
Introduction to Information Retrieval

Introduction to

Information Retrieval

CS276
Information Retrieval and Web Search

Pandu Nayak and Prabhakar Raghavan

Lecture 7: Scoring and results assembly

Introduction to Information Retrieval

Recap: tf-idf weighting

 The tf-idf weight of a term is the product of its tf
weight and its idf weight.

 Best known weighting scheme in information retrieval

 Increases with the number of occurrences within a
document

 Increases with the rarity of the term in the collection

)df/(log)tflog1(w 10,10, tdt N
dt



Ch. 6

Introduction to Information Retrieval

Recap: Queries as vectors

 Key idea 1: Do the same for queries: represent them
as vectors in the space

 Key idea 2: Rank documents according to their
proximity to the query in this space

 proximity = similarity of vectors

Ch. 6

Introduction to Information Retrieval

Recap: cosine(query,document)











V

i i

V

i i

V

i ii

dq

dq

d

d

q

q

dq

dq
dq

1

2

1

2

1),cos(











Dot product Unit vectors

cos(q,d) is the cosine similarity of q and d … or,

equivalently, the cosine of the angle between q and d.

Ch. 6

Introduction to Information Retrieval

This lecture

 Speeding up vector space ranking

 Putting together a complete search
system

 Will require learning about a number of
miscellaneous topics and heuristics

Ch. 7

Introduction to Information Retrieval

Computing cosine scores

Sec. 6.3.3

Introduction to Information Retrieval

Efficient cosine ranking

 Find the K docs in the collection “nearest” to the
query  K largest query-doc cosines.

 Efficient ranking:

 Computing a single cosine efficiently.

 Choosing the K largest cosine values efficiently.

 Can we do this without computing all N cosines?

Sec. 7.1

Introduction to Information Retrieval

Efficient cosine ranking

 What we’re doing in effect: solving the K-nearest
neighbor problem for a query vector

 In general, we do not know how to do this efficiently
for high-dimensional spaces

 But it is solvable for short queries, and standard
indexes support this well

Sec. 7.1

Introduction to Information Retrieval

Special case – unweighted queries

 No weighting on query terms

 Assume each query term occurs only once

 Then for ranking, don’t need to normalize query
vector

 Slight simplification of algorithm from Lecture 6

Sec. 7.1

Introduction to Information Retrieval

Computing the K largest cosines:
selection vs. sorting

 Typically we want to retrieve the top K docs (in the
cosine ranking for the query)

 not to totally order all docs in the collection

 Can we pick off docs with K highest cosines?

 Let J = number of docs with nonzero cosines

 We seek the K best of these J

Sec. 7.1

Introduction to Information Retrieval

Use heap for selecting top K

 Binary tree in which each node’s value > the values
of children

 Takes 2J operations to construct, then each of K
“winners” read off in 2log J steps.

 For J=1M, K=100, this is about 10% of the cost of
sorting.

1

.9 .3

.8.3

.1

.1

Sec. 7.1

Introduction to Information Retrieval

Bottlenecks

 Primary computational bottleneck in scoring: cosine
computation

 Can we avoid all this computation?

 Yes, but may sometimes get it wrong

 a doc not in the top K may creep into the list of K
output docs

 Is this such a bad thing?

Sec. 7.1.1

Introduction to Information Retrieval

Cosine similarity is only a proxy

 User has a task and a query formulation

 Cosine matches docs to query

 Thus cosine is anyway a proxy for user happiness

 If we get a list of K docs “close” to the top K by cosine
measure, should be ok

Sec. 7.1.1

Introduction to Information Retrieval

Generic approach

 Find a set A of contenders, with K < |A| << N

 A does not necessarily contain the top K, but has
many docs from among the top K

 Return the top K docs in A

 Think of A as pruning non-contenders

 The same approach is also used for other (non-
cosine) scoring functions

 Will look at several schemes following this approach

Sec. 7.1.1

Introduction to Information Retrieval

Index elimination

 Basic algorithm cosine computation algorithm only
considers docs containing at least one query term

 Take this further:

 Only consider high-idf query terms

 Only consider docs containing many query terms

Sec. 7.1.2

Introduction to Information Retrieval

High-idf query terms only

 For a query such as catcher in the rye

 Only accumulate scores from catcher and rye

 Intuition: in and the contribute little to the scores
and so don’t alter rank-ordering much

