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Introduction to Information Retrieval

Recap of the previous lecture

 The type/token distinction

 Terms are normalized types put in the dictionary

 Tokenization problems:

 Hyphens, apostrophes, compounds, CJK

 Term equivalence classing:

 Numbers, case folding, stemming, lemmatization

 Skip pointers

 Encoding a tree-like structure in a postings list

 Biword indexes for phrases

 Positional indexes for phrases/proximity queries

Ch. 2
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This lecture

 Dictionary data structures

 “Tolerant” retrieval

 Wild-card queries

 Spelling correction

 Soundex

Ch. 3
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Dictionary data structures for inverted 
indexes

 The dictionary data structure stores the term 
vocabulary, document frequency, pointers to each 
postings list … in what data structure?

Sec. 3.1
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A naïve dictionary

 An array of struct:

char[20]   int Postings *

20 bytes   4/8 bytes        4/8 bytes  

 How do we store a dictionary in memory efficiently?

 How do we quickly look up elements at query time?

Sec. 3.1
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Dictionary data structures

 Two main choices:

 Hashtables

 Trees

 Some IR systems use hashtables, some trees

Sec. 3.1
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Hashtables

 Each vocabulary term is hashed to an integer

 (We assume you’ve seen hashtables before)

 Pros:

 Lookup is faster than for a tree: O(1)

 Cons:

 No easy way to find minor variants:
 judgment/judgement

 No prefix search [tolerant  retrieval]

 If vocabulary keeps growing, need to occasionally do the 
expensive operation of rehashing everything

Sec. 3.1
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Root

a-m n-z

a-hu hy-m n-sh si-z

Tree: binary tree

Sec. 3.1
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Tree: B-tree

 Definition: Every internal nodel has a number of children 
in the interval [a,b] where a, b are appropriate natural 
numbers, e.g., [2,4].

a-hu

hy-m

n-z

Sec. 3.1
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Trees

 Simplest: binary tree

 More usual: B-trees

 Trees require a standard ordering of characters and hence 
strings … but we typically have one

 Pros:

 Solves the prefix problem (terms starting with hyp)

 Cons:

 Slower: O(log M)  [and this requires balanced tree]

 Rebalancing binary trees is expensive
 But B-trees mitigate the rebalancing problem

Sec. 3.1
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WILD-CARD QUERIES
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 (1) the user is uncertain of the spelling of a query 
term (Sydney vs. Sidney = S*dney)

 (2) the user is aware of multiple variants of spelling a 
term (e.g., color vs. colour);

 (3) the user is unsure whether the search engine 
performs stemming (e.g., judicial vs. judiciary, 
leading to the wildcard query judicia*)

 (4) foreign word or phrase (e.g., the query Universit* 
Stuttgart).

12
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Wild-card queries: *

 mon*: find all docs containing any word beginning 
with “mon”.

 Easy with binary tree (or B-tree) lexicon: retrieve all 
words in range: mon ≤ w < moo

 *mon: find words ending in “mon”: harder

 Maintain an additional B-tree for terms backwards.

Can retrieve all words in range: nom ≤ w < non.

lemon => monel
Exercise: from this, how can we enumerate all terms

meeting the wild-card query pro*cent ?

Sec. 3.2
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Query processing

 At this point, we have an enumeration of all terms in 
the dictionary that match the wild-card query.

 We still have to look up the postings for each 
enumerated term.

 E.g., consider the query:

se*ate AND fil*er

This may result in the execution of many Boolean 
AND queries.

Sec. 3.2
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B-trees handle *’s at the end of a 
query term

 How can we handle *’s in the middle of query term?

 co*tion

 We could look up co* AND *tion in a B-tree and 
intersect the two term sets

 Expensive

 The solution: transform wild-card queries so that the 
*’s occur at the end

 This gives rise to the Permuterm Index.

Sec. 3.2
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Permuterm index

 For term hello, index under:

 hello$, ello$h, llo$he, lo$hel, o$hell, $hello

where $ is a special symbol.

 m*n => n$m* => man, moron, ….

