Introduction to Information Retrieval
http://informationretrieval.org

[IR 20: Crawling

Hinrich Schiitze

Center for Information and Language Processing, University of Munich

2009.07.14

Schiitze: Crawling 1/32

http://informationretrieval.org

Recap

Outline

@ Recap

Schiitze: Crawling 2/32

Recap

Search engines rank content pages and ads

Web Images Maps News Shopping Gmail more Sian ir

. Advanced Search
Google |[discount broker Searchi| preress 2 ="
Web Results 1 - 10 of about 807,000 for broker ition]. (0.12

Sponsored Links
Discount Broker Reviews Rated #1 Online Broker
on online di brokers izing rates, charges, and customer comments No Minimums. No Inactivity Fee

and complaints. Transfer to Firstrade for Free!
www.broker-reviews.us/ - 94k - Cached - Similar pages www firstrade.com
Discount Broker Rankings (2008 Broker Survey) at SmartMoney.com Discount Broker
Discount Brokers. Rank/ Brokerage/ Minimum to Open Account, Comments, Standard Commission free trades for 30 days.
Commis- sion*, Reduced Commlssmn Account Fee PerYear (How to Avmd) Avg. .. No maintenance fees. Sign up now.
www.smartmoney. cfm? Yy table - 121k - TDAMERITRADE.com

Cached - Similar pages
TradeKing - Online Broker

Stock Brokers | Discount Brokers | Online Brokers $4.95 per Trade, Market or Limit
Most Top 5 Brokers ines. 10. Don't Pay Your Broker for Free Funds SmartMoney Top Discount Broker 2007
May 15 at 3:39 PM. 5. Don't Discount the Discounters Apr 18 at 2:41 PM ... www.TradeKing.com
www.fool.com/investing/brokers/index.aspx - 44k - Cached - Similar pages
Discount Broker $7 Trades, No Share Limit. In-Depth
Discount Broker - Definition of Discount Broker on Investopedia - A stockbroker who carries Research. Start Trading Online Now!
out buy and sell orders ata reduced commission compared to a ... www.Scottrade.com
WWW.ir .asp - 31k - Cached Similar pages
tock tra 1.50 -

100 free trades, up to $100 back
Online stock broker SogoTrade offers the best in discount brokerage investing. Get stock for transfer costs, $500 minimum
market quotes from this internet stock trading company. www.sogotrade.com

www.sogotrade.com/ - 39k - Cached - Similar pages

$3.95 Online Stock Trades
1 stions to ask discount brok - MSN Mone! Market/Limit Orders, No Share Limit
Jan 11,2004 .. If you're not big on hand-holding when it comes to investing, a discount and No Inactivity Fees
broker can be an economical way to go. Just be sure to ask these ... www.Marsco.com
msn. ling/P66171 asp 34k -

Cached - Similar pages NGDIRECT ShareBunder

Recap
Google's second price auction

advertiser bid CTR adrank rank paid

A $4.00 0.01 0.04 4 (minimum)
B $3.00 0.03 0.09 2 $2.68

C $2.00 0.06 0.12 1 $1.51

D $1.00 0.08 0.08 3 $0.51

@ bid: maximum bid for a click by advertiser

o CTR: click-through rate: when an ad is displayed, what
percentage of time do users click on it? CTR is a measure of
relevance.

@ ad rank: bid x CTR: this trades off (i) how much money the
advertiser is willing to pay against (ii) how relevant the ad is

@ paid: Second price auction: The advertiser pays the minimum
amount necessary to maintain their position in the auction
(plus 1 cent).

Schiitze: Crawling

Recap

What's great about search ads

@ Users only click if they are interested.
@ The advertiser only pays when a user clicks on an ad.

@ Searching for something indicates that you are more likely to
buy it ...

@ ...in contrast to radio and newpaper ads.

Schiitze: Crawling

Recap

Near duplicate detection: Minimum of permutation

document 1: {syx} document 2: {sy}
1 [BN] [BN] 2m 1 [] [] [I] 2m
515 53 54 51 S5 S35
xi = m(sx) Xk = m(sk)
R I
Xi Xk
lg—e-e o .om 1g oo oo
ming, 7(sk) mins, 7(sk)
1 23 2m 1 23 2m

Roughly: We use mingcq, 7(s) = mingeq, 7(s) as a test for: are dy
and d» near-duplicates?

Schiitze: Crawling

A simple crawler

Outline

© A simple crawler

Schiitze: Crawling 7/ 32

A simple crawler

How hard can crawling be?

@ Web search engines must crawl their documents.

Schiitze: Crawling

A simple crawler

How hard can crawling be?