 Benefit:

 Postings of low-idf terms have many docs  these (many)
docs get eliminated from set A of contenders

Sec. 7.1.2

Introduction to Information Retrieval

Docs containing many query terms

 Any doc with at least one query term is a candidate
for the top K output list

 For multi-term queries, only compute scores for docs
containing several of the query terms

 Say, at least 3 out of 4

 Imposes a “soft conjunction” on queries seen on web
search engines (early Google)

 Easy to implement in postings traversal

Sec. 7.1.2

Introduction to Information Retrieval

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64128

13 16

Antony 3 4 8 16 32 64128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

Introduction to Information Retrieval

Champion lists

 Precompute for each dictionary term t, the r docs of
highest weight in t’s postings

 Call this the champion list for t

 (aka fancy list or top docs for t)

 Note that r has to be chosen at index build time

 Thus, it’s possible that r < K

 At query time, only compute scores for docs in the
champion list of some query term

 Pick the K top-scoring docs from amongst these

Sec. 7.1.3

Introduction to Information Retrieval

Exercises

 How do Champion Lists relate to Index Elimination?
Can they be used together?

 How can Champion Lists be implemented in an
inverted index?

 Note that the champion list has nothing to do with small
docIDs

Sec. 7.1.3

Introduction to Information Retrieval

Quantitative

Static quality scores

 We want top-ranking documents to be both relevant
and authoritative

 Relevance is being modeled by cosine scores

 Authority is typically a query-independent property
of a document

 Examples of authority signals

 Wikipedia among websites

 Articles in certain newspapers

 A paper with many citations

 Many bitly’s, diggs or del.icio.us marks

 (Pagerank)

Sec. 7.1.4

Introduction to Information Retrieval

Modeling authority

 Assign to each document a query-independent
quality score in [0,1] to each document d

 Denote this by g(d)

 Thus, a quantity like the number of citations is scaled
into [0,1]

 Exercise: suggest a formula for this.

Sec. 7.1.4

Introduction to Information Retrieval

Net score

 Consider a simple total score combining cosine
relevance and authority

 net-score(q,d) = g(d) + cosine(q,d)

 Can use some other linear combination

 Indeed, any function of the two “signals” of user happiness
– more later

 Now we seek the top K docs by net score

Sec. 7.1.4

Introduction to Information Retrieval

Top K by net score – fast methods

 First idea: Order all postings by g(d)

 Key: this is a common ordering for all postings

 Thus, can concurrently traverse query terms’
postings for

 Postings intersection

 Cosine score computation

 Exercise: write pseudocode for cosine score
computation if postings are ordered by g(d)

Sec. 7.1.4

Introduction to Information Retrieval

Why order postings by g(d)?

 Under g(d)-ordering, top-scoring docs likely to
appear early in postings traversal

 In time-bound applications (say, we have to return
whatever search results we can in 50 ms), this allows
us to stop postings traversal early

 Short of computing scores for all docs in postings

Sec. 7.1.4

Introduction to Information Retrieval

Champion lists in g(d)-ordering

 Can combine champion lists with g(d)-ordering

 Maintain for each term a champion list of the r docs
with highest g(d) + tf-idftd

 Seek top-K results from only the docs in these
champion lists

Sec. 7.1.4

Introduction to Information Retrieval

High and low lists

 For each term, we maintain two postings lists called
high and low

 Think of high as the champion list

 When traversing postings on a query, only traverse
high lists first

 If we get more than K docs, select the top K and stop

 Else proceed to get docs from the low lists

 Can be used even for simple cosine scores, without
global quality g(d)

 A means for segmenting index into two tiers

Sec. 7.1.4

Introduction to Information Retrieval

Impact-ordered postings

 We only want to compute scores for docs for which
wft,d is high enough

 We sort each postings list by wft,d

 Now: not all postings in a common order!

 How do we compute scores in order to pick off top K?

 Two ideas follow

Sec. 7.1.5

Introduction to Information Retrieval

1. Early termination

 When traversing t’s postings, stop early after either

 a fixed number of r docs

 wft,d drops below some threshold

 Take the union of the resulting sets of docs

 One from the postings of each query term

 Compute only the scores for docs in this union

Sec. 7.1.5

Introduction to Information Retrieval

2. idf-ordered terms

 When considering the postings of query terms

 Look at them in order of decreasing idf

 High idf terms likely to contribute most to score

 As we update score contribution from each query
term

 Stop if doc scores relatively unchanged

 Can apply to cosine or some other net scores

Sec. 7.1.5

Introduction to Information Retrieval

Cluster pruning: preprocessing

 Pick N docs at random: call these leaders

 For every other doc, pre-compute nearest
leader

 Docs attached to a leader: its followers;

 Likely: each leader has ~ N followers.

