0.19 | 0.41 | -0.22 | | | | | | |

Recall unreduced decomposition $C=U \Sigma V^{T}$

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}								
ship	1	0	1	0	0	0								
boat	0	1	0	0	0	0								
ocean	1	1	0	0	0	0								
wood	1	0	0	1	1	0								
tree	0	0	0	1	0	1								
U		1		2		3		4	5	Σ	1	2	3	4

Original matrix C vs. reduced $C_{2}=U \Sigma_{2} V^{\top}$

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

C_{2}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

Original matrix C vs. reduced $C_{2}=U \Sigma_{2} V^{T}$

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

C_{2}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

We can view C_{2} as a twodimensional representation of the matrix C. We have performed a dimensionality reduction to two dimensions.

Exercise

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

Compute the similarity between d_{2} and d_{3} for the original matrix and for the reduced matrix.

C_{2}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

Why the reduced matrix C_{2} is better than C

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

C_{2}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

Why the reduced matrix C_{2} is better than C

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

Similarity of d_{2} and d_{3} in the original space: 0.

C_{2}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

Why the reduced matrix C_{2} is better than C

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}		
Ship	1	0	1	0	0	0		
boat	0	1	0	0	0	0		
ocean	1	1	0	0	0	0		
wood	1	0	0	1	1	0		
tree	0	0	0	1	0	1		
C_{2}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}		
ship	0.85	0.52	0.28	0.13	0.21	-0.08		
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18		
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21		
wood	0.97	0.12	0.20	1.03	0.62	0.41		
tree	0.12	-0.39	-0.08	0.90	0.41	0.49		

Similarity of d_{2} and d_{3} in the original space: 0 .

Similarity of d_{2} and d_{3} in the reduced
space:
$0.52 * 0.28+$
$0.36 * 0.16+$
$0.72 * 0.36+$
$0.12 * 0.20+$
-0.39 *
$-0.08 \approx 0.52$

Why the reduced matrix C_{2} is better than C

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

C_{2}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

"boat" and
"ship" are
semantically
similar. The
"reduced"
similarity
measure
reflects this.

Why the reduced matrix C_{2} is better than C

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
wood	1	0	0	1	1	0
tree	0	0	0	1	0	1

C_{2}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	0.85	0.52	0.28	0.13	0.21	-0.08
boat	0.36	0.36	0.16	-0.20	-0.02	-0.18
ocean	1.01	0.72	0.36	-0.04	0.16	-0.21
wood	0.97	0.12	0.20	1.03	0.62	0.41
tree	0.12	-0.39	-0.08	0.90	0.41	0.49

"boat" and "ship" are semantically similar. The "reduced" similarity measure reflects this.

What property of the SVD reduction is responsible for improved similarity?

Exercise: Compute matrix product

U	1	2	3	4	5	
ship	-0.44	-0.30	0.57	0.58	0.25	
boat	-0.13	-0.33	-0.59	0.00	0.73	
ocean	-0.48	-0.51	-0.37	0.00	-0.61	
wood	-0.70	0.35	0.15	-0.58	0.16	
tree	-0.26	0.65	-0.41	0.58	-0.09	
Σ_{2}	1	2	3		5	5
1	0.00	0.00	0.00	0.00	0.00	
2	0.00	1.59	0.00	0.00	0.00	
3	0.00	0.00	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00	0.00	
5	0.00	0.00	0.00	0.00	0.00	
V^{T}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

Exercise: Compute matrix product

| U | 1 | 2 | 3 | 4 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| ship | -0.44 | -0.30 | 0.57 | 0.58 | 0.25 |
| boat | -0.13 | -0.33 | -0.59 | 0.00 | 0.73 |
| ocean | -0.48 | -0.51 | -0.37 | 0.00 | -0.61 |\times

Exercise: Compute matrix product

| U | 1 | 2 | 3 | 4 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| ship | -0.44 | -0.30 | 0.57 | 0.58 | 0.25 |
| boat | -0.13 | -0.33 | -0.59 | 0.00 | 0.73 |
| ocean | -0.48 | -0.51 | -0.37 | 0.00 | -0.61 |\times

