Introduction to Information Retrieval http://informationretrieval.org

IIR 14: Vector Space Classification

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2013-05-28

- Recap
- 2 Intro vector space classification
- Rocchio
- 4 kNN
- 5 Linear classifiers
- 6 > two classes

Recap

- Recap
- 2 Intro vector space classification
- 3 Rocchio
- 4 kNN
- 5 Linear classifiers
- 6 > two classes

Feature selection: MI for *poultry*/EXPORT

Goal of feature selection: eleminate noise and useless features for better effectiveness and efficiency

$$egin{array}{c|c} e_c = e_{poultry} = 1 & e_c = e_{poultry} = 0 \ e_t = e_{ ext{EXPORT}} = 1 & N_{11} = 49 & N_{10} = 27,652 \ e_t = e_{ ext{EXPORT}} = 0 & N_{01} = 141 & N_{00} = 774,106 \ \end{array}$$

Plug these values into formula:

$$I(U;C) = \frac{49}{801,948} \log_2 \frac{801,948 \cdot 49}{(49+27,652)(49+141)}$$

$$+ \frac{141}{801,948} \log_2 \frac{801,948 \cdot 141}{(141+774,106)(49+141)}$$

$$+ \frac{27,652}{801,948} \log_2 \frac{801,948 \cdot 27,652}{(49+27,652)(27,652+774,106)}$$

$$+ \frac{774,106}{801,948} \log_2 \frac{801,948 \cdot 774,106}{(141+774,106)(27,652+774,106)}$$

$$\approx 0.000105$$

Class: coffee

term	MI
COFFEE	0.0111
BAGS	0.0042
GROWERS	0.0025
KG	0.0019
COLOMBIA	0.0018
BRAZIL	0.0016
EXPORT	0.0014
EXPORTERS	0.0013
EXPORTS	0.0013
CROP	0.0012

Class: sports

Class: <i>sports</i>		
term	MI	
SOCCER	0.0681	
CUP	0.0515	
MATCH	0.0441	
MATCHES	0.0408	
PLAYED	0.0388	
LEAGUE	0.0386	
BEAT	0.0301	
GAME	0.0299	
GAMES	0.0284	
TEAM	0.0264	

Recap

Using language models (LMs) for IR

- LM = language model
- We view the document as a generative model that generates the query.
- What we need to do:
- Define the precise generative model we want to use
- Estimate parameters (different parameters for each document's model)
- Smooth to avoid zeros
- Apply to guery and find document most likely to have generated the query
- Present most likely document(s) to user

Jelinek-Mercer smoothing

- $P(t|d) = \lambda P(t|M_d) + (1-\lambda)P(t|M_c)$
- Mixes the probability from the document with the general collection frequency of the word.
- High value of λ : "conjunctive-like" search tends to retrieve documents containing all query words.
- Low value of λ : more disjunctive, suitable for long queries
- Correctly setting λ is very important for good performance.

Take-away today

Recap

Take-away today

Recap

 Vector space classification: Basic idea of doing text classification for documents that are represented as vectors Recap

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification
- Linear classifiers

Take-away today

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification
- Linear classifiers
- More than two classes

Outline

- 2 Intro vector space classification

Recall vector space representation

• Each document is a vector, one component for each term.

Recall vector space representation

- Each document is a vector, one component for each term.
- Terms are axes.

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 100,000s of dimensions

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 100,000s of dimensions
- Normalize vectors (documents) to unit length

Recall vector space representation

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 100,000s of dimensions
- Normalize vectors (documents) to unit length
- How can we do classification in this space?

Basic text classification setup

• As before, the training set is a set of documents, each labeled with its class.

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.
- Premise 2: Documents from different classes don't overlap.

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.
- Premise 2: Documents from different classes don't overlap.
- We define lines, surfaces, hypersurfaces to divide regions.

Classes in the vector space

Should the document * be assigned to China, UK or Kenya?

Find separators between the classes

Find separators between the classes

Classes in the vector space

Find separators between the classes

Kenya

Based on these separators: * should be assigned to China

Classes in the vector space

How do we find separators that do a good job at classifying new documents like *? - Main topic of today

Aside: 2D/3D graphs can be misleading

Left: A projection of the 2D semicircle to 1D. For the points x_1, x_2, x_3, x_4, x_5 at x coordinates -0.9, -0.2, 0, 0.2, 0.9 the distance $|x_2x_3| \approx 0.201$ only differs by 0.5% from $|x_2'x_3'| = 0.2$; but $|x_1x_3|/|x_1'x_3'| = d_{\text{true}}/d_{\text{projected}} \approx 1.06/0.9 \approx 1.18$ is an example of a large distortion (18%) when projecting a large area. *Right:* The corresponding projection of the 3D hemisphere to 2D.