 Queries:

 X lookup on X$ X*   lookup on   $X*

 *X   lookup on X$* *X* lookup on   X*

 X*Y lookup on Y$X* X*Y*Z ??? Exercise!

Query = hel*o

X=hel, Y=o

Lookup o$hel*

Sec. 3.2.1
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Permuterm query processing

 Rotate query wild-card to the right

 Now use B-tree lookup as before.

 Permuterm problem: ≈ quadruples lexicon size

 fi*mo*er? 

 er$fi*

 filter these out by exhaustive enumeration, checking 
each candidate to see if it contains mo

 fishmonger vs filibuster

Empirical observation for English.

Sec. 3.2.1
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Bigram (k-gram) indexes

 Enumerate all k-grams (sequence of k chars) 
occurring in any term 

 castle => cas, ast , stl, tle are 3-grams

 $castle$ => $ca, cas, ast, stl, tle, le$.

 e.g., from text “April is the cruelest month” we get 
the 2-grams (bigrams)

 $ is a special word boundary symbol

 Maintain a second inverted index from bigrams to
dictionary terms that match each bigram.

$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru,

ue,el,le,es,st,t$, $m,mo,on,nt,h$

Sec. 3.2.2
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Bigram index example

 The k-gram index finds terms based on a query 
consisting of k-grams (here k=2).

mo

on

among

$m mace

along

amortize

madden

among

Sec. 3.2.2

19

re*ve => $re AND ve$ => relive, remove and retrieve



Introduction to Information Retrieval

Processing wild-cards

 Query mon* can now be run as

 $m AND mo AND on

 Gets terms that match AND version of our wildcard 
query.

 But we’d enumerate moon.

 Must post-filter these terms against query.

 red* => $re AND red => retired, …. 

 Surviving enumerated terms are then looked up in 
the term-document inverted index.

 Fast, space efficient (compared to permuterm).

Sec. 3.2.2
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Processing wild-card queries

 As before, we must execute a Boolean query for each 
enumerated, filtered term.

 Wild-cards can result in expensive query execution 
(very large disjunctions…)

 pyth* AND prog*

 If you encourage “laziness” people will respond!

 Which web search engines allow wildcard queries?

Search

Type your search terms, use ‘*’ if you need to.

E.g., Alex* will match Alexander.

Sec. 3.2.2
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SPELLING CORRECTION
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Document correction

 Especially needed for OCR’ed documents

 Correction algorithms are tuned for this: rn/m

 Can use domain-specific knowledge
 E.g., OCR can confuse O and D more often than it would confuse O 

and I (adjacent on the QWERTY keyboard, so more likely 
interchanged in typing).

 But also: web pages and even printed material have 
typos

 Goal: the dictionary contains fewer misspellings

 But often we don’t change the documents and 
instead fix the query-document mapping

Sec. 3.3
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Query mis-spellings

 Our principal focus here

 E.g., the query Alanis Morisett

 We can either

 Retrieve documents indexed by the correct spelling, OR

 Return several suggested alternative queries with the 
correct spelling
 Did you mean … ?

Sec. 3.3
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 Two principal uses

 Correcting document(s) being indexed

 Correcting user queries to retrieve “right” answers

 britney spears => britian spears, britney’s spears, 
brandy spears and prittany spears.

 for a mis-spelled query, choose the “nearest” one.

 Select the one that is more common. (grunt and 
grant for grnt)

25
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Spell correction

 Two main flavors:

 Isolated word
 Check each word on its own for misspelling

 carot => carrot or tarot

 Will not catch typos resulting in correctly spelled words

 e.g., from  form

 Context-sensitive
 Look at surrounding words, 

 e.g., I flew form Heathrow to Narita.

Sec. 3.3
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Isolated word correction

 Fundamental premise – there is a lexicon from which 
the correct spellings come

 Two basic choices for this

 A standard lexicon such as
 Webster’s English Dictionary

 An “industry-specific” lexicon – hand-maintained

 The lexicon of the indexed corpus
 E.g., all words on the web

 All names, acronyms etc.

