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Classification

* Input: X
- Real valued, vectors over real.
- Discrete values (0,1,2,...)
- Other structures (e.g., strings, graphs, etc.)

« Qutput: Y

- Discrete (0,1,2,...)
" Sports : - Anemic cell

%, = Science @ " Healthy cell
News Q
X = Document Y = Topic X = Cell Image Y = Diagnosis
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Regression

* Input: X
- Real valued, vectors over real.
- Discrete values (0,1,2,...)
- Other structures (e.g., strings, graphs, etc.)

« Qutput: Y
- Real valued, vectors over real.
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What should |

Movies, TV
& Showtimes

-

Celebs, Events
& Photos 2

watch tonight?
-]

News &

Community ~ Watchlist

Point

PG-13

Writers:

See More on IMDb Pro »

+ Watchlist ~

114 1
25 December 2]

A young FBI agent infiltrates an extraordinary team of
extreme sports athletes he suspects of masterminding a
string of unprecedented, sophisticated corporate heists.
"Point Break" is inspired by the classic 1991 hit.

Director:

more credits »

Stars: Edgar Ramirez, Luke Bracey, Ray Winstone
See full cast and crew »

hlS

reak onis

Predict this automatically!

- <
pur rating:
tings: 5.4 from 7,322 users

84 critic

Metascore: 34/100

RPviews: 60 user 19 from Metacritic.com

Ericson Core
Kurt Wimmer (screenplay), Rick King (story), 5

Watch Trailer Share...
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1-NN for Regression
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Figure Credit: Carlos Guestrin
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1-NN for Regression
» Often bumpy (overfits)
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9-NN for Regression
« Often bumpy (overfits)
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Simple 1-D Regression

0 i
- Circles are data points (i.e., training examples) that are
given to us
* The data points are uniform in x, but may be displaced in y

(x)=flx)+e

with € some noise
* In is the “true” curve that we don’t know
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What i1s a Model?

1. Often Describe Relationship between
Variables

2. Types

Deterministic Models (no randomness)

Probabilistic Models (with randomness)

Wenjiang Fu
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Deterministic Models

1. Hypothesize Exact Relationships
2. Suitable When Prediction Error is Negligible

3. Example: Body mass index (BMI) is measure of body
fat based

— BMI = Weight in Kilograms
(Height in Meters)?

Wenjiang Fu
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Probabilistic Models

1. Hypothesize 2 Components
« Deterministic
« Random Error
2. Example: Systolic blood pressure of newborns Is 6
Times the Age in days + Random Error
« SBP =6xage(d) +¢

« Random Error May Be Due to Factors Other Than age
In days (e.g. Birthweight)

Wenjiang Fu



Types of
Probabilistic Models

EPI 809/Spring 2008 12
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Simple Regression

« Simple regression analysis Is a statistical tool that gives us the
ability to estimate the mathematical relationship between a
dependent variable (usually called y) and an independent
variable (usually called x).

« The dependent variable is the variable for which we want to
make a prediction.

« While various non-linear forms may be used, simple linear
regression models are the most common.



Introduction

»  The primary goal of quantitative analysis
IS to use current information about a

phenomenon to predict its future behavior. lot size Man-hours
»  Current information is usually in the form 30 73
of a set of data. 20 50
* Inasimple case, when the data form a set 60 128
of pairs of numbers, we may interpret 80 170
them as representing the observed values
; : 40 87
of an independent (or predictor or
explanatory) variable X and a dependent ( 50 108
or response or outcome) variable Y. 60 135
30 69
70 148

60 132



Introduction

Statistical relation between Lot size and Man-Hour

« The goal of the analyst who studies
the data is to find a functional ’

160

relation .

140

between the response variable y
and the predictor variable x. w0

Man-Hou

y=1(x) .

20

20

Lot size



Pictorial Presentation of Linear Regression Model

Regression Line
«— Probability Distribution of ¥

e

0 Man-Hours = Y




Types of
Regression Models

1 Explanatory - 2+ Explanatory
Variable Variables

EPI 809/Spring 2008 17




Linear Regression Model

Wenjiang Fu



Mortality (Deaths per 10 million)
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¢ 7=389.2-5.98
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Assumptions

* Linear regression assumes that...

— 1. The relationship between X and Y is
linear

— 2. Y is distributed normally at each value of
X

— 3. The variance of Y at every value of X is
the same (homogeneity of variances)

— 4. The observations are independent
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Linear Equations

m = Slope| invy

Changein X

\

[ b =Y-intercept
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Linear Regression Model

« 1. Relationship Between Variables Is a
Linear Function

Population Population Random
Y-Intercept Slope Error

Yi =Bg +B1X; +&

Dependent Independent
(Response) (Explanatory) Variable

Variable (e.g., Years s. serocon.)
(e.g.,CD+c.)