Outline

- Rocchio

Relevance feedback

- In relevance feedback, the user marks documents as relevant/nonrelevant.
- Relevant/nonrelevant can be viewed as classes or categories.
- For each document, the user decides which of these two classes is correct.
- The IR system then uses these class assignments to build a better query ("model") of the information need ...
- ...and returns better documents.
- Relevance feedback is a form of text classification.

Using Rocchio for vector space classification

• The principal difference between relevance feedback and text classification:

- The principal difference between relevance feedback and text classification:
 - The training set is given as part of the input in text classification

- The principal difference between relevance feedback and text classification:
 - The training set is given as part of the input in text classification
 - It is interactively created in relevance feedback.

Rocchio classification: Basic idea

• Compute a centroid for each class

- Compute a centroid for each class
 - The centroid is the average of all documents in the class.

Rocchio classification: Basic idea

- Compute a centroid for each class
 - The centroid is the average of all documents in the class.
- Assign each test document to the class of its closest centroid.

Recall definition of centroid

Recall definition of centroid

$$\vec{\mu}(c) = \frac{1}{|D_c|} \sum_{d \in D_c} \vec{v}(d)$$

where D_c is the set of all documents that belong to class c and $\vec{v}(d)$ is the vector space representation of d.

Rocchio algorithm

```
TrainRocchio(\mathbb{C}, \mathbb{D})
        for each c_i \in \mathbb{C}
        do D_i \leftarrow \{d : \langle d, c_i \rangle \in \mathbb{D}\}
              \vec{\mu}_j \leftarrow \frac{1}{|D_i|} \sum_{d \in D_i} \vec{v}(d)
        return \{\vec{\mu}_1,\ldots,\vec{\mu}_I\}
APPLYROCCHIO(\{\vec{\mu}_1,\ldots,\vec{\mu}_J\},d)
        return arg min<sub>i</sub> |\vec{\mu}_i - \vec{v}(d)|
```

 Rocchio forms a simple representation for each class: the centroid

- Rocchio forms a simple representation for each class: the centroid
 - We can interpret the centroid as the prototype of the class.

- Rocchio forms a simple representation for each class: the centroid
 - We can interpret the centroid as the prototype of the class.
- Classification is based on similarity to / distance from centroid/prototype.

- Rocchio forms a simple representation for each class: the centroid
 - We can interpret the centroid as the prototype of the class.
- Classification is based on similarity to / distance from centroid/prototype.
- Does not guarantee that classifications are consistent with the training data!

Time complexity of Rocchio

Time complexity of Rocchio

time complexity mode $\Theta(|\mathbb{D}|L_{\mathsf{ave}} + |\mathbb{C}||V|) \approx \Theta(|\mathbb{D}|L_{\mathsf{ave}})$ training $\Theta(L_{\mathsf{a}} + |\mathbb{C}|M_{\mathsf{a}}) \approx \Theta(|\mathbb{C}|M_{\mathsf{a}})$ testing

Rocchio vs. Naive Bayes

Rocchio vs. Naive Bayes

• In many cases, Rocchio performs worse than Naive Bayes.

Rocchio vs. Naive Bayes

- In many cases, Rocchio performs worse than Naive Bayes.
- One reason: Rocchio does not handle nonconvex, multimodal classes correctly.

- A is centroid of the a's, B is centroid of the b's.
- The point o is closer to A than to B.
- But o is a better fit for the b class.
- A is a multimodal class with two prototypes.
- But in Rocchio we only have one prototype.

Outline

- Recap
- 2 Intro vector space classification
- 3 Rocchio
- 4 kNN
- 5 Linear classifiers
- 6 > two classes

 kNN classification is another vector space classification method.

kNN

 kNN classification is another vector space classification method.

kNN

• It also is very simple and easy to implement.

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- If you need to get a pretty accurate classifier up and running in a short time . . .

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- If you need to get a pretty accurate classifier up and running in a short time . . .
- ...and you don't care about efficiency that much ...

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- If you need to get a pretty accurate classifier up and running in a short time . . .
- ...and you don't care about efficiency that much ...
- ... use kNN.

• kNN = k nearest neighbors

- kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.

- kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.

- kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.
- kNN classification rule for k > 1 (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.

- kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.
- kNN classification rule for k > 1 (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.
- Rationale of kNN: contiguity hypothesis

- kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.
- kNN classification rule for k > 1 (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.
- Rationale of kNN: contiguity hypothesis
 - We expect a test document d to have the same label as the training documents located in the local region surrounding d.

Probabilistic kNN

Probabilistic kNN

• Probabilistic version of kNN: P(c|d) = fraction of k neighbors of d that are in c

Probabilistic kNN

- Probabilistic version of kNN: P(c|d) = fraction of k neighbors of d that are in c
- kNN classification rule for probabilistic kNN: Assign d to class c with highest P(c|d)

kNN algorithm

Train-kNN(\mathbb{C}, \mathbb{D})

- 1 $\mathbb{D}' \leftarrow \text{Preprocess}(\mathbb{D})$
- 2 $k \leftarrow \text{Select-k}(\mathbb{C}, \mathbb{D}')$
- 3 **return** \mathbb{D}', k

Apply-knn(\mathbb{D}', k, d)

- 1 $S_k \leftarrow \text{ComputeNearestNeighbors}(\mathbb{D}', k, d)$
- 2 for each $c_j \in \mathbb{C}(\mathbb{D}')$
- 3 **do** $p_j \leftarrow |S_k \cap c_j|/k$
- 4 **return** arg max_i p_j

Exercise

How is star classified by:

(i) 1-NN (ii) 3-NN (iii) 9-NN (iv) 15-NN (v) Rocchio?

training
$$\Theta(|\mathbb{D}|L_{\text{ave}})$$

testing $\Theta(L_a + |\mathbb{D}|M_{\text{ave}}M_a) = \Theta(|\mathbb{D}|M_{\text{ave}}M_a)$

kNN with preprocessing of training set

training
$$\Theta(|\mathbb{D}|L_{\text{ave}})$$
 testing $\Theta(L_{\text{a}} + |\mathbb{D}|M_{\text{ave}}M_{\text{a}}) = \Theta(|\mathbb{D}|M_{\text{ave}}M_{\text{a}})$

• kNN test time proportional to the size of the training set!

training
$$\Theta(|\mathbb{D}|L_{\text{ave}})$$

testing $\Theta(L_{\text{a}} + |\mathbb{D}|M_{\text{ave}}M_{\text{a}}) = \Theta(|\mathbb{D}|M_{\text{ave}}M_{\text{a}})$

- kNN test time proportional to the size of the training set!
- The larger the training set, the longer it takes to classify a test document.

training
$$\Theta(|\mathbb{D}|L_{\text{ave}})$$

testing $\Theta(L_{\text{a}} + |\mathbb{D}|M_{\text{ave}}M_{\text{a}}) = \Theta(|\mathbb{D}|M_{\text{ave}}M_{\text{a}})$

- kNN test time proportional to the size of the training set!
- The larger the training set, the longer it takes to classify a test document.
- kNN is inefficient for very large training sets.

training
$$\Theta(|\mathbb{D}|L_{ave})$$

testing $\Theta(L_a + |\mathbb{D}|M_{ave}M_a) = \Theta(|\mathbb{D}|M_{ave}M_a)$

- kNN test time proportional to the size of the training set!
- The larger the training set, the longer it takes to classify a test document.
- kNN is inefficient for very large training sets.
- Question: Can we divide up the training set into regions, so that we only have to search in one region to do kNN classification for a given test document? (which perhaps would give us better than linear time complexity)

kNN

• Our intuitions about space are based on the 3D world we live in.

- Our intuitions about space are based on the 3D world we live in.
- Intuition 1: some things are close by, some things are distant.

- Our intuitions about space are based on the 3D world we live in.
- Intuition 1: some things are close by, some things are distant.
- Intuition 2: we can carve up space into areas such that: within an area things are close, distances between areas are large.

- Our intuitions about space are based on the 3D world we live in.
- Intuition 1: some things are close by, some things are distant.
- Intuition 2: we can carve up space into areas such that: within an area things are close, distances between areas are large.
- These two intuitions don't necessarily hold for high dimensions.

- Our intuitions about space are based on the 3D world we live in.
- Intuition 1: some things are close by, some things are distant.
- Intuition 2: we can carve up space into areas such that: within an area things are close, distances between areas are large.
- These two intuitions don't necessarily hold for high dimensions.
- In particular: for a set of k uniformly distributed points, let dmin be the smallest distance between any two points and dmax be the largest distance between any two points.

