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Recap: tf-idf weighting

 The tf-idf weight of a term is the product of its tf 
weight and its idf weight.

 Best known weighting scheme in information retrieval

 Increases with the number of occurrences within a 
document

 Increases with the rarity of the term in the collection
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Recap: Queries as vectors

 Key idea 1: Do the same for queries: represent them 
as vectors in the space

 Key idea 2: Rank documents according to their 
proximity to the query in this space

 proximity = similarity of vectors

Ch. 6
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Recap: cosine(query,document)
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cos(q,d) is the cosine similarity of q and d … or,

equivalently, the cosine of the angle between q and d.
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This lecture

 Speeding up vector space ranking

 Putting together a complete search 
system

 Will require learning about  a number of 
miscellaneous topics and heuristics

Ch. 7
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Computing cosine scores

Sec. 6.3.3



Introduction to Information Retrieval

Efficient cosine ranking

 Find the K docs in the collection “nearest” to the 
query  K largest query-doc cosines.

 Efficient ranking:

 Computing a single cosine efficiently.

 Choosing the K largest cosine values efficiently.

 Can we do this without computing all N cosines?

Sec. 7.1
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Efficient cosine ranking

 What we’re doing in effect: solving the K-nearest 
neighbor problem for a query vector

 In general, we do not know how to do this  efficiently 
for high-dimensional spaces

 But it is solvable for short queries, and standard 
indexes support this well

Sec. 7.1
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Special case – unweighted queries

 No weighting on query terms

 Assume each query term occurs only once

 Then for ranking, don’t need to normalize query 
vector

 Slight simplification of algorithm from Lecture 6

Sec. 7.1
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Computing the K largest cosines: 
selection vs. sorting

 Typically we want to retrieve the top K docs (in the 
cosine ranking for the query)

 not to totally order all docs in the collection

 Can we pick off docs with K highest cosines?

 Let J = number of docs with nonzero cosines

 We seek the K best of these J

Sec. 7.1
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Use heap for selecting top K

 Binary tree in which each node’s value > the values 
of children

 Takes 2J operations to construct, then each of K 
“winners” read off in 2log J steps.

 For J=1M, K=100, this is about 10% of the cost of 
sorting.
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Bottlenecks

 Primary computational bottleneck in scoring: cosine 
computation

 Can we avoid all this computation?

 Yes, but may sometimes get it wrong

 a doc not in the top K may creep into the list of K
output docs

 Is this such a bad thing?

Sec. 7.1.1
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Cosine similarity is only a proxy

 User has a task and a query formulation

 Cosine matches docs to query

 Thus cosine is anyway a proxy for user happiness

 If we get a list of K docs “close” to the top K by cosine 
measure, should be ok

Sec. 7.1.1
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Generic approach

 Find a set A of contenders, with K < |A| << N

 A does not necessarily contain the top K, but has 
many docs from among the top K

 Return the top K docs in A

 Think of A as pruning non-contenders

 The same approach is also used for other (non-
cosine) scoring functions

 Will look at several schemes following this approach

Sec. 7.1.1
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Index elimination

 Basic algorithm cosine computation algorithm only 
considers docs containing at least one query term

 Take this further:

 Only consider high-idf query terms

 Only consider docs containing many query terms

Sec. 7.1.2
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High-idf query terms only

 For a query such as catcher in the rye

 Only accumulate scores from catcher and rye

 Intuition: in and the contribute little to the scores 
and so don’t alter rank-ordering much

 Benefit:

 Postings of low-idf terms have many docs  these (many) 
docs get eliminated from set A of contenders

Sec. 7.1.2
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Docs containing many query terms

 Any doc with at least one query term is a candidate 
for the top K output list

 For multi-term queries, only compute scores for docs 
containing several of the query terms

 Say, at least 3 out of 4

 Imposes a “soft conjunction” on queries seen on web 
search engines (early Google)

 Easy to implement in postings traversal

Sec. 7.1.2
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3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2
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Champion lists

 Precompute for each dictionary term t, the r docs of 
highest weight in t’s postings

 Call this the champion list for t

 (aka fancy list or top docs for t)

 Note that r has to be chosen at index build time

 Thus, it’s possible that r < K

 At query time, only compute scores for docs in the 
champion list of some query term

 Pick the K top-scoring docs from amongst these

Sec. 7.1.3
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Exercises

 How do Champion Lists relate to Index Elimination? 
Can they be used together?

 How can Champion Lists be implemented in an 
inverted index?

 Note that the champion list has nothing to do with small 
docIDs

Sec. 7.1.3
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Quantitative

Static quality scores

 We want top-ranking documents to be both relevant 
and authoritative

 Relevance is being modeled by cosine scores

 Authority is typically a query-independent property 
of a document

 Examples of authority signals

 Wikipedia among websites

 Articles in certain newspapers

 A paper with many citations

 Many bitly’s, diggs or del.icio.us marks

 (Pagerank)

Sec. 7.1.4
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Modeling authority

 Assign to each document a query-independent
quality score in [0,1] to each document d

 Denote this by g(d)

 Thus, a quantity like the number of citations is scaled 
into [0,1]

 Exercise: suggest a formula for this.

Sec. 7.1.4
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Net score

 Consider a simple total score combining cosine 
relevance and authority

 net-score(q,d) = g(d) + cosine(q,d)

 Can use some other linear combination

 Indeed, any function of the two “signals” of user happiness 
– more later

 Now we seek the top K docs by net score

Sec. 7.1.4
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Top K by net score – fast methods

 First idea: Order all postings by g(d)

 Key: this is a common ordering for all postings

 Thus, can concurrently traverse query terms’ 
postings for

 Postings intersection

 Cosine score computation

 Exercise: write pseudocode for cosine score 
computation if postings are ordered by g(d)

Sec. 7.1.4
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Why order postings by g(d)?