Meaning of Regression Coefficients

e General regression model
1. f4,, and g, are parameters
2. X 1s a known constant
3. Deviations ¢ are independent N(o, ¢?)

 The values of the regression parameters f,, and £, are not
known. We estimate them from data.

« f, Indicates the change in the mean response per unit
Increase in X.



Population Linear
Regression Model




Estimating Parameters:
Least Squares Method
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Scatter plot

« 1. Plotof All (X, Y;) Pairs
« 2. Suggests How Well Model Will Fit



Thinking Challenge

How would you draw a line through the
points? How do you determine which line
‘fits best’?




Thinking Challenge

How would you draw a line through the
points? How do you determine which line
‘fits best’?

Slope changed

Intercept unchanged



Thinking Challenge

How would you draw a line through the
points? How do you determine which line
‘fits best’?

Slope unchanged

Intercept changed



Thinking Challenge

How would you draw a line through the
points? How do you determine which line
‘fits best’?

Slope changed

Intercept changed



What Is the best fitting line

1 63 | 127 | 120.1

210
2|64 121 | 1263 .
0 -

3 | 66| 142 | 1383
190
£7 L7
4 | 69| 157 | 157.0 .

5 69 | 162 | 157.0
6 T1 | 156 | 169.2

W0 — lw=-266.5+6.1h

i it

160 —
7 |71 169 | 169.2 150 -
8 | 72| 165 | 1754 140
9 | 73| 181 | 1815 120
10 | 75 | 208 | 193.8 120
62 65 0 74
height

» y; denotes the observed response for experimental unit 7
y; denotes the ob d resp fi D tal unit
:.':} _ 'E'I] + blI' » T; denotes the predictor value for experimental unit 7
i " : : "
=y, 1s the predicted response (or fitted value) for experimental unit i
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Prediction Error

w=-331.2 + 7.1 & (the dashed line) w=-266.53 + 6.1376 & (the solid line)
i Ti | Ui l}i (wi — I-}J (v — l;fi}z i Ti | Ui !}1' (wi — !}1} (v — l}i)z
1 63 | 127 | 116.1 | 10.9 118.81 1 63 | 127 | 120.139 | 6.8612 47.076
2 64| 121 | 1232 | -2.2 484 2 64| 121 | 126.276 | -5.2764 27.840
3 66| 142 | 1374 [ 406 21.16 3 66 | 142 | 138552 | 3. 4484 11.891
4 69 | 157 | 158.7 | -1.7 2.39 4 69 | 157 | 156.964 | 0.0356 0.001
5 69 | 162 | 1587 [ 33 10.89 5 69 | 162 | 156.964 | 5.0356 25.357
% 6 T1 | 156 | 1729 | -16.9 28561 6 T1 | 156 | 169240 | -13.2396 | 175.287
§ - 7 J1 ] 169 | 1729 | -39 15.21 7 T1 | 169 | 169.240 | -0.23586 0.057
8 8 72| 165 | 1800 | -15.0 225.00 8 T2 165 | 175377 | -10.3772 | 107.686
(=]
E g 9 73| 181 | 187.1 | -6.1 37.21 9 73| 181 | 181.515 | -0.5148 0.265
W =-266.5 + 6.1h
£ i <] 10| 75| 208 | 2013 (6.7 44 89 10| 75| 208 | 193790 | 14.2100 | 201.924
4§ 8 - : .
- 5 / 766.3 507.4
T /
:
S A= -331.2+7.1h
T T T T T
64 66 68 70 72 74
height g
€ =i —Y;

Q= i{!ﬁ - 3}-;'}2



-
Least Squares

« 1. ‘Best Fit Means Difference Between Actual Y
Values & Predicted Y Values Are a Minimum. But
Positive Differences Off-Set Negative. So square
errors!

« 2. LS Minimizes the Sum of the Squared
Differences (errors) (SSE)



Least Squares Graphically

n
LS minimizes ) & = &; + &5+ &5+ &

=1

—Y E@o *%Xz + &




Coefficient Equations

* Prediction equation
Vi = Lo + BiX

« Sample slope
B = SSxy _ (% —x)(¥i —¥)
2
SSxx > (X —X)
« Sample Y - Intercept

Po =Y — PiX

EPI 809/Spring 2008 35




Derivation of Parameters (1)

« Least Squares (L-S):
Minimize squared error

2‘9 _Z( - Bx )
_ azgiz _ aZ(yi _,Bo _:lei )2
b, b,

— —Z(HV— nﬂo — nﬂli)
Po =Y - px

EPI 809/Spring 2008 36



Derivation of Parameters (1)

« Least Squares (L-S):
Minimize squared error
0— 0D & _ 02 (Vi = Bo—BX)
o, O,
=22 X% (Yi =B~ 5X)
=-2> % (Y, =Y+ BX—LBX%)

B % (% —X) Zx
B2 (% =X) (% -

SS,y

(¥ -
Z
fi=

EPI 809/Spring 2008 37



Computation Table

BN
N A

YY4 | IXY.