@ Web search engines must crawl their documents.

o Getting the content of the documents is easier for many other
IR systems.

Schiitze: Crawling

A simple crawler

How hard can crawling be?

@ Web search engines must crawl their documents.

o Getting the content of the documents is easier for many other
IR systems.
¢ E.g., indexing all files on your hard disk: just do a recursive
descent on your file system

Schiitze: Crawling

A simple crawler

How hard can crawling be?

@ Web search engines must crawl their documents.
o Getting the content of the documents is easier for many other
IR systems.
¢ E.g., indexing all files on your hard disk: just do a recursive
descent on your file system
o Ok: for web IR, getting the content of the documents takes
longer . ..

Schiitze: Crawling

A simple crawler

hard can crawling be?

@ Web search engines must crawl their documents.
o Getting the content of the documents is easier for many other
IR systems.
¢ E.g., indexing all files on your hard disk: just do a recursive
descent on your file system
o Ok: for web IR, getting the content of the documents takes
longer . ..

@ ...because of latency.

Schiitze: Crawling

A simple crawler

hard can crawling be?

@ Web search engines must crawl their documents.

o Getting the content of the documents is easier for many other
IR systems.

¢ E.g., indexing all files on your hard disk: just do a recursive
descent on your file system

o Ok: for web IR, getting the content of the documents takes
longer . ..

@ ...because of latency.

o But is that really a design/systems challenge?

Schiitze: Crawling

A simple crawler

Basic crawler operation

@ Initialize queue with URLs of known seed pages

Schiitze: Crawling

A simple crawler

Basic crawler operation

@ Initialize queue with URLs of known seed pages
o Repeat

Schiitze: Crawling

A simple crawler

Basic crawler operation

@ Initialize queue with URLs of known seed pages
o Repeat
@ Take URL from queue

Schiitze: Crawling

A simple crawler

Basic crawler operation

@ Initialize queue with URLs of known seed pages
o Repeat

@ Take URL from queue
o Fetch and parse page

Schiitze: Crawling

A simple crawler

Basic crawler operation

@ Initialize queue with URLs of known seed pages
o Repeat

@ Take URL from queue
o Fetch and parse page
o Extract URLs from page

Schiitze: Crawling

A simple crawler

Basic crawler operation

@ Initialize queue with URLs of known seed pages
o Repeat
@ Take URL from queue
Fetch and parse page

"]
o Extract URLs from page
o Add URLs to queue

Schiitze: Crawling

A simple crawler

Basic crawler operation

@ Initialize queue with URLs of known seed pages
o Repeat

@ Take URL from queue

o Fetch and parse page

o Extract URLs from page
o Add URLs to queue

@ Fundamental assumption: The web is well linked.

Schiitze: Crawling

A simple crawler

Exercise: What's wrong with this crawler?

urlqueue := (some carefully selected set of seed urls)
while urlqueue is not empty:

myurl := urlqueue.getlastanddelete()

mypage := myurl.fetch()

fetchedurls.add (myurl)

newurls := mypage.extracturls()

for myurl in newurls:

if myurl not in fetchedurls and not in urlqueue:
urlqueue.add (myurl)
addtoinvertedindex (mypage)

Schiitze: Crawling

A simple crawler

What's wrong with the simple crawler

@ Scale: we need to distribute.

@ We can’t index everything: we need to subselect. How?
@ Duplicates: need to integrate duplicate detection

@ Spam and spider traps: need to integrate spam detection

o Politeness: we need to be “nice” and space out all requests
for a site over a longer period (hours, days)
o Freshness: we need to recrawl periodically.

@ Because of the size of the web, we can do frequent recrawls
only for a small subset.
o Again, subselection problem or prioritization

Schiitze: Crawling 11 / 32

A simple crawler
Magnitude of the crawling problem

o To fetch 20,000,000,000 pages in one month ...

Schiitze: Crawling

A simple crawler
Magnitude of the crawling problem

o To fetch 20,000,000,000 pages in one month ...
@ ...we need to fetch almost 8000 pages per second!

Schiitze: Crawling

A simple crawler

Magnitude of the crawling problem

o To fetch 20,000,000,000 pages in one month ...
@ ...we need to fetch almost 8000 pages per second!

@ Actually: many more since many of the pages we attempt to
crawl will be duplicates, unfetchable, spam etc.

Schiitze: Crawling

A simple crawler

What a crawler must do

Schiitze: Crawling 13 / 32

A simple crawler

What a crawler must do

@ Don't hit a site too often

Schiitze: Crawling 13 / 32

A simple crawler

What a crawler must do

@ Don't hit a site too often

@ Only crawl pages you are allowed to crawl: robots.txt

Schiitze: Crawling 13 / 32

A simple crawler

What a crawler must do

@ Don't hit a site too often

@ Only crawl pages you are allowed to crawl: robots.txt

Schiitze: Crawling 13 / 32

A simple crawler

What a crawler must do

@ Don't hit a site too often

@ Only crawl pages you are allowed to crawl: robots.txt

@ Be immune to spider traps, duplicates, very large pages, very
large websites, dynamic pages etc

Schiitze: Crawling 13 / 32

A simple crawler

Robots.txt

@ Protocol for giving crawlers (“robots”) limited access to a
website, originally from 1994

Schiitze: Crawling 14 / 32

A simple crawler

Robots.txt

@ Protocol for giving crawlers (“robots”) limited access to a
website, originally from 1994
o Examples:

Schiitze: Crawling 14 / 32

A simple crawler

Robots.txt

@ Protocol for giving crawlers (“robots”) limited access to a
website, originally from 1994
o Examples:
o User-agent: *
Disallow: /yoursite/temp/

Schiitze: Crawling 14 / 32

A simple crawler

Robots.txt

@ Protocol for giving crawlers (“robots”) limited access to a
website, originally from 1994
o Examples:
o User-agent: *
Disallow: /yoursite/temp/

o User-agent: searchengine
Disallow: /

Schiitze: Crawling 14 / 32

A simple crawler

Robots.txt

@ Protocol for giving crawlers (“robots”) limited access to a
website, originally from 1994
o Examples:
o User-agent: *
Disallow: /yoursite/temp/
o User-agent: searchengine
Disallow: /
@ Important: cache the robots.txt file of each site we are
crawling

Schiitze: Crawling 14 / 32

A simple crawler

Example of a robots.txt (nih.gov)

User-agent: PicoSearch/1.0
Disallow: /news/information/knight/
Disallow: /nidcd/

Disallow: /news/research_matters/secure/
Disallow: /od/ocpl/wag/

User-agent: *
Disallow: /news/information/knight/
Disallow: /nidcd/

Disallow: /news/research_matters/secure/
Disallow: /od/ocpl/wag/

Disallow: /ddir/

Disallow: /sdminutes/

Schiitze: Crawling

A simple crawler

What any crawler should do

o Be capable of distributed operation

Schiitze: Crawling 16 / 32

A simple crawler

What any crawler should do

o Be capable of distributed operation

© Be scalable: need to be able to increase crawl rate by adding
more machines

Schiitze: Crawling 16 / 32

A simple crawler

What any crawler should do

o Be capable of distributed operation

© Be scalable: need to be able to increase crawl rate by adding
more machines

o Fetch pages of higher quality first

Schiitze: Crawling 16 / 32

A simple crawler

What any crawler should do

o Be capable of distributed operation

© Be scalable: need to be able to increase crawl rate by adding
more machines

o Fetch pages of higher quality first
o Continuous operation: get fresh version of already crawled
pages

Schiitze: Crawling 16 / 32

A real crawler

Outline

© A real crawler

Schiitze: Crawling 17 / 32

A real crawler

URL frontier

Schiitze: Crawling 18 / 32

A real crawler

URL frontier

URL frontier:
found, but
not yet crawled

Schiitze: Crawling 18 / 32

A real crawler

URL frontier

URL frontier:
found, but
not yet crawled

URLs crawled
and parsed

Schiitze: Crawling 18 / 32

A real crawler

URL frontier

@ The URL frontier is the data structure that holds and manages
URLs we've seen, but that have not been crawled yet.

Schiitze: Crawling

A real crawler

URL frontier

@ The URL frontier is the data structure that holds and manages
URLs we've seen, but that have not been crawled yet.

@ Can include multiple pages from the same host

Schiitze: Crawling

A real crawler

URL frontier

@ The URL frontier is the data structure that holds and manages
URLs we've seen, but that have not been crawled yet.

@ Can include multiple pages from the same host

@ Must avoid trying to fetch them all at the same time

Schiitze: Crawling

A real crawler

URL frontier

@ The URL frontier is the data structure that holds and manages
URLs we've seen, but that have not been crawled yet.

@ Can include multiple pages from the same host
@ Must avoid trying to fetch them all at the same time

@ Must keep all crawling threads busy

Schiitze: Crawling

A real crawler

Basic crawl architecture

doc robots URL
FPs templates set
<«—> DNS
A
Y
WWW | > > > dup
content URL
parse seen? filter URL
> fetch > elim
Y
URL frontier <

Schiitze: Crawling

A real crawler

URL normalization

@ Some URLs extracted from a document are relative URLs.
o E.g., at http://mit.edu, we may have aboutsite.html
o This is the same as: http://mit.edu/aboutsite.html

@ During parsing, we must normalize (expand) all relative URLs.