 Under g(d)-ordering, top-scoring docs likely to 
appear early in postings traversal

 In time-bound applications (say, we have to return 
whatever search results we can in 50 ms), this allows 
us to stop postings traversal early

 Short of computing scores for all docs in postings

Sec. 7.1.4
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Champion lists in g(d)-ordering

 Can combine champion lists with g(d)-ordering

 Maintain for each term a champion list of the r docs 
with highest g(d) + tf-idftd

 Seek top-K results from only the docs in these 
champion lists

Sec. 7.1.4
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High and low lists

 For each term, we maintain two postings lists called 
high and low

 Think of high as the champion list

 When traversing postings on a query, only traverse 
high lists first

 If we get more than K docs, select the top K and stop

 Else proceed to get docs from the low lists

 Can be used even for simple cosine scores, without 
global quality g(d)

 A means for segmenting index into two tiers

Sec. 7.1.4
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Impact-ordered postings

 We only want to compute scores for docs for which 
wft,d is high enough

 We sort each postings list by wft,d

 Now: not all postings in a common order!

 How do we compute scores in order to pick off top K?

 Two ideas follow

Sec. 7.1.5
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1. Early termination

 When traversing t’s postings, stop early after either

 a fixed number of r docs

 wft,d  drops below some threshold

 Take the union of the resulting sets of docs

 One from the postings of each query term

 Compute only the scores for docs in this union

Sec. 7.1.5
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2. idf-ordered terms

 When considering the postings of query terms

 Look at them in order of decreasing idf

 High idf terms likely to contribute most to score

 As we update score contribution from each query 
term

 Stop if doc scores relatively unchanged

 Can apply to cosine or some other net scores

Sec. 7.1.5
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Cluster pruning: preprocessing

 Pick N docs at random: call these leaders

 For every other doc, pre-compute nearest 
leader

 Docs attached to a leader: its followers;

 Likely: each leader has ~ N followers.

Sec. 7.1.6
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Cluster pruning: query processing

 Process a query as follows:

 Given query Q, find its nearest leader L.

 Seek K nearest docs from among L’s 
followers.

Sec. 7.1.6
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Visualization

Query

Leader Follower

Sec. 7.1.6
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Why use random sampling

 Fast

 Leaders reflect data distribution

Sec. 7.1.6
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General variants

 Have each follower attached to b1=3 (say) nearest 
leaders.

 From query, find b2=4 (say) nearest leaders and their 
followers.

 Can recurse on leader/follower construction.

Sec. 7.1.6
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Exercises

 To find the nearest leader in step 1, how many cosine 
computations do we do?

 Why did we have N in the first place?

 What is the effect of the constants b1, b2 on the 
previous slide?

 Devise an example where this is likely to fail – i.e., we 
miss one of the K nearest docs.

 Likely under random sampling.

Sec. 7.1.6
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Parametric and zone indexes

 Thus far, a doc has been a sequence of terms

 In fact documents have multiple parts, some with 
special semantics:

 Author

 Title

 Date of publication

 Language

 Format

 etc.

 These constitute the metadata about a document

Sec. 6.1
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Fields

 We sometimes wish to search by these metadata

 E.g., find docs authored by William Shakespeare in the 
year 1601, containing alas poor Yorick

 Year = 1601 is an example of a field

 Also, author last name = shakespeare, etc.

 Field or parametric index: postings for each field 
value

 Sometimes build range trees (e.g., for dates)

 Field query typically treated as conjunction

 (doc must be authored by shakespeare)

Sec. 6.1



Introduction to Information Retrieval

Zone

 A zone is a region of the doc that can contain an 
arbitrary amount of text, e.g.,

 Title

 Abstract

 References …

 Build inverted indexes on zones as well to permit 
querying

 E.g., “find docs with merchant in the title zone and 
matching the query gentle rain”

Sec. 6.1
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Example zone indexes

Encode zones in dictionary vs. postings.

Sec. 6.1
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Tiered indexes

 Break postings up into a hierarchy of lists

 Most important

 …

 Least important

 Can be done by g(d) or another measure

 Inverted index thus broken up into tiers of decreasing 
importance

 At query time use top tier unless it fails to yield K 
docs

 If so drop to lower tiers

Sec. 7.2.1
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Example tiered index

Sec. 7.2.1
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Query term proximity

 Free text queries: just a set of terms typed into the 
query box – common on the web

 Users prefer docs in which query terms occur within 
close proximity of each other

 Let w be the smallest window in a doc containing all 
query terms, e.g.,

 For the query strained mercy the smallest window in 
the doc The quality of mercy is not strained is 4
(words)

 Would like scoring function to take this into account 
– how?

Sec. 7.2.2
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Query parsers

 Free text query from user may in fact spawn one or 
more queries to the indexes, e.g., query rising 
interest rates

 Run the query as a phrase query 

 If <K docs contain the phrase rising interest rates, run the 
two phrase queries rising interest and interest rates

 If we still have <K docs, run the vector space query rising 
interest rates

 Rank matching docs by vector space scoring

 This sequence is issued by a query parser

Sec. 7.2.3
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Aggregate scores

 We’ve seen that score functions can combine cosine, 
static quality, proximity, etc.

 How do we know the best combination?

 Some applications – expert-tuned

 Increasingly common: machine-learned

 See May 19th lecture

Sec. 7.2.3
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Putting it all together

Sec. 7.2.4
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Resources

 IIR 7, 6.1