EPI 809/Spring 2008

38
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Interpretation of Coefficients

1. Slope (f5))
— Estimated Y Changes by 4 for Each 1 Unit Increase in X

« If B, =2,then Y Is Expected to Increase by 2 for Each 1 Unit Increase
in X

* 2. Y-Intercept (5,)
— Average Value of Y When X =0

* If 4, = 4, then Average Y Is Expected to
Be 4 When X Is O

EPI 809/Spring 2008 39



Parameter Estimation Example

- Obstetrics: What Is the relationship between
Mother’s Estriol level & Birthweight using the
following data?

Estriol Birthwelght
(mg/24h) (g/1000)

a b~ WDN P
AN PP

EPI 809/Spring 2008 40



Scatterplot
Birthweight vs. Estriol level

Birthweight
4 _

3 1
2 1
1 1

0 1 2 3 4 5 6
Estriol level

EP1 809/Spring 2008 41



Parameter Estimation Solution
Table

EPI 809/Spring 2008 42
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Parameter Estimation Solution

$xx _(ZXJ(ZYJ

B, =Y — B, X =2—(0.70)(3) = —-0.10



How to estimate parameters

We minimize the equation for the sum of the squared prediction errors:

Q= i{yi' — (bp + -511‘;':1)2

i=1

(that 15, take the derrvative with respect to by and by. set to 0. and solve for by and b4) and get the "least squares estimates" for byand by

25 .
L]

=
& =

= 5.5\

Paalzi — )y —y) bo =y — bz -

o 15 |

E? IEIi - i.]ﬂ P oz

b =

=

the least squares line passes through the pomnt (z,y). since when z =z, theny=by+ bz =y —hz +hz=1y.



Estlmatlng t”e Intercept ana S‘ope: ‘east

sguares estimation

** |_east Squares Estimation
A little calculus....

What are we trying to estimate? 3, the slope, from

What's the constraint? We are trying to minimize the squared distance (hence the “least squares”)
between the observations themselves and the predicted values , or (also called the “residuals”, or left-
over unexplained variability)

Differencei = yi — (Bx + a)  Differencei? = (yi — (Bx + a)) 2

Find the B that gives the minimum sum of the squared differences. How do you maximize a function? Take
the derivative; set it equal to zero; and solve. Typical max/min problem from calculus....

%Z(yi ~ (B + a2 =200 (v, - B —a)(-%,)

AT (o ) =0



The standard error of Y given X is the average variability around the regression line at any given
value of X. Itis assumed to be equal at all values of X.
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Regression Picture

»
T T T T T T T Ll

*Least squares
X estimation gave us the
line (B) that minimized

D —M2 =D — M2+ (Y — Vi) C?

=1 =1 =1 R2=SSreg/SStotal
A? B2 o2
Ssmtal Ssreg SSresidual
Total squared distance of Distance from regression line to naive mean of Variance around the regression line
observations from naive mean of y y

Additional variability not explained by
Total variation Variability due to x (regression) x—what least squares method aims to
minimize
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Regression Line

« |f the scatter plot of our sample data suggests a linear
relationship between two variables i.e.

we can summarize the relationship by drawing a straight
line on the plot. y=f + X | |

» Least squares method give us the “best” estimated line for
our set of sample data.



Regression Line

« We will write an estimated regression line based on sample
data as

« The method of least squares chooses the values for b,, and
b t .- o - y:b +b§X
. to minimize the sum of squared errors

2

SSE = >°(3 - 9" = (v ~b, ~byx)



-
Regression Line

 Using calculus, we obtain estimating formulas:

or

i(xi—f)(yi—y) any. Z Zy.

b, = 1= — -
> (%~ % 3% - (3 %)°

S

blzrs—y



W

Probabilistic Models

Correlation
Models

EPI 809/Spring 2008 52
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Correlation vs. regression

« Both variables are treated the same in correlation; in
regression there is a predictor and a response

* In regression the x variable is assumed non-random or
measured without error

« Correlation is used in looking for relationships, regression for
prediction

EP1 809/Spring 2008 53
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Correlation Models

« 1. Answer ‘How Strong Is the Linear Relationship
Between 2 Variables”?’