Exercise: Compute matrix product

C_{2}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}
ship	0.09	0.16	0.06	-0.19	-0.07	-0.12
boat	0.10	0.17	0.06	-0.21	-0.07	-0.14
ocean	0.15	0.27	0.10	-0.32	-0.11	-0.21
wood	-0.10	-0.19	-0.07	0.22	0.08	0.14
tree	-0.19	-0.34	-0.12	0.41	0.14	0.27
U	1	2	3	4		5
ship	-0.44	-0.30	0.57	0.58	0.25	
boat	-0.13	-0.33	-0.59	0.00	0.73	\times
ocean	-0.48	-0.51	-0.37	0.00	-0.61	
wood	-0.70	0.35	0.15	-0.58	0.16	
tree	-0.26	0.65	-0.41	0.58	-0.09	
Σ_{2}	1	2	3	4	5	
1	0.00	0.00	0.00	0.00	0.00	
2	0.00	1.59	0.00	0.00	0.00	
3	0.00	0.00	0.00	0.00	0.00	
4	0.00	0.00	0.00	0.00	0.00	
5	0.00	0.00	0.00	0.00	0.00	
V^{T}	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
2	-0.29	-0.53	-0.19	0.63	0.22	0.41
3	0.28	-0.75	0.45	-0.20	0.12	-0.33
4	0.00	0.00	0.58	0.00	-0.58	0.58
5	-0.53	0.29	0.63	0.19	0.41	-0.22

Outline

> (1) Recap
> (2) Latent semantic indexing
> (3) Dimensionality reduction
(4) LSI in information retrieval
(5) Clustering

Why we use LSI in information retrieval

Why we use LSI in information retrieval

- LSI takes documents that are semantically similar (= talk about the same topics), ...
- ... but are not similar in the vector space (because they use different words) ...
- ... and re-represents them in a reduced vector space ...
- ... in which they have higher similarity.

Why we use LSI in information retrieval

- LSI takes documents that are semantically similar (= talk about the same topics), ...
- ... but are not similar in the vector space (because they use different words) ...
- ... and re-represents them in a reduced vector space ...
- ... in which they have higher similarity.
- Thus, LSI addresses the problems of synonymy and semantic relatedness.

Why we use LSI in information retrieval

- LSI takes documents that are semantically similar (= talk about the same topics), ...
- ... but are not similar in the vector space (because they use different words) ...
- ... and re-represents them in a reduced vector space ...
- ... in which they have higher similarity.
- Thus, LSI addresses the problems of synonymy and semantic relatedness.
- Standard vector space: Synonyms contribute nothing to document similarity.

Why we use LSI in information retrieval

- LSI takes documents that are semantically similar (= talk about the same topics), ...
- ... but are not similar in the vector space (because they use different words) ...
- ... and re-represents them in a reduced vector space ...
- ... in which they have higher similarity.
- Thus, LSI addresses the problems of synonymy and semantic relatedness.
- Standard vector space: Synonyms contribute nothing to document similarity.
- Desired effect of LSI: Synonyms contribute strongly to document similarity.

How LSI addresses synonymy and semantic relatedness

How LSI addresses synonymy and semantic relatedness

- The dimensionality reduction forces us to omit a lot of "detail".

How LSI addresses synonymy and semantic relatedness

- The dimensionality reduction forces us to omit a lot of "detail".
- We have to map differents words (= different dimensions of the full space) to the same dimension in the reduced space.

How LSI addresses synonymy and semantic relatedness

- The dimensionality reduction forces us to omit a lot of "detail".
- We have to map differents words (= different dimensions of the full space) to the same dimension in the reduced space.
- The "cost" of mapping synonyms to the same dimension is much less than the cost of collapsing unrelated words.

How LSI addresses synonymy and semantic relatedness

- The dimensionality reduction forces us to omit a lot of "detail".
- We have to map differents words (= different dimensions of the full space) to the same dimension in the reduced space.
- The "cost" of mapping synonyms to the same dimension is much less than the cost of collapsing unrelated words.
- SVD selects the "least costly" mapping (see below).

How LSI addresses synonymy and semantic relatedness

- The dimensionality reduction forces us to omit a lot of "detail".
- We have to map differents words (= different dimensions of the full space) to the same dimension in the reduced space.
- The "cost" of mapping synonyms to the same dimension is much less than the cost of collapsing unrelated words.
- SVD selects the "least costly" mapping (see below).
- Thus, it will map synonyms to the same dimension.

How LSI addresses synonymy and semantic relatedness

- The dimensionality reduction forces us to omit a lot of "detail".
- We have to map differents words (= different dimensions of the full space) to the same dimension in the reduced space.
- The "cost" of mapping synonyms to the same dimension is much less than the cost of collapsing unrelated words.
- SVD selects the "least costly" mapping (see below).
- Thus, it will map synonyms to the same dimension.
- But it will avoid doing that for unrelated words.