 (Including the mis-spellings)

Sec. 3.3.2
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Isolated word correction

 Given a lexicon and a character sequence Q, return 
the words in the lexicon closest to Q

 What’s “closest”?

 We’ll study several alternatives

 Edit distance (Levenshtein distance)

 Weighted edit distance

 n-gram overlap

Sec. 3.3.2
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Edit distance

 Given two strings S1 and S2, the minimum number of 
operations to convert one to the other

 Operations are typically character-level

 Insert, Delete, Replace, (Transposition)

 E.g., the edit distance from dof to dog is 1

 From cat to act is 2 (Just 1 with transpose.)

 from cat to dog is 3.

 Generally found by dynamic programming.

 See http://www.merriampark.com/ld.htm for a nice 
example plus an applet.

Sec. 3.3.3
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Weighted edit distance

 As above, but the weight of an operation depends on 
the character(s) involved

 Meant to capture OCR or keyboard errors
Example: m more likely to be mis-typed as n than as q

 Therefore, replacing m by n is a smaller edit distance than 
by q

 This may be formulated as a probability model

 Requires weight matrix as input

 Modify dynamic programming to handle weights

Sec. 3.3.3
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Using edit distances

 Given query, first enumerate all character sequences 
within a preset (weighted) edit distance (e.g., 2)

 Intersect this set with list of “correct” words

 Show terms you found to user as suggestions

 Alternatively, 

 We can look up all possible corrections in our inverted 
index and return all docs … slow

 We can run with a single most likely correction

 The alternatives disempower the user, but save a 
round of interaction with the user

Sec. 3.3.4
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Edit distance to all dictionary terms?

 Given a (mis-spelled) query – do we compute its edit 
distance to every dictionary term?

 Expensive and slow

 Alternative?

 How do we cut the set of candidate dictionary 
terms?

 restrict to terms beginning with the same letter

 Permuterm index : mase => sema

 semaphore or semantic but not mare or mane

 One possibility is to use n-gram overlap for this

 This can also be used by itself for spelling correction.

Sec. 3.3.4
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n-gram overlap

 Enumerate all the n-grams in the query string as well 
as in the lexicon

 Use the n-gram index (recall wild-card search) to 
retrieve all lexicon terms matching any of the query 
n-grams

 Threshold by number of matching n-grams

 Variants – weight by keyboard layout, etc.

Sec. 3.3.4
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Example with trigrams

 Suppose the text is november

 Trigrams are nov, ove, vem, emb, mbe, ber.

 The query is december

 Trigrams are dec, ece, cem, emb, mbe, ber.

 So 3 trigrams overlap (of 6 in each term)

 How can we turn this into a normalized measure of 
overlap?

Sec. 3.3.4

34



Introduction to Information Retrieval

query bord

35
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One option – Jaccard coefficient

 A commonly-used measure of overlap

 Let X and Y be two sets; then the J.C. is

 Equals 1 when X and Y have the same elements and 
zero when they are disjoint

 X and Y don’t have to be of the same size

 Always assigns a number between 0 and 1

 Now threshold to decide if you have a match

 E.g., if J.C. > 0.8, declare a match 

YXYX  /

Sec. 3.3.4
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 q = bord

 t = boardroom.

 Matching bigrams = 2 (from bo and rd)

 2/(8+3−2)
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lore

lore

Matching trigrams

 Consider the query lord – we wish to identify words 
matching 2 of its 3 bigrams (lo, or, rd)

lo

or

rd

alone sloth

morbid

border card

border

ardent

Standard postings “merge” will enumerate … 

Adapt this to using Jaccard (or another) measure.

Sec. 3.3.4
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Context-sensitive spell correction

 Text: I flew from Heathrow to Narita.

 Consider the phrase query “flew form Heathrow”

 We’d like to respond

Did you mean “flew from Heathrow”?

because no docs matched the query phrase.

Sec. 3.3.5
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Context-sensitive correction

 Need surrounding context to catch this.

