
Introduction to

Information Retrieval

Term-document incidence matrices

Unstructured data in 1620

• Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

• One could grep all of Shakespeare’s plays for
Brutus and Caesar, then strip out lines containing
Calpurnia?

• Why is that not the answer?
– Slow (for large corpora)
– NOT Calpurnia is non-trivial
– Other operations (e.g., find the word Romans near

countrymen) not feasible
– Ranked retrieval (best documents to return)

• Later lectures

2

Sec. 1.1

Term-document incidence matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

1 if play contains

word, 0 otherwise
Brutus AND Caesar BUT NOT

Calpurnia

Sec. 1.1

Incidence vectors

• So we have a 0/1 vector for each term.

• To answer query: take the vectors for Brutus,
Caesar and Calpurnia (complemented) 
bitwise AND.

– 110100 AND

– 110111 AND

– 101111 =

– 100100

4

Sec. 1.1

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Answers to query

• Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

When Antony found Julius Caesar dead,

He cried almost to roaring; and he wept

When at Philippi he found Brutus slain.

• Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i’ the

Capitol; Brutus killed me.

5

Sec. 1.1

Bigger collections

• Consider N = 1 million documents, each with
about 1000 words.

• Avg 6 bytes/word including
spaces/punctuation

– 6GB of data in the documents.

• Say there are M = 500K distinct terms among
these.

6

Sec. 1.1

Can’t build the matrix

• 500K x 1M matrix has half-a-trillion 0’s and 1’s.

• But it has no more than one billion 1’s.

– matrix is extremely sparse.

• What’s a better representation?

– We only record the 1 positions.

7

Why?

Sec. 1.1

Introduction to

Information Retrieval

The Inverted Index

The key data structure underlying
modern IR

Inverted index
• For each term t, we must store a list of all

documents that contain t.

– Identify each doc by a docID, a document serial
number

• Can we used fixed-size arrays for this?

9

What happens if the word Caesar
is added to document 14?

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Inverted index
• We need variable-size postings lists

– On disk, a continuous run of postings is normal
and best

– In memory, can use linked lists or variable length
arrays

• Some tradeoffs in size/ease of insertion

10

Dictionary Postings

Sorted by docID (more later on why).

Posting

Sec. 1.2

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Tokenizer

Token stream Friends Romans Countrymen

Inverted index construction

Linguistic modules

Modified tokens
friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to

be indexed

Friends, Romans, countrymen.

Sec. 1.2

Initial stages of text processing

• Tokenization
– Cut character sequence into word tokens

• Deal with “John’s”, a state-of-the-art solution

• Normalization
– Map text and query term to same form

• You want U.S.A. and USA to match

• Stemming
– We may wish different forms of a root to match

• authorize, authorization

• Stop words
– We may omit very common words (or not)

• the, a, to, of

Indexer steps: Token sequence

• Sequence of (Modified token, Document ID) pairs.

I did enact Julius

Caesar I was killed

i’ the Capitol;

Brutus killed me.

Doc 1

So let it be with

Caesar. The noble

Brutus hath told you

Caesar was ambitious

Doc 2

Sec. 1.2

Indexer steps: Sort

• Sort by terms
– And then docID

Core indexing step

Sec. 1.2

Indexer steps: Dictionary & Postings

• Multiple term entries
in a single document
are merged.

• Split into Dictionary
and Postings

• Doc. frequency
information is added.

Why frequency?
Will discuss later.

Sec. 1.2

Where do we pay in storage?

16Pointers

Terms
and

counts IR system
implementation

• How do we
index efficiently?

• How much
storage do we
need?

Sec. 1.2

Lists of
docIDs

Introduction to

Information Retrieval

Query processing with an inverted index

The index we just built

• How do we process a query?

– Later - what kinds of queries can we process?

18

Our focus

Sec. 1.3

Query processing: AND
• Consider processing the query:

Brutus AND Caesar

– Locate Brutus in the Dictionary;

• Retrieve its postings.

– Locate Caesar in the Dictionary;

• Retrieve its postings.

– “Merge” the two postings (intersect the document
sets):

19

128

34

2 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

• Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

20

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

If the list lengths are x and y, the merge takes O(x+y)

operations.

Crucial: postings sorted by docID.