LSI: Comparison to other approaches

LSI: Comparison to other approaches

- Recap: Relevance feedback and query expansion are used to increase recall in information retrieval - if query and documents have no terms in common.

LSI: Comparison to other approaches

- Recap: Relevance feedback and query expansion are used to increase recall in information retrieval - if query and documents have no terms in common.
- (or, more commonly, too few terms in common for a high similarity score)

LSI: Comparison to other approaches

- Recap: Relevance feedback and query expansion are used to increase recall in information retrieval - if query and documents have no terms in common.
- (or, more commonly, too few terms in common for a high similarity score)
- LSI increases recall and hurts precision.

LSI: Comparison to other approaches

- Recap: Relevance feedback and query expansion are used to increase recall in information retrieval - if query and documents have no terms in common.
- (or, more commonly, too few terms in common for a high similarity score)
- LSI increases recall and hurts precision.
- Thus, it addresses the same problems as (pseudo) relevance feedback and query expansion...

LSI: Comparison to other approaches

- Recap: Relevance feedback and query expansion are used to increase recall in information retrieval - if query and documents have no terms in common.
- (or, more commonly, too few terms in common for a high similarity score)
- LSI increases recall and hurts precision.
- Thus, it addresses the same problems as (pseudo) relevance feedback and query expansion...
- ... and it has the same problems.

Implementation

Implementation

- Compute SVD of term-document matrix

Implementation

- Compute SVD of term-document matrix
- Reduce the space and compute reduced document representations

Implementation

- Compute SVD of term-document matrix
- Reduce the space and compute reduced document representations
- Map the query into the reduced space $\vec{q}_{k}=\Sigma_{k}^{-1} U_{k}^{T} \vec{q}$.

Implementation

- Compute SVD of term-document matrix
- Reduce the space and compute reduced document representations
- Map the query into the reduced space $\vec{q}_{k}=\Sigma_{k}^{-1} U_{k}^{T} \vec{q}$.
- This follows from: $C_{k}=U_{k} \Sigma_{k} V_{k}^{T} \Rightarrow \Sigma_{k}^{-1} U^{T} C=V_{k}^{T}$

Implementation

- Compute SVD of term-document matrix
- Reduce the space and compute reduced document representations
- Map the query into the reduced space $\vec{q}_{k}=\Sigma_{k}^{-1} U_{k}^{T} \vec{q}$.
- This follows from: $C_{k}=U_{k} \Sigma_{k} V_{k}^{T} \Rightarrow \Sigma_{k}^{-1} U^{T} C=V_{k}^{T}$
- Compute similarity of q_{k} with all reduced documents in V_{k}.

Implementation

- Compute SVD of term-document matrix
- Reduce the space and compute reduced document representations
- Map the query into the reduced space $\vec{q}_{k}=\Sigma_{k}^{-1} U_{k}^{T} \vec{q}$.
- This follows from: $C_{k}=U_{k} \Sigma_{k} V_{k}^{T} \Rightarrow \Sigma_{k}^{-1} U^{T} C=V_{k}^{T}$
- Compute similarity of q_{k} with all reduced documents in V_{k}.
- Output ranked list of documents as usual

Implementation

- Compute SVD of term-document matrix
- Reduce the space and compute reduced document representations
- Map the query into the reduced space $\vec{q}_{k}=\Sigma_{k}^{-1} U_{k}^{T} \vec{q}$.
- This follows from: $C_{k}=U_{k} \Sigma_{k} V_{k}^{T} \Rightarrow \Sigma_{k}^{-1} U^{T} C=V_{k}^{T}$
- Compute similarity of q_{k} with all reduced documents in V_{k}.
- Output ranked list of documents as usual
- Exercise: What is the fundamental problem with this approach?

Optimality

Optimality

- SVD is optimal in the following sense.

Optimality

- SVD is optimal in the following sense.
- Keeping the k largest singular values and setting all others to zero gives you the optimal approximation of the original matrix C. Eckart-Young theorem

Optimality

- SVD is optimal in the following sense.
- Keeping the k largest singular values and setting all others to zero gives you the optimal approximation of the original matrix C. Eckart-Young theorem
- Optimal: no other matrix of the same rank ($=$ with the same underlying dimensionality) approximates C better.