Schiitze: Crawling

A real crawler

Content seen

o For each page fetched: check if the content is already in the
index

o Check this using document fingerprints or shingles

@ Skip documents whose content has already been indexed

Schiitze: Crawling

A real crawler

Distributing the crawler

@ Run multiple crawl threads, potentially at different nodes

Schiitze: Crawling

A real crawler

Distributing the crawler

@ Run multiple crawl threads, potentially at different nodes
o Usually geographically distributed nodes

Schiitze: Crawling

A real crawler

Distributing the crawler

@ Run multiple crawl threads, potentially at different nodes
o Usually geographically distributed nodes

@ Partition hosts being crawled into nodes

Schiitze: Crawling

A real crawler

Google data centers (wayfaring.com)

Danmark
Denman e | .- - Map Detalis Trackers Blog
& e

oxoazain
Szczacin 2 created by Pingdom

b e S OGdamsk Myhomestay

) / Hambu o
Graningen Bremen *" 2 { Bydgoszoz
%] © orons Waypoints
Zuclie BEMTEN annaver
= f “segea % o leina __Polska] Bertin, Gormany
Beainacheriin Cora H{,,.W o

Keizzo
0P8 Y temes Wroglaw Sk wgn

Dumer:w l;a-wgh». Em“mmd R i
Germany, Dmsuen Bliserec 155"
. w %u

nifurt

vamnum N L /‘\:’msbaﬂ:na am Main CQSKB Republika o - 2
g oLk i s, Beiglum zoom

s @Wamheim eNWm,q o 9
SR S g fedre] F o Eemshaven, Netherlands

jovanske -
e M S
0 * *ﬂ iy

Wien? ek

Breat
& Rennes
°

o o b
e B it \gcm
Nantes @
L g S N
it P . .
Shest TS France el ity 9 i [l Google datacenter 25 o
e SeegedRstS
LS rsnas o | Lmao Y s o

Jszaaren—min.m..m

OResta Edit Map

A real crawler

Distributed crawler

doc URL
FPs set
<«—>DNS to
I other
nodes
! Pt
ah parse > content > URL > host > dup
seen? filter splitter U,RL
> fetch > ’_r elim
from
other
4 nodes
URL frontier <

Schiitze: Crawling

A real crawler

URL frontier: Two main considerations

o Politeness: Don't hit a web server too frequently

Schiitze: Crawling

A real crawler

URL frontier: Two main considerations

o Politeness: Don't hit a web server too frequently

o E.g., insert a time gap between successive requests to the
same server

Schiitze: Crawling

A real crawler

URL frontier: Two main considerations

@ Politeness: Don't hit a web server too frequently
o E.g., insert a time gap between successive requests to the
same server
@ Freshness: Crawl some pages (e.g., news sites) more often
than others

Schiitze: Crawling

A real crawler

URL frontier: Two main considerations

o Politeness: Don't hit a web server too frequently

o E.g., insert a time gap between successive requests to the
same server

@ Freshness: Crawl some pages (e.g., news sites) more often
than others

o Not an easy problem: simple priority queue fails.

Schiitze: Crawling

A real crawler

Mercator URL frontier

prioritizer

i F front queues

‘f. queue selector & b. queue router‘

B

B back queues: H
single host on each [
! ' =

—

—

—

b. queue selector

Schiitze: Crawling

A real crawler

Mercator URL frontier

prioritizer

F front queues

@ URLs flow in from the top
into the frontier.

‘f. queue selector & b. queue router‘

B

B back queues: H
single host on each [
! ' =

—

—

—

b. queue selector

Schiitze: Crawling

A real crawler

Mercator URL frontier

prioritizer

F front queues

@ URLs flow in from the top
into the frontier.

@ Front queues manage

‘f. queue selector & b. queue router‘ L. X
prioritization.

B back queues:
single host on each

B
]
]
]
]
]
]
]
L]

b. queue selector

Schiitze: Crawling

A real crawler

Mercator URL frontier

prioritizer

F front queues

@ URLs flow in from the top
into the frontier.

@ Front queues manage

‘f. queue selector & b. queue router‘ L. X
prioritization.

@ Back queues enforce
politeness.

B back queues:
single host on each

B
]
]
]
]
]
]
]
L]

b. queue selector

Schiitze: Crawling

A real crawler

Mercator URL frontier

prioritizer

i F front queues

‘f. queue selector & b. queue router‘

B back queues:
single host on each

B
]
]
]
]
]
]
]
L]

Schiitze: Crawling

URLs flow in from the top
into the frontier.