- Our intuitions about space are based on the 3D world we live in.
- Intuition 1: some things are close by, some things are distant.
- Intuition 2: we can carve up space into areas such that: within an area things are close, distances between areas are large.
- These two intuitions don't necessarily hold for high dimensions.
- In particular: for a set of k uniformly distributed points, let dmin be the smallest distance between any two points and dmax be the largest distance between any two points.
- Then

$$\lim_{d \to \infty} \frac{\mathsf{dmax} - \mathsf{dmin}}{\mathsf{dmin}} = 0$$

$$\lim_{d\to\infty}\frac{\mathsf{dmax}-\mathsf{dmin}}{\mathsf{dmin}}=0$$

$$\lim_{d \to \infty} \frac{d \max - d \min}{d \min} = 0$$

• Pick a dimensionality d

$$\lim_{d \to \infty} \frac{d \max - d \min}{d \min} = 0$$

- Pick a dimensionality d
- Generate 10 random points in the *d*-dimensional hypercube (uniform distribution)

$$\lim_{d \to \infty} \frac{\mathsf{dmax} - \mathsf{dmin}}{\mathsf{dmin}} = 0$$

- Pick a dimensionality d
- Generate 10 random points in the *d*-dimensional hypercube (uniform distribution)
- Compute all 45 distances

Curse of dimensionality: Simulation

$$\lim_{d \to \infty} \frac{\mathsf{dmax} - \mathsf{dmin}}{\mathsf{dmin}} = 0$$

- Pick a dimensionality d
- Generate 10 random points in the d-dimensional hypercube (uniform distribution)
- Compute all 45 distances
- Compute dmax-dmin dmin

Curse of dimensionality: Simulation

$$\lim_{d \to \infty} \frac{\mathsf{dmax} - \mathsf{dmin}}{\mathsf{dmin}} = 0$$

- Pick a dimensionality d
- Generate 10 random points in the *d*-dimensional hypercube (uniform distribution)
- Compute all 45 distances
- Compute dmax-dmin dmin
- We see that intuition 1 (some things are close, others are distant) is not true for high dimensions.

• Intuition 2: we can carve up space into areas such that: within an area things are close, distances between areas are large.

- Intuition 2: we can carve up space into areas such that: within an area things are close, distances between areas are large.
- If this is true, then we have a simple and efficient algorithm for kNN.

• Intuition 2: we can carve up space into areas such that: within an area things are close, distances between areas are large.

- If this is true, then we have a simple and efficient algorithm for kNN.
- To find the k closest neighbors of data point $\langle x_1, x_2, \dots, x_d \rangle$ do the following.

- Intuition 2: we can carve up space into areas such that: within an area things are close, distances between areas are large.
- If this is true, then we have a simple and efficient algorithm for kNN.
- To find the k closest neighbors of data point $\langle x_1, x_2, \dots, x_d \rangle$ do the following.
- Using binary search find all data points whose first dimension is in $[x_1 - \epsilon, x_1 + \epsilon]$. This is $O(\log n)$ where n is the number of data points.

- Intuition 2: we can carve up space into areas such that: within an area things are close, distances between areas are large.
- If this is true, then we have a simple and efficient algorithm for kNN.
- To find the k closest neighbors of data point $\langle x_1, x_2, \dots, x_d \rangle$ do the following.
- Using binary search find all data points whose first dimension is in $[x_1 \epsilon, x_1 + \epsilon]$. This is $O(\log n)$ where n is the number of data points.
- Do this for each dimension, then intersect the *d* subsets.

kNN

Intuition 2: Space can be carved up

• Size of data set n = 100

- Size of data set n = 100
- Again, assume uniform distribution in hypercube

- Size of data set n=100
- Again, assume uniform distribution in hypercube
- Set $\epsilon = 0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.

- Size of data set n=100
- Again, assume uniform distribution in hypercube
- Set $\epsilon = 0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.
- What is the probability that the nearest neighbor of a new data point \vec{x} is in this neighborhood in d=1 dimension?

• Size of data set n = 100

- Again, assume uniform distribution in hypercube
- Set $\epsilon=0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.
- What is the probability that the nearest neighbor of a new data point \vec{x} is in this neighborhood in d=1 dimension?
- for d = 1: $1 (1 0.1)^{100} \approx 0.99997$

- Size of data set n = 100
- Again, assume uniform distribution in hypercube
- Set $\epsilon=0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.
- What is the probability that the nearest neighbor of a new data point \vec{x} is in this neighborhood in d=1 dimension?
- for d = 1: $1 (1 0.1)^{100} \approx 0.99997$
- In d = 2 dimensions?