Sec. 1.3

The merge

21

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

22

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

Intersection2

The merge

23

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

24

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

25

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

Intersection2 8

The merge

26

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

27

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

28

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

29

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

The merge

30

34

1282 4 8 16 32 64

1 2 3 5 8 13 21

Brutus

Caesar

Sec. 1.3

Intersection2 8

Intersecting two postings lists
(a “merge” algorithm)

31

Introduction to

Information Retrieval

The Boolean Retrieval Model

& Extended Boolean Models

Boolean queries: Exact match

• The Boolean retrieval model is being able to ask a
query that is a Boolean expression:

– Boolean Queries are queries using AND, OR and NOT
to join query terms

• Views each document as a set of words

• Is precise: document matches condition or not.

– Perhaps the simplest model to build an IR system on

• Primary commercial retrieval tool for 3 decades.

• Many search systems you still use are Boolean:

– Email, library catalog, Mac OS X Spotlight
33

Sec. 1.3

Example: WestLaw http://www.westlaw.com/

• Largest commercial (paying subscribers)
legal search service (started 1975; ranking
added 1992; new federated search added
2010)

• Tens of terabytes of data; ~700,000 users

• Majority of users still use boolean queries

• Example query:
– What is the statute of limitations in cases

involving the federal tort claims act?

– LIMIT! /3 STATUTE ACTION /S FEDERAL /2
TORT /3 CLAIM

• /3 = within 3 words, /S = in same sentence
34

Sec. 1.4

Example: WestLaw http://www.westlaw.com/

• Another example query:
– Requirements for disabled people to be able to

access a workplace
– disabl! /p access! /s work-site work-place

(employment /3 place

• Note that SPACE is disjunction, not conjunction!
• Long, precise queries; proximity operators;

incrementally developed; not like web search
• Many professional searchers still like Boolean

search
– You know exactly what you are getting

• But that doesn’t mean it actually works better….

Sec. 1.4

Boolean queries:
More general merges

• Exercise: Adapt the merge for the queries:

Brutus AND NOT Caesar

Brutus OR NOT Caesar

• Can we still run through the merge in time
O(x+y)? What can we achieve?

36

Sec. 1.3

Merging

What about an arbitrary Boolean formula?

(Brutus OR Caesar) AND NOT

(Antony OR Cleopatra)

• Can we always merge in “linear” time?

– Linear in what?

• Can we do better?

37

Sec. 1.3

Query optimization

• What is the best order for query
processing?

• Consider a query that is an AND of n terms.

• For each of the n terms, get its postings,
then AND them together.

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

Query: Brutus AND Calpurnia AND Caesar
38

Sec. 1.3

Query optimization example

• Process in order of increasing freq:

– start with smallest set, then keep cutting further.

39

This is why we kept
document freq. in dictionary

Execute the query as (Calpurnia AND Brutus) AND Caesar.

Sec. 1.3

Brutus

Caesar

Calpurnia

1 2 3 5 8 16 21 34

2 4 8 16 32 64128

13 16

More general optimization

• e.g., (madding OR crowd) AND (ignoble OR
strife)

• Get doc. freq.’s for all terms.

• Estimate the size of each OR by the sum of its
doc. freq.’s (conservative).

• Process in increasing order of OR sizes.

40

Sec. 1.3

Exercise

• Recommend a query
processing order for

• Which two terms should we
process first?

 Term Freq

 eyes 213312

 kaleidoscope 87009

 marmalade 107913

 skies 271658

 tangerine 46653

 trees 316812

41

(tangerine OR trees) AND

(marmalade OR skies) AND

(kaleidoscope OR eyes)

Query processing exercises

• Exercise: If the query is friends AND romans AND
(NOT countrymen), how could we use the freq of
countrymen?

• Exercise: Extend the merge to an arbitrary
Boolean query. Can we always guarantee
execution in time linear in the total postings size?

• Hint: Begin with the case of a Boolean formula
query: in this, each query term appears only once
in the query.

42

Exercise

• Try the search feature at
http://www.rhymezone.com/shakespeare/

• Write down five search features you think it
could do better

43

http://www.rhymezone.com/shakespeare/

Introduction to

Information Retrieval

Phrase queries and positional indexes

Phrase queries

• We want to be able to answer queries such as
“stanford university” – as a phrase

• Thus the sentence “I went to university at
Stanford” is not a match.
– The concept of phrase queries has proven easily

understood by users; one of the few “advanced
search” ideas that works

– Many more queries are implicit phrase queries

• For this, it no longer suffices to store only

<term : docs> entries

Sec. 2.4

A first attempt: Biword indexes

• Index every consecutive pair of terms in the text
as a phrase

• For example the text “Friends, Romans,
Countrymen” would generate the biwords

– friends romans

– romans countrymen

• Each of these biwords is now a dictionary term

• Two-word phrase query-processing is now
immediate.