« 2. Coefficient of Correlation Used

— Population Correlation Coefficient Denoted
p (Rho)

— Values Range from -1 to +1
— Measures Degree of Association

« 3. Used Mainly for Understanding

EP1 809/Spring 2008 54
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Covariance

S (%~ X)(y; ~Y)

cov(x,y)=-"=2

n-1




-
Interpreting Covariance

cov(X,Y) >0 — X and Y are positively correlated
cov(X,Y) <0 — X and Y are inversely correlated

cov(X,Y) =0 — X and Y are independent



R
Correlation coefficient

= Pearson’s Correlation Coefficient is
standardized covariance (unitless):

_covariance(x, y)

r —
Jvar X /var y




.
Correlation

* Measures the relative strength of the
linear relationship between two variables

e Unit-less
 Ranges between -1 and 1

 The closer to -1, the stronger the negative linear
relationship

 The closer to 1, the stronger the positive linear
relationship

 The closer to 0, the weaker any positive linear
relationship



e T LA O (SR 101111 (041510 | E—

of Correlation

« 1. Pearson Product Moment Coefficient of Correlation
between x and y:

n

> (X, - XY, -Y) i

F = =1 o

Ji(xi—i)z-JZ(yi_Y—)z ~[SS,.SS,,

i=1

EPI 809/Spring 2008 )



Coefficient of Correlation
Values

|—r
-1.0 -5 0 +.5 +1.0

EPI 809/Spring 2008 60




Coefficient of Correlation
Values

No
Correlation

T S —
-1.0 -5 0 +.5 +1.0

EPI 809/Spring 2008 61




Coefficient of Correlation
Values

No
Correlation

T S —
-1.0 -5 0 +.5 +1.0

S—

Increasing degree of
negative correlation

EPI 809/Spring 2008 62




Coefficient of Correlation

Values
Perfect
Negative No
Correlation Correlation

—
-1.0 -5 0 +.5 +1.0

EPI 809/Spring 2008 63




Coefficient of Correlation

Values
Perfect
Negative No
Correlation Correlation

—
-1.0 -5 0 +.5 +1.0

e

Increasing degree of
positive correlation

EPI 809/Spring 2008 64




Coefficient of Correlation

Values
Perfect Perfect
Negative No Positive
Correlation Correlation Correlation

v v v
|—A

-1.0 -9 0 +.5 +1.0

EPI 809/Spring 2008 65




Scatter Plots of Data with
Various Correlation

Coefficients
Y Y@ Y
‘0
'.ﬂl.‘H“L'\ P ‘b
C ° o
X X X
r=-1 r=-6 r=0

f:x
|

r=+1 r=+.3 r=0

sSlide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall
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Linear Correlation

Linear relationships Curvilinear relationships
Y Y
¢
X
Y Y
X

=Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall
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Linear Correlation

Strong relationships Weak relationships

=Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall
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Linear Correlation

No relationship
®
% o
o0 ®

®e,° :
A X

.quﬂ%

X

=Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall



Calculating by hand...

n

> (4 = %)y, - )
f_covaﬁamEOQy): . n—1

A xvar y \/i(xixf \/i(yivf

n-1 n-1
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Simpler calculation formula...

> (%~ %)y~ ) /
a == - s5
Zn:(x' _i)z Zn:(y _y)z — f = X
T 1 T
- \/
g(xi = )_()(yi - V) . SSXy Numerators of variance
Ji(xi -%)’ Ji(yi gy V5SS
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Least Square estimation

Cov(Xx,Y)
Var(x)

Slope (beta coefficient IB —

intercepts Calculate :cx =y - X

Regression line always goes throuﬁﬁ_(thyaoint:



-
Relationship with correlation

. ~SD,
SD,

q
|

In correlation, the two variables are treated as equals. In regression, one variable is considered independent (=predictor) variable
(X) and the other the dependent (=outcome) variable Y.



RESIauar ANalystS. check

assumptions

« The residual for observation i, e;, is the difference between its observed and
predicted value

« Residuals are highly useful for studying whether a given regression model is appropriate
for the data at hand.

* Check the assumptions of regression by examining the residuals
— Examine for linearity assumption
— Examine for constant variance for all levels of X (homoscedasticity)
— Evaluate normal distribution assumption
— Evaluate independence assumption

» Graphical Analysis of Residuals

— Can plot residuals vs. X



R A .,

DSST Score (0 to 60)

34]

observed - predicted

D. Slope = 1.5 per 10 nmoliL

X=95 nmol/L
.
@)
[ ] “
° °*°°%¢ o
®
. .

2.
-...‘:o. .
. °

Vitamin D levels, nmolfL

y, =438
37i =34

N\

y,—y, =14



Residual Analysis for
Linearity

residuals
®
o
@
®
®
e

residuals

Not Linear ