
Introduction to Information Retrieval

Introduction to

Information Retrieval

Document ingestion

Introduction to Information Retrieval

Recall the basic indexing pipeline

Tokenizer

Token stream Friends Romans Countrymen

Linguistic

modules

Modified tokens friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to

be indexed

Friends, Romans, countrymen.

Introduction to Information Retrieval

Parsing a document

 What format is it in?

 pdf/word/excel/html?

 What language is it in?

 What character set is in use?

 (CP1252, UTF-8, …)

Each of these is a classification problem,

which we will study later in the course.

But these tasks are often done heuristically …

Sec. 2.1

Introduction to Information Retrieval

Complications: Format/language

 Documents being indexed can include docs from
many different languages
 A single index may contain terms from many languages.

 Sometimes a document or its components can
contain multiple languages/formats
 French email with a German pdf attachment.

 French email quote clauses from an English-language
contract

 There are commercial and open source libraries that
can handle a lot of this stuff

Sec. 2.1

Introduction to Information Retrieval

Complications: What is a document?

We return from our query “documents” but there are
often interesting questions of grain size:

What is a unit document?
 A file?

 An email? (Perhaps one of many in a single mbox file)
 What about an email with 5 attachments?

 A group of files (e.g., PPT or LaTeX split over HTML pages)

Sec. 2.1

Introduction to Information Retrieval

Introduction to

Information Retrieval

Tokens

Introduction to Information Retrieval

Tokenization

 Input: “Friends, Romans and Countrymen”

 Output: Tokens

 Friends

 Romans

 Countrymen

 A token is an instance of a sequence of characters

 Each such token is now a candidate for an index
entry, after further processing

 Described below

 But what are valid tokens to emit?

Sec. 2.2.1

Introduction to Information Retrieval

Tokenization

 Issues in tokenization:

 Finland’s capital 

Finland AND s? Finlands? Finland’s?

 Hewlett-Packard  Hewlett and Packard as two
tokens?
 state-of-the-art: break up hyphenated sequence.

 co-education

 lowercase, lower-case, lower case ?

 It can be effective to get the user to put in possible hyphens

 San Francisco: one token or two?
 How do you decide it is one token?

Sec. 2.2.1

Introduction to Information Retrieval

Numbers

 3/20/91 Mar. 12, 1991 20/3/91

 55 B.C.

 B-52

 My PGP key is 324a3df234cb23e

 (800) 234-2333

 Often have embedded spaces

 Older IR systems may not index numbers
 But often very useful: think about things like looking up error

codes/stacktraces on the web

 (One answer is using n-grams: IIR ch. 3)

 Will often index “meta-data” separately
 Creation date, format, etc.

Sec. 2.2.1

Introduction to Information Retrieval

Tokenization: language issues

 French

 L'ensemble one token or two?
 L ? L’ ? Le ?

 Want l’ensemble to match with un ensemble

 Until at least 2003, it didn’t on Google

 Internationalization!

 German noun compounds are not segmented
 Lebensversicherungsgesellschaftsangestellter

 ‘life insurance company employee’

 German retrieval systems benefit greatly from a compound splitter
module

 Can give a 15% performance boost for German

Sec. 2.2.1

Introduction to Information Retrieval

Tokenization: language issues

 Chinese and Japanese have no spaces between
words:

 莎拉波娃现在居住在美国东南部的佛罗里达。

 Not always guaranteed a unique tokenization

 Further complicated in Japanese, with multiple
alphabets intermingled

 Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!

Sec. 2.2.1

Introduction to Information Retrieval

Tokenization: language issues

 Arabic (or Hebrew) is basically written right to left,
but with certain items like numbers written left to
right

 Words are separated, but letter forms within a word
form complex ligatures

 ← → ← → ← start

 ‘Algeria achieved its independence in 1962 after 132
years of French occupation.’

 With Unicode, the surface presentation is complex, but the
stored form is straightforward

Sec. 2.2.1

Introduction to Information Retrieval

Introduction to

Information Retrieval

Terms

The things indexed in an IR system

Introduction to Information Retrieval

Stop words

 With a stop list, you exclude from the dictionary
entirely the commonest words. Intuition:
 They have little semantic content: the, a, and, to, be

 There are a lot of them: ~30% of postings for top 30 words

 But the trend is away from doing this:
 Good compression techniques (IIR 5) means the space for including

stop words in a system is very small

 Good query optimization techniques (IIR 7) mean you pay little at
query time for including stop words.

 You need them for:

 Phrase queries: “King of Denmark”

 Various song titles, etc.: “Let it be”, “To be or not to be”

 “Relational” queries: “flights to London”

Sec. 2.2.2

Introduction to Information Retrieval

Normalization to terms

 We may need to “normalize” words in indexed text
as well as query words into the same form

 We want to match U.S.A. and USA

 Result is terms: a term is a (normalized) word type,
which is an entry in our IR system dictionary

 We most commonly implicitly define equivalence
classes of terms by, e.g.,

 deleting periods to form a term
 U.S.A., USA  USA

 deleting hyphens to form a term
 anti-discriminatory, antidiscriminatory  antidiscriminatory

Sec. 2.2.3

Introduction to Information Retrieval

Normalization: other languages

 Accents: e.g., French résumé vs. resume.

 Umlauts: e.g., German: Tuebingen vs. Tübingen

 Should be equivalent

 Most important criterion:

 How are your users like to write their queries for these
words?

 Even in languages that standardly have accents, users
often may not type them

 Often best to normalize to a de-accented term

 Tuebingen, Tübingen, Tubingen  Tubingen

Sec. 2.2.3

Introduction to Information Retrieval

Normalization: other languages

 Normalization of things like date forms

 7月30日 vs. 7/30

 Japanese use of kana vs. Chinese characters

 Tokenization and normalization may depend on the
language and so is intertwined with language
detection

 Crucial: Need to “normalize” indexed text as well as
query terms identically

Morgen will ich in MIT …

Is this
German “mit”?

Sec. 2.2.3

Introduction to Information Retrieval

Case folding

 Reduce all letters to lower case

 exception: upper case in mid-sentence?
 e.g., General Motors

 Fed vs. fed

 SAIL vs. sail

 Often best to lower case everything, since users will use
lowercase regardless of ‘correct’ capitalization…

 Longstanding Google example: [fixed in 2011…]

 Query C.A.T.

 #1 result is for “cats” (well, Lolcats) not Caterpillar Inc.

Sec. 2.2.3

Introduction to Information Retrieval

Normalization to terms

 An alternative to equivalence classing is to do
asymmetric expansion

 An example of where this may be useful
 Enter: window Search: window, windows

 Enter: windows Search: Windows, windows, window

 Enter: Windows Search: Windows

 Potentially more powerful, but less efficient

Sec. 2.2.3

Introduction to Information Retrieval

Thesauri and soundex

 Do we handle synonyms and homonyms?
 E.g., by hand-constructed equivalence classes

 car = automobile color = colour

 We can rewrite to form equivalence-class terms
 When the document contains automobile, index it under car-

automobile (and vice-versa)

 Or we can expand a query
 When the query contains automobile, look under car as well

 What about spelling mistakes?
 One approach is Soundex, which forms equivalence classes

of words based on phonetic heuristics

 More in IIR 3 and IIR 9

Introduction to Information Retrieval

Introduction to

Information Retrieval

Stemming and Lemmatization

Introduction to Information Retrieval

Lemmatization

 Reduce inflectional/variant forms to base form

 E.g.,

 am, are, is  be

 car, cars, car's, cars' car

 the boy's cars are different colors the boy car be
different color

 Lemmatization implies doing “proper” reduction to
dictionary headword form

Sec. 2.2.4

Introduction to Information Retrieval

Stemming

 Reduce terms to their “roots” before indexing

 “Stemming” suggests crude affix chopping

 language dependent

 e.g., automate(s), automatic, automation all reduced to
automat.

for example compressed

and compression are both

accepted as equivalent to

compress.

for exampl compress and

compress ar both accept

as equival to compress

Sec. 2.2.4

Introduction to Information Retrieval

Porter’s algorithm

 Commonest algorithm for stemming English

 Results suggest it’s at least as good as other stemming
options

 Conventions + 5 phases of reductions

 phases applied sequentially

 each phase consists of a set of commands

 sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.

Sec. 2.2.4

Introduction to Information Retrieval

Typical rules in Porter

 sses ss

 ies i

 ational ate

 tional tion

 Weight of word sensitive rules

 (m>1) EMENT →
 replacement → replac

 cement → cement

Sec. 2.2.4

Introduction to Information Retrieval

Other stemmers

 Other stemmers exist:

 Lovins stemmer
 http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

 Single-pass, longest suffix removal (about 250 rules)

 Paice/Husk stemmer

 Snowball

 Full morphological analysis (lemmatization)
 At most modest benefits for retrieval

Sec. 2.2.4

Introduction to Information Retrieval

Language-specificity

 The above methods embody transformations that
are

 Language-specific, and often

 Application-specific

 These are “plug-in” addenda to the indexing process

 Both open source and commercial plug-ins are
available for handling these

Sec. 2.2.4

Introduction to Information Retrieval

Does stemming help?

 English: very mixed results. Helps recall for some
queries but harms precision on others

 E.g., operative (dentistry) ⇒ oper

 Definitely useful for Spanish, German, Finnish, …

 30% performance gains for Finnish!

Sec. 2.2.4

Introduction to Information Retrieval

Introduction to

Information Retrieval

Faster postings merges:
Skip pointers/Skip lists

Introduction to Information Retrieval

Recall basic merge

 Walk through the two postings simultaneously, in
time linear in the total number of postings entries

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar

2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes (if the index isn’t changing too fast).

Sec. 2.3

Introduction to Information Retrieval

Augment postings with skip pointers
(at indexing time)

 Why?

 To skip postings that will not figure in the search
results.

 How?

 Where do we place skip pointers?

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Sec. 2.3

Introduction to Information Retrieval

Query processing with skip pointers

1282 4 8 41 48 64

311 2 3 8 11 17 21

3111

41 128

Suppose we’ve stepped through the lists until we

process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so

we can skip ahead past the intervening postings.

Sec. 2.3

Introduction to Information Retrieval

Where do we place skips?

 Tradeoff:

 More skips  shorter skip spans more likely to skip.
But lots of comparisons to skip pointers.

 Fewer skips  few pointer comparison, but then long skip
spans  few successful skips.

Sec. 2.3

Introduction to Information Retrieval

Placing skips

 Simple heuristic: for postings of length L, use L
evenly-spaced skip pointers [Moffat and Zobel 1996]

 This ignores the distribution of query terms.

 Easy if the index is relatively static; harder if L keeps
changing because of updates.

 This definitely used to help; with modern hardware it
may not unless you’re memory-based [Bahle et al. 2002]

 The I/O cost of loading a bigger postings list can outweigh
the gains from quicker in memory merging!

Sec. 2.3