Sec. 2.4.1

Longer phrase queries

• Longer phrases can be processed by breaking
them down

• stanford university palo alto can be broken into
the Boolean query on biwords:

stanford university AND university palo AND palo
alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain
the phrase.

Can have false positives!

Sec. 2.4.1

Issues for biword indexes

• False positives, as noted before

• Index blowup due to bigger dictionary

– Infeasible for more than biwords, big even for
them

• Biword indexes are not the standard solution
(for all biwords) but can be part of a
compound strategy

Sec. 2.4.1

Solution 2: Positional indexes

• In the postings, store, for each term the
position(s) in which tokens of it appear:

<term, number of docs containing term;

doc1: position1, position2 … ;

doc2: position1, position2 … ;

etc.>

Sec. 2.4.2

Positional index example

• For phrase queries, we use a merge
algorithm recursively at the document level

• But we now need to deal with more than
just equality

<be: 993427;

1: 7, 18, 33, 72, 86, 231;

2: 3, 149;

4: 17, 191, 291, 430, 434;

5: 363, 367, …>

Which of docs 1,2,4,5

could contain “to be

or not to be”?

Sec. 2.4.2

Processing a phrase query

• Extract inverted index entries for each distinct
term: to, be, or, not.

• Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

– to:

• 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

– be:

• 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

• Same general method for proximity searches

Sec. 2.4.2

Proximity queries

• LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
– Again, here, /k means “within k words of”.

• Clearly, positional indexes can be used for
such queries; biword indexes cannot.

• Exercise: Adapt the linear merge of postings to
handle proximity queries. Can you make it
work for any value of k?
– This is a little tricky to do correctly and efficiently

– See Figure 2.12 of IIR

Sec. 2.4.2

Positional index size

• A positional index expands postings storage
substantially

– Even though indices can be compressed

• Nevertheless, a positional index is now
standardly used because of the power and
usefulness of phrase and proximity queries …
whether used explicitly or implicitly in a
ranking retrieval system.

Sec. 2.4.2

Positional index size
• Need an entry for each occurrence, not just

once per document

• Index size depends on average document size

– Average web page has <1000 terms

– SEC filings, books, even some epic poems … easily
100,000 terms

• Consider a term with frequency 0.1%

1001100,000

111000

Positional postingsPostingsDocument size

Sec. 2.4.2

Rules of thumb

• A positional index is 2–4 as large as a non-
positional index

• Positional index size 35–50% of volume of
original text

– Caveat: all of this holds for “English-like”
languages

Sec. 2.4.2

Combination schemes

• These two approaches can be profitably
combined
– For particular phrases (“Michael Jackson”, “Britney

Spears”) it is inefficient to keep on merging positional
postings lists

• Even more so for phrases like “The Who”

• Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme
– A typical web query mixture was executed in ¼ of the

time of using just a positional index
– It required 26% more space than having a positional

index alone

Sec. 2.4.3

Introduction to

Information Retrieval

Structured vs. Unstructured Data

IR vs. databases:
Structured vs unstructured data

• Structured data tends to refer to information
in “tables”

58

Employee Manager Salary

Smith Jones 50000

Chang Smith 60000

50000Ivy Smith

Typically allows numerical range and exact match

(for text) queries, e.g.,

Salary < 60000 AND Manager = Smith.

Unstructured data

• Typically refers to free text

• Allows

– Keyword queries including operators

– More sophisticated “concept” queries e.g.,

• find all web pages dealing with drug abuse

• Classic model for searching text documents

59

Semi-structured data

• In fact almost no data is “unstructured”

• E.g., this slide has distinctly identified zones such
as the Title and Bullets

• … to say nothing of linguistic structure

• Facilitates “semi-structured” search such as
– Title contains data AND Bullets contain search

• Or even
– Title is about Object Oriented Programming AND

Author something like stro*rup

– where * is the wild-card operator

60