Front queues manage
prioritization.

Back queues enforce
politeness.

Each queue is FIFO.

A real crawler

Mercator URL frontier: Front queues

!

prioritizer

1/ F

i o

f. queue selector & b. queue router

Schiitze: Crawling

A real crawler

Mercator URL frontier: Front queues

!

prioritizer @ Prioritizer assigns
to URL an integer

1/ priority between 1

and F.

. . Ffront queues @ Then appends URL
to corresponding
queue

f. queue selector & b. queue router

-

Schiitze: Crawling

A real crawler

Mercator URL frontier: Front queues

!

prioritizer @ Prioritizer assigns
to URL an integer

1 / F priority between 1

/ \ and F.

. . Ffront queues @ Then appends URL
to corresponding
queue

@ Heuristics for

assigning priority:
refresh rate,
PageRank etc

f. queue selector & b. queue router

Schiitze: Crawling

A real crawler

Mercator URL frontier: Front queues

!

prioritizer @ Prioritizer assigns
to URL an integer

1 / F priority between 1

/ \ and F.

. . Ffront queues @ Then appends URL
to corresponding
queue

@ Heuristics for

assigning priority:
refresh rate,
PageRank etc

f. queue selector & b. queue router

Schiitze: Crawling

A real crawler

Mercator URL frontier: Front queues

!

prioritizer @ Selection from front
queues is initiated

1/ F by back queues

o Pick a front queue
. . Firont queyes from which to
select next URL:
Round robin,
randomly, or more
sophisticated

f. queue selector & b. queue router variant

@ But with a bias in
favor of
high-priority front
queues

Schiitze: Crawling

A real crawler

Mercator URL frontier: Back queues

f. queue selector & b. queue router

1//\8

B back queues
. .Single h9$t on ea.ch

\\/

b. queue selector < —| heap

!

Schiitze: Crawling

A real crawler

Mercator URL frontier: Back queues

@ Invariant 1. Each

f. queue selector & b. queue router
back queue is kept
1 //\ B non-empty while the

B back queues crawl is in progress.
. .Single h9$t on ea.ch

@ Invariant 2. Each
back queue only

\\ / contains URLs from a
single host.

b. queue selector < —| heap

@ Maintain a table from
l hosts to back queues.

Schiitze: Crawling

A real crawler

Mercator URL frontier: Back queues

@ In the heap:

f. queue selector & b. queue router

//\ @ One entry for each
1 B back queue

B back queues .
o
E . .Single h9$t on ea.ch The entry Is the

earliest time t, at
which the host

\\ / corresponding to the

- back queue can be
b. queue selector < —] heap .]
> hit again.
l @ The earliest time t, is

determined by (i) last
access to that host
(i) time gap heuristic

Schiitze: Crawling

A real crawler

Mercator URL frontier: Back queues

f. queue selector & b. queue router

1//\8

B back queues
. .Single h9$t on ea.ch

\\/

b. queue selector ~

!

—| heap

How fetcher interacts
with back queue:

Repeat (i) extract
current root g of the
heap (g is a back
queue)

and (ii) fetch URL u
at head of g ...

... until we empty the
q we get.

(i.e.: u was the last
URL in q)

Schiitze: Crawling

A real crawler

Mercator URL frontier: Back queues

@ When we have

f. queue selector & b. queue router

emptied a back queue

E B back queues o Repeat (i) pull URLs

Single host on each u from front queues
and (ii) add v to its

\\ / corresponding back
queue ...

b. queue selector < —| heap

o ...until we get a u
l whose host does not
have a back queue.

@ Then put v in g and
create heap entry for
it.

Schiitze: Crawling

A real crawler

Mercator URL frontier

prioritizer

F front queues

@ URLs flow in from the top
into the frontier.

@ Front queues manage

‘f. queue selector & b. queue router‘ L. X
prioritization.

@ Back queues enforce
politeness.

B back queues:
single host on each

B
]
]
]
]
]
]
]
L]

b. queue selector

Schiitze: Crawling

A real crawler

Spider trap

o Malicious server that generates an infinite sequence of linked
pages

o Sophisticated spider traps generate pages that are not easily
identified as dynamic.

Schiitze: Crawling 31 /32

A real crawler

Resources

@ Chapter 20 of IIR
@ Resources at http://cislmu.org

@ Paper on Mercator by Heydon et al.
o Robot exclusion standard

Schiitze: Crawling

http://cislmu.org

	Recap
	A simple crawler
	A real crawler