 First idea: retrieve dictionary terms close (in 
weighted edit distance) to each query term

 Now try all possible resulting phrases with one word 
“fixed” at a time
 flew from heathrow 

 fled form heathrow

 flea form heathrow

 Hit-based spelling correction: Suggest the 
alternative that has lots of hits.

Sec. 3.3.5
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Exercise

 Suppose that for “flew form Heathrow” we have 7 
alternatives for flew, 19 for form and 3 for heathrow.

How many “corrected” phrases will we enumerate in 
this scheme?

Sec. 3.3.5
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Another approach

 Break phrase query into a conjunction of biwords 
(Lecture 2).

 Look for biwords that need only one term corrected.

 Enumerate only phrases containing “common” 
biwords.

Sec. 3.3.5

42



Introduction to Information Retrieval

General issues in spell correction

 We enumerate multiple alternatives for “Did you 
mean?”

 Need to figure out which to present to the user

 The alternative hitting most docs

 Query log analysis

 More generally, rank alternatives probabilistically

argmaxcorr P(corr | query)

 From Bayes rule, this is equivalent to
argmaxcorr P(query | corr) * P(corr)

Sec. 3.3.5
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SOUNDEX
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Soundex

 Class of heuristics to expand a query into phonetic
equivalents

 Language specific – mainly for names

 E.g., chebyshev tchebycheff

 Invented for the U.S. census … in 1918

Sec. 3.4
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Soundex – typical algorithm

 Turn every token to be indexed into a 4-character 
reduced form

 Do the same with query terms

 Build and search an index on the reduced forms

 (when the query calls for a soundex match)

 http://www.creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm#Top

Sec. 3.4
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Soundex – typical algorithm

1. Retain the first letter of the word. 

2. Change all occurrences of the following letters to '0' 
(zero):

'A', E', 'I', 'O', 'U', 'H', 'W', 'Y'. 

3. Change letters to digits as follows: 

 B, F, P, V  1

 C, G, J, K, Q, S, X, Z  2

 D,T  3

 L  4

 M, N  5

 R  6

Sec. 3.4
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Soundex continued

4. Remove all pairs of consecutive digits.

5. Remove all zeros from the resulting string.

6. Pad the resulting string with trailing zeros and 
return the first four positions, which will be of the 
form <uppercase letter> <digit> <digit> <digit>. 

E.g., Herman becomes H655.

Will hermann generate the same code?

Sec. 3.4
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Soundex

 Soundex is the classic algorithm, provided by most 
databases (Oracle, Microsoft, …)

 How useful is soundex?

 Not very – for information retrieval

 Okay for “high recall” tasks (e.g., Interpol), though 
biased to names of certain nationalities

 Zobel and Dart (1996) show that other algorithms for 
phonetic matching perform much better in the 
context of IR

Sec. 3.4
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What queries can we process?

 We have

 Positional inverted index with skip pointers

 Wild-card index

 Spell-correction

 Soundex

 Queries such as

(SPELL(moriset) /3 toron*to) OR SOUNDEX(chaikofski)
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Exercise

 Draw yourself a diagram showing the various indexes 
in a search engine incorporating all the functionality 
we have talked about

 Identify some of the key design choices in the index 
pipeline:

 Does stemming happen before the Soundex index?

 What about n-grams?

 Given a query, how would you parse and dispatch 
sub-queries to the various indexes?

51



Introduction to Information Retrieval

Resources

 IIR 3, MG 4.2

 Efficient spell retrieval:

 K. Kukich. Techniques for automatically correcting words in text. ACM 
Computing Surveys 24(4), Dec 1992.

 J. Zobel and P. Dart. Finding approximate matches in large 
lexicons. Software - practice and experience 25(3), March 1995. 
http://citeseer.ist.psu.edu/zobel95finding.html

 Mikael Tillenius: Efficient Generation and Ranking of Spelling Error 
Corrections. Master’s thesis at Sweden’s Royal Institute of Technology. 
http://citeseer.ist.psu.edu/179155.html

 Nice, easy reading on spell correction:

 Peter Norvig: How to write a spelling corrector 

http://norvig.com/spell-correct.html

Sec. 3.5
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