- Size of data set n = 100
- Again, assume uniform distribution in hypercube
- Set $\epsilon = 0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.
- What is the probability that the nearest neighbor of a new data point \vec{x} is in this neighborhood in d=1 dimension?
- for d = 1: $1 (1 0.1)^{100} \approx 0.99997$
- In d=2 dimensions?
- for d = 2: $1 (1 0.1^2)^{100} \approx 0.63$

- Size of data set n = 100
- Again, assume uniform distribution in hypercube
- Set $\epsilon = 0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.
- What is the probability that the nearest neighbor of a new data point \vec{x} is in this neighborhood in d=1 dimension?
- for d = 1: $1 (1 0.1)^{100} \approx 0.99997$
- In d=2 dimensions?
- for d = 2: $1 (1 0.1^2)^{100} \approx 0.63$
- In d = 3 dimensions?

- Size of data set n = 100
- Again, assume uniform distribution in hypercube
- Set $\epsilon = 0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.
- What is the probability that the nearest neighbor of a new data point \vec{x} is in this neighborhood in d=1 dimension?
- for d=1: $1-(1-0.1)^{100}\approx 0.99997$
- In d = 2 dimensions?
- for d = 2: $1 (1 0.1^2)^{100} \approx 0.63$
- In d = 3 dimensions?
- for d = 3: $1 (1 0.1^3)^{100} \approx 0.095$

• Size of data set n = 100

- Again, assume uniform distribution in hypercube
- Set $\epsilon = 0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.
- What is the probability that the nearest neighbor of a new data point \vec{x} is in this neighborhood in d=1 dimension?
- for d=1: $1-(1-0.1)^{100}\approx 0.99997$
- In d = 2 dimensions?
- for d = 2: $1 (1 0.1^2)^{100} \approx 0.63$
- In d = 3 dimensions?
- for d = 3: $1 (1 0.1^3)^{100} \approx 0.095$
- In d = 4 dimensions?

- Size of data set n=100
- Again, assume uniform distribution in hypercube
- Set $\epsilon = 0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.
- What is the probability that the nearest neighbor of a new data point \vec{x} is in this neighborhood in d=1 dimension?
- for d = 1: $1 (1 0.1)^{100} \approx 0.99997$
- In d=2 dimensions?
- for d = 2: $1 (1 0.1^2)^{100} \approx 0.63$
- In d = 3 dimensions?
- for d = 3: $1 (1 0.1^3)^{100} \approx 0.095$
- In d = 4 dimensions?
- for d = 4: $1 (1 0.1^4)^{100} \approx 0.0095$

- Size of data set n=100
- Again, assume uniform distribution in hypercube
- Set $\epsilon = 0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.
- What is the probability that the nearest neighbor of a new data point \vec{x} is in this neighborhood in d=1 dimension?
- for d = 1: $1 (1 0.1)^{100} \approx 0.99997$
- In d=2 dimensions?
- for d = 2: $1 (1 0.1^2)^{100} \approx 0.63$
- In d = 3 dimensions?
- for d = 3: $1 (1 0.1^3)^{100} \approx 0.095$
- In d = 4 dimensions?
- for d = 4: $1 (1 0.1^4)^{100} \approx 0.0095$
- In d = 5 dimensions?

- Size of data set n = 100
- Again, assume uniform distribution in hypercube
- Set $\epsilon=0.05$: we will look in an interval of length 0.1 for neighbors on each dimension.
- What is the probability that the nearest neighbor of a new data point \vec{x} is in this neighborhood in d=1 dimension?
- for d = 1: $1 (1 0.1)^{100} \approx 0.99997$
- In d = 2 dimensions?
- for d = 2: $1 (1 0.1^2)^{100} \approx 0.63$
- In d = 3 dimensions?
- for d = 3: $1 (1 0.1^3)^{100} \approx 0.095$
- In d = 4 dimensions?
- for d = 4: $1 (1 0.1^4)^{100} \approx 0.0095$
- In d = 5 dimensions?
- for d = 5: $1 (1 0.1^5)^{100} \approx 0.0009995$

- In d = 5 dimensions?
- for d = 5: $1 (1 0.1^5)^{100} \approx 0.0009995$

- In d=5 dimensions? • for d=5: $1-(1-0.1^5)^{100}\approx 0.0009995$
- In other words: with enough dimensions, there is only one "local" region that will contain the nearest neighbor with high certainty: the entire search space.

- In d = 5 dimensions?
- for d = 5: $1 (1 0.1^5)^{100} \approx 0.0009995$
- In other words: with enough dimensions, there is only one "local" region that will contain the nearest neighbor with high certainty: the entire search space.
- We cannot carve up high-dimensional space into neat neighborhoods . . .

The state of the state of

- In d = 5 dimensions?
- for d = 5: $1 (1 0.1^5)^{100} \approx 0.0009995$
- In other words: with enough dimensions, there is only one "local" region that will contain the nearest neighbor with high certainty: the entire search space.
- We cannot carve up high-dimensional space into neat neighborhoods . . .
- ullet ... unless the "true" dimensionality is much lower than d.

kNN: Discussion

No training necessary

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.

kNN: Discussion

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.
 - We always preprocess the training set, so in reality training time of kNN is linear.

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.

kNN

- We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.

kNN: Discussion

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.
 - We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.
- Optimality result: asymptotically zero error if Bayes rate is zero.

kNN

kNN: Discussion

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.
 - We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.
- Optimality result: asymptotically zero error if Bayes rate is zero.
- But kNN can be very inaccurate if training set is small.

Outline

- Linear classifiers

Definition:

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - \bullet ... where θ (the threshold) is a parameter.

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.

Definition:

Intro vector space classification

- A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
- Classification decision: $\sum_i w_i x_i > \theta$?
- ullet . . . where heta (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
- We find this separator based on training set.

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
- We find this separator based on training set.
- Methods for finding separator: Perceptron, Rocchio, Naive Bayes – as we will explain on the next slides

- Definition:
 - A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
- We find this separator based on training set.
- Methods for finding separator: Perceptron, Rocchio, Naive
 Bayes as we will explain on the next slides
- Assumption: The classes are linearly separable.

• A linear classifier in 1D is a point described by the equation $w_1d_1 = \theta$

A linear classifier in 1D

- A linear classifier in 1D is a point described by the equation $w_1 d_1 = \theta$
- The point at θ/w_1

A linear classifier in 1D

- A linear classifier in 1D is a point described by the equation $w_1d_1 = \theta$
- The point at θ/w_1
- Points (d_1) with $w_1d_1 \ge \theta$ are in the class c.

A linear classifier in 1D

- A linear classifier in 1D is a point described by the equation $w_1 d_1 = \theta$
- The point at θ/w_1
- Points (d_1) with $w_1d_1 \geq \theta$ are in the class c.
- Points (d_1) with $w_1d_1 < \theta$ are in the complement class \overline{c} .

A linear classifier in 2D

• A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $w_1 d_1 + w_2 d_2 = \theta$
- Example for a 2D linear classifier

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $w_1 d_1 + w_2 d_2 = \theta$
- Example for a 2D linear classifier
- Points $(d_1 \ d_2)$ with $w_1d_1 + w_2d_2 \ge \theta$ are in the class c.

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$
- Example for a 2D linear classifier
- Points $(d_1 \ d_2)$ with $w_1d_1 + w_2d_2 \ge \theta$ are in the class c.
- Points $(d_1 \ d_2)$ with $w_1d_1 + w_2d_2 < \theta$ are in the complement class \overline{c} .

 A linear classifier in 3D is a plane described by the equation $w_1d_1 + w_2d_2 + w_3d_3 = \theta$

A linear classifier in 3D

- A linear classifier in 3D is a plane described by the equation $w_1d_1 + w_2d_2 + w_3d_3 = \theta$
- Example for a 3D linear classifier

A linear classifier in 3D

- A linear classifier in 3D is a plane described by the equation $w_1 d_1 + w_2 d_2 + w_3 d_3 = \theta$
- Example for a 3D linear classifier
- Points $(d_1 \ d_2 \ d_3)$ with $w_1d_1 + w_2d_2 + w_3d_3 \ge \theta$ are in the class c.

A linear classifier in 3D

- A linear classifier in 3D is a plane described by the equation $w_1 d_1 + w_2 d_2 + w_3 d_3 = \theta$
- Example for a 3D linear classifier
- Points $(d_1 \ d_2 \ d_3)$ with $w_1d_1 + w_2d_2 + w_3d_3 \ge \theta$ are in the class c.
- Points $(d_1 \ d_2 \ d_3)$ with $w_1d_1 + w_2d_2 + w_3d_3 < \theta$ are in the complement class \overline{c} .

Rocchio as a linear classifier

Rocchio is a linear classifier defined by:

$$\sum_{i=1}^{M} w_i d_i = \vec{w} \vec{d} = \theta$$

where \vec{w} is the normal vector $\vec{\mu}(c_1) - \vec{\mu}(c_2)$ and $\theta = 0.5 * (|\vec{\mu}(c_1)|^2 - |\vec{\mu}(c_2)|^2).$

Naive Bayes as a linear classifier

Naive Bayes as a linear classifier

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

$$\sum_{i=1}^{M} w_i d_i = \theta$$

where $w_i = \log[\hat{P}(t_i|c)/\hat{P}(t_i|\bar{c})], d_i = \text{number of occurrences of } t_i$ in d, and $\theta = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$. Here, the index i, 1 < i < M, refers to terms of the vocabulary (not to positions in d as k did in our original definition of Naive Bayes)

kNN is not a linear classifier

Classification decision based on majority of k nearest neighbors.

kNN is not a linear classifier

- Classification decision based on majority of k nearest neighbors.
- The decision boundaries between classes are piecewise linear . . .

kNN is not a linear classifier

- Classification decision based on majority of k nearest neighbors.
- The decision boundaries between classes are piecewise linear . . .
- ... but they are in general not linear classifiers that can be described as $\sum_{i=1}^{M} w_i d_i = \theta.$

d_{2i}
1
0
0
0
0
0
1 0 0

- This is for the class interest in Reuters-21578.
- For simplicity: assume a simple 0/1 vector representation
- d₁: "rate discount dlrs world"
- d₂: "prime dlrs"
- $\theta = 0$
- Exercise: Which class is d_1 assigned to? Which class is d_2 assigned to?

d_{2i}
1
0
0
0
0
0
1 0 0

- This is for the class interest in Reuters-21578.
- For simplicity: assume a simple 0/1 vector representation
- d₁: "rate discount dlrs world"
- d₂: "prime dlrs"
- $\theta = 0$
- Exercise: Which class is d_1 assigned to? Which class is d_2 assigned to?

d_{2i}
1
0
0
0
0
0
1 0 0

- This is for the class interest in Reuters-21578.
- For simplicity: assume a simple 0/1 vector representation
- d₁: "rate discount dlrs world"
- d₂: "prime dlrs"
- $\theta = 0$
- Exercise: Which class is d_1 assigned to? Which class is d_2 assigned to?

ti	W;	d_{1i}	d_{2i}	t _i	W;	d_{1i}	d_{2i}
prime	0.70	0	1	dlrs	-0.71	1	1
rate	0.67	1	0	world	-0.35	1	0
interest	0.63	0	0	sees	-0.33	0	0
rates	0.60	0	0	year	-0.25	0	0
discount	0.46	1	0	group	-0.24	0	0
bundesbank	0.43	0	0	dlr	-0.24	0	0

- This is for the class *interest* in Reuters-21578.
- For simplicity: assume a simple 0/1 vector representation
- d₁: "rate discount dlrs world"
- d₂: "prime dlrs"
- $\theta = 0$
- Exercise: Which class is d_1 assigned to? Which class is d_2 assigned to?
- We assign document \vec{d}_1 "rate discount dlrs world" to interest since $\vec{w}^T \vec{d}_1 = 0.67 \cdot 1 + 0.46 \cdot 1 + (-0.71) \cdot 1 + (-0.35) \cdot 1 = 0.07 > 0 = \theta.$
- We assign \vec{d}_2 "prime dlrs" to the complement class (not in *interest*) since $\vec{w}^T \vec{d}_2 = -0.01 < \theta$.

 In terms of actual computation, there are two types of learning algorithms.

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms
 - Support vector machines

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms
 - Support vector machines
 - Perceptron (example available as PDF on website: http://cislmu.org)

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms
 - Support vector machines
 - Perceptron (example available as PDF on website: http://cislmu.org)
- The best performing learning algorithms usually require iterative learning.

• Randomly initialize linear separator \vec{w}

- Randomly initialize linear separator \vec{w}
- Do until convergence:

- Randomly initialize linear separator \vec{w}
- Do until convergence:
 - Pick data point \vec{x}

- Randomly initialize linear separator \vec{w}
- Do until convergence:
 - Pick data point \vec{x}
 - If $sign(\vec{w}^T\vec{x})$ is correct class (1 or -1): do nothing

- Randomly initialize linear separator \vec{w}
- Do until convergence:
 - Pick data point \vec{x}
 - If $sign(\vec{w}^T\vec{x})$ is correct class (1 or -1): do nothing
 - Otherwise: $\vec{w} = \vec{w} \text{sign}(\vec{w}^T \vec{x}) \vec{x}$

 For linearly separable training sets: there are infinitely many separating hyperplanes.

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly . . .

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly . . .
- ... but they behave differently on test data.

Which hyperplane?

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly . . .
- ... but they behave differently on test data.
- Error rates on new data are low for some, high for others.

Which hyperplane?

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly . . .
- ... but they behave differently on test data.
- Error rates on new data are low for some, high for others.
- How do we find a low-error separator?

Linear classifiers

Which hyperplane?

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly . . .
- ... but they behave differently on test data.
- Error rates on new data are low for some, high for others.
- How do we find a low-error separator?
- Perceptron: generally bad; Naive Bayes, Rocchio: ok; linear SVM: good

 Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
 - Huge differences in performance on test documents

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
 - Huge differences in performance on test documents
- Can we get better performance with more powerful nonlinear classifiers?

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
 - Huge differences in performance on test documents
- Can we get better performance with more powerful nonlinear classifiers?
- Not in general: A given amount of training data may suffice for estimating a linear boundary, but not for estimating a more complex nonlinear boundary.

A nonlinear problem

• Linear classifier like Rocchio does badly on this task.

- Linear classifier like Rocchio does badly on this task.
- kNN will do well (assuming enough training data)

 Is there a learning method that is optimal for all text classification problems?

- Is there a learning method that is optimal for all text classification problems?
- No. because there is a tradeoff between bias and variance.

- Is there a learning method that is optimal for all text classification problems?
- No. because there is a tradeoff between bias and variance.
- Factors to take into account:

- Is there a learning method that is optimal for all text classification problems?
- No. because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?

- Is there a learning method that is optimal for all text classification problems?
- No, because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)

- Is there a learning method that is optimal for all text classification problems?
- No. because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the problem?

- Is there a learning method that is optimal for all text classification problems?
- No. because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the problem?
 - How stable is the problem over time?

- Is there a learning method that is optimal for all text classification problems?
- No. because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem? (linear vs. nonlinear decision boundary)
 - How noisy is the problem?
 - How stable is the problem over time?
 - For an unstable problem, it's better to use a simple and robust classifier.

Outline

- 6 > two classes

How to combine hyperplanes for > 2 classes?

One-of or multiclass classification

- One-of or multiclass classification
 - Classes are mutually exclusive.

- One-of or multiclass classification.
 - Classes are mutually exclusive.
 - Each document belongs to exactly one class.

- One-of or multiclass classification
 - Classes are mutually exclusive.
 - Each document belongs to exactly one class.
 - Example: language of a document (assumption: no document contains multiple languages)

 Combine two-class linear classifiers as follows for one-of classification:

- Combine two-class linear classifiers as follows for one-of classification:
 - Run each classifier separately

- Combine two-class linear classifiers as follows for one-of classification:
 - Run each classifier separately
 - Rank classifiers (e.g., according to score)

- Combine two-class linear classifiers as follows for one-of classification:
 - Run each classifier separately
 - Rank classifiers (e.g., according to score)
 - Pick the class with the highest score

Any-of or multilabel classification

- Any-of or multilabel classification
 - A document can be a member of 0, 1, or many classes.

- Any-of or multilabel classification
 - A document can be a member of 0, 1, or many classes.
 - A decision on one class leaves decisions open on all other classes.

- Any-of or multilabel classification
 - A document can be a member of 0, 1, or many classes.
 - A decision on one class leaves decisions open on all other classes.
 - A type of "independence" (but not statistical independence)

- Any-of or multilabel classification
 - A document can be a member of 0, 1, or many classes.
 - A decision on one class leaves decisions open on all other classes.
 - A type of "independence" (but not statistical independence)
 - Example: topic classification

- Any-of or multilabel classification
 - A document can be a member of 0, 1, or many classes.
 - A decision on one class leaves decisions open on all other classes.
 - A type of "independence" (but not statistical independence)
 - Example: topic classification
 - Usually: make decisions on the region, on the subject area, on the industry and so on "independently"

> two classes

 Combine two-class linear classifiers as follows for any-of classification:

- Combine two-class linear classifiers as follows for any-of classification:
 - Simply run each two-class classifier separately on the test document and assign document accordingly

Take-away today

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification
- Linear classifiers
- More than two classes

Resources

- Chapter 13 of IIR (feature selection)
- Chapter 14 of IIR
- Resources at http://cislmu.org
 - Perceptron example
 - General overview of text classification: Sebastiani (2002)
 - Text classification chapter on decision tress and perceptrons: Manning & Schütze (1999)
 - One of the best machine learning textbooks: Hastie, Tibshirani & Friedman (2003)