Sec. 7.1.6

Introduction to Information Retrieval

Cluster pruning: query processing

 Process a query as follows:

 Given query Q, find its nearest leader L.

 Seek K nearest docs from among L’s
followers.

Sec. 7.1.6

Introduction to Information Retrieval

Visualization

Query

Leader Follower

Sec. 7.1.6

Introduction to Information Retrieval

Why use random sampling

 Fast

 Leaders reflect data distribution

Sec. 7.1.6

Introduction to Information Retrieval

General variants

 Have each follower attached to b1=3 (say) nearest
leaders.

 From query, find b2=4 (say) nearest leaders and their
followers.

 Can recurse on leader/follower construction.

Sec. 7.1.6

Introduction to Information Retrieval

Exercises

 To find the nearest leader in step 1, how many cosine
computations do we do?

 Why did we have N in the first place?

 What is the effect of the constants b1, b2 on the
previous slide?

 Devise an example where this is likely to fail – i.e., we
miss one of the K nearest docs.

 Likely under random sampling.

Sec. 7.1.6

Introduction to Information Retrieval

Parametric and zone indexes

 Thus far, a doc has been a sequence of terms

 In fact documents have multiple parts, some with
special semantics:

 Author

 Title

 Date of publication

 Language

 Format

 etc.

 These constitute the metadata about a document

Sec. 6.1

Introduction to Information Retrieval

Fields

 We sometimes wish to search by these metadata

 E.g., find docs authored by William Shakespeare in the
year 1601, containing alas poor Yorick

 Year = 1601 is an example of a field

 Also, author last name = shakespeare, etc.

 Field or parametric index: postings for each field
value

 Sometimes build range trees (e.g., for dates)

 Field query typically treated as conjunction

 (doc must be authored by shakespeare)

Sec. 6.1

Introduction to Information Retrieval

Zone

 A zone is a region of the doc that can contain an
arbitrary amount of text, e.g.,

 Title

 Abstract

 References …

 Build inverted indexes on zones as well to permit
querying

 E.g., “find docs with merchant in the title zone and
matching the query gentle rain”

Sec. 6.1

Introduction to Information Retrieval

Example zone indexes

Encode zones in dictionary vs. postings.

Sec. 6.1

Introduction to Information Retrieval

Tiered indexes

 Break postings up into a hierarchy of lists

 Most important

 …

 Least important

 Can be done by g(d) or another measure

 Inverted index thus broken up into tiers of decreasing
importance

 At query time use top tier unless it fails to yield K
docs

 If so drop to lower tiers

Sec. 7.2.1

Introduction to Information Retrieval

Example tiered index

Sec. 7.2.1

Introduction to Information Retrieval

Query term proximity

 Free text queries: just a set of terms typed into the
query box – common on the web

 Users prefer docs in which query terms occur within
close proximity of each other

 Let w be the smallest window in a doc containing all
query terms, e.g.,

 For the query strained mercy the smallest window in
the doc The quality of mercy is not strained is 4
(words)

 Would like scoring function to take this into account
– how?

Sec. 7.2.2

Introduction to Information Retrieval

Query parsers

 Free text query from user may in fact spawn one or
more queries to the indexes, e.g., query rising
interest rates

 Run the query as a phrase query

 If <K docs contain the phrase rising interest rates, run the
two phrase queries rising interest and interest rates

 If we still have <K docs, run the vector space query rising
interest rates

 Rank matching docs by vector space scoring

 This sequence is issued by a query parser

Sec. 7.2.3

Introduction to Information Retrieval

Aggregate scores

 We’ve seen that score functions can combine cosine,
static quality, proximity, etc.

 How do we know the best combination?

 Some applications – expert-tuned

 Increasingly common: machine-learned

 See May 19th lecture

Sec. 7.2.3

Introduction to Information Retrieval

Putting it all together

Sec. 7.2.4

Introduction to Information Retrieval

Resources

 IIR 7, 6.1