Optimality

- SVD is optimal in the following sense.
- Keeping the k largest singular values and setting all others to zero gives you the optimal approximation of the original matrix C. Eckart-Young theorem
- Optimal: no other matrix of the same rank ($=$ with the same underlying dimensionality) approximates C better.
- Measure of approximation is Frobenius norm:

$$
\|C\|_{F}=\sqrt{\sum_{i} \sum_{j} c_{i j}^{2}}
$$

Optimality

- SVD is optimal in the following sense.
- Keeping the k largest singular values and setting all others to zero gives you the optimal approximation of the original matrix C. Eckart-Young theorem
- Optimal: no other matrix of the same rank (= with the same underlying dimensionality) approximates C better.
- Measure of approximation is Frobenius norm:

$$
\|C\|_{F}=\sqrt{\sum_{i} \sum_{j} c_{i j}^{2}}
$$

- So LSI uses the "best possible" matrix.

Optimality

- SVD is optimal in the following sense.
- Keeping the k largest singular values and setting all others to zero gives you the optimal approximation of the original matrix C. Eckart-Young theorem
- Optimal: no other matrix of the same rank (= with the same underlying dimensionality) approximates C better.
- Measure of approximation is Frobenius norm:

$$
\|C\|_{F}=\sqrt{\sum_{i} \sum_{j} c_{i j}^{2}}
$$

- So LSI uses the "best possible" matrix.
- There is only one best possible matrix - unique solution (modulo signs).

Optimality

- SVD is optimal in the following sense.
- Keeping the k largest singular values and setting all others to zero gives you the optimal approximation of the original matrix C. Eckart-Young theorem
- Optimal: no other matrix of the same rank ($=$ with the same underlying dimensionality) approximates C better.
- Measure of approximation is Frobenius norm:

$$
\|C\|_{F}=\sqrt{\sum_{i} \sum_{j} c_{i j}^{2}}
$$

- So LSI uses the "best possible" matrix.
- There is only one best possible matrix - unique solution (modulo signs).
- Caveat: There is only a tenuous relationship between the Frobenius norm and cosine similarity between documents.

Data for graphical illustration of LSI

Data for graphical illustration of LSI

c_{1} Human machine interface for lab abc computer applications
c_{2} A survey of user opinion of computer system response time
c_{3} The EPS user interface management system
$c_{4} \quad$ System and human system engineering testing of EPS
$C_{5} \quad$ Relation of user perceived response time to error measurement
$m_{1} \quad$ The generation of random binary unordered trees
m_{2} The intersection graph of paths in trees
$m_{3} \quad$ Graph minors IV Widths of trees and well quasi ordering
$m_{4} \quad$ Graph minors A survey

Data for graphical illustration of LSI

c_{1} Human machine interface for lab abc computer applications
c_{2} A survey of user opinion of computer system response time
c_{3} The EPS user interface management system
c_{4} System and human system engineering testing of EPS
c_{5} Relation of user perceived response time to error measurement
m_{1} The generation of random binary unordered trees
m_{2} The intersection graph of paths in trees
$m_{3} \quad$ Graph minors IV Widths of trees and well quasi ordering
m_{4} Graph minors A survey
The matrix C

	$c 1$	$c 2$	$c 3$	$c 4$	$c 5$	m 1	m 2	m 3	m 4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Graphical illustration of LSI: Plot of C_{2}

2-dimensional plot of C_{2} (scaled dimensions). Circles $=$ terms. Open squares $=$ documents (component terms in parentheses). $q=$ query "human computer interaction".

The dotted cone represents the region whose points are within a cosine of .9 from q. All documents about human-computer documents (c1-c5) are near q, even $c 3 / c 5$ although they share no terms. None of the graph theory documents ($\mathrm{m} 1-\mathrm{m} 4$) are near q .

Exercise

What happens when we rank documents according to cosine similarity in the original vector space? What happens when we rank documents according to cosine similarity in the reduced vector space?

LSI performs better than vector space on MED collection

MED: Precision-Recall Curves
Means across Queries

LSI-100 $=$ LSI reduced to 100 dimensions; SMART $=$ SMART implementation of vector space model

Outline

(1) Recap
(2) Latent semantic indexing

(3) Dimensionality reduction

(4) LSI in information retrieval
(5) Clustering

Exercise: Why can this be viewed as soft clustering?

C	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}			
ship	1	0	1	0	0	0			
boat	0	1	0	0	0	0			
ocean	1	1	0	0	0	0			
wood	1	0	0	1	1	0			
tree	0	0	0	1	0	1			
U		1		2		3	4	5	Σ
ship	-0.44	-0.30	0.57	0.58	0.25	1			
boat	-0.13	-0.33	-0.59	0.00	0.73	2			
ocean	-0.48	-0.51	-0.37	0.00	-0.61	\times	3		
wood	-0.70	0.35	0.15	-0.58	0.16	4			
tree	-0.26	0.65	-0.41	0.58	-0.09	5			
V^{T}	d_{1}		d_{2}		d_{3}		d_{4}	d_{5}	d_{6}
1	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12			
2	-0.29	-0.53	-0.19	0.63	0.22	0.41			
3	0.28	-0.75	0.45	-0.20	0.12	-0.33			
4	0.00	0.00	0.58	0.00	-0.58	0.58			
5	-0.53	0.29	0.63	0.19	0.41	-0.22			

Why LSI can be viewed as soft clustering

Why LSI can be viewed as soft clustering

- Each of the k dimensions of the reduced space is one cluster.

Why LSI can be viewed as soft clustering

- Each of the k dimensions of the reduced space is one cluster.
- If the value of the LSI representation of document d on dimension k is x, then x is the soft membership of d in topic k.

Why LSI can be viewed as soft clustering

- Each of the k dimensions of the reduced space is one cluster.
- If the value of the LSI representation of document d on dimension k is x, then x is the soft membership of d in topic k.
- This soft membership can be positive or negative.

Why LSI can be viewed as soft clustering

- Each of the k dimensions of the reduced space is one cluster.
- If the value of the LSI representation of document d on dimension k is x, then x is the soft membership of d in topic k.
- This soft membership can be positive or negative.
- Example: Dimension 2 in our SVD decomposition

Why LSI can be viewed as soft clustering

- Each of the k dimensions of the reduced space is one cluster.
- If the value of the LSI representation of document d on dimension k is x, then x is the soft membership of d in topic k.
- This soft membership can be positive or negative.
- Example: Dimension 2 in our SVD decomposition
- This dimension/cluster corresponds to the water/earth dichotomy.

Why LSI can be viewed as soft clustering

- Each of the k dimensions of the reduced space is one cluster.
- If the value of the LSI representation of document d on dimension k is x, then x is the soft membership of d in topic k.
- This soft membership can be positive or negative.
- Example: Dimension 2 in our SVD decomposition
- This dimension/cluster corresponds to the water/earth dichotomy.
- "ship", "boat", "ocean" have negative values.

Why LSI can be viewed as soft clustering

- Each of the k dimensions of the reduced space is one cluster.
- If the value of the LSI representation of document d on dimension k is x, then x is the soft membership of d in topic k.
- This soft membership can be positive or negative.
- Example: Dimension 2 in our SVD decomposition
- This dimension/cluster corresponds to the water/earth dichotomy.
- "ship", "boat", "ocean" have negative values.
- "wood", "tree" have positive values.

Why LSI can be viewed as soft clustering

- Each of the k dimensions of the reduced space is one cluster.
- If the value of the LSI representation of document d on dimension k is x, then x is the soft membership of d in topic k.
- This soft membership can be positive or negative.
- Example: Dimension 2 in our SVD decomposition
- This dimension/cluster corresponds to the water/earth dichotomy.
- "ship", "boat", "ocean" have negative values.
- "wood", "tree" have positive values.
- d_{1}, d_{2}, d_{3} have negative values (most of their terms are water terms).

Why LSI can be viewed as soft clustering

- Each of the k dimensions of the reduced space is one cluster.
- If the value of the LSI representation of document d on dimension k is x, then x is the soft membership of d in topic k.
- This soft membership can be positive or negative.
- Example: Dimension 2 in our SVD decomposition
- This dimension/cluster corresponds to the water/earth dichotomy.
- "ship", "boat", "ocean" have negative values.
- "wood", "tree" have positive values.
- d_{1}, d_{2}, d_{3} have negative values (most of their terms are water terms).
- d_{4}, d_{5}, d_{6} have positive values (all of their terms are earth terms).

Take-away today

- Latent Semantic Indexing (LSI) / Singular Value Decomposition: The math
- SVD used for dimensionality reduction
- LSI: SVD in information retrieval
- LSI as clustering

Resources

- Chapter 18 of IIR
- Resources at http://cislmu.org
- Original paper on latent semantic indexing by Deerwester et al.
- Paper on probabilistic LSI by Thomas Hofmann
- Word space: LSI for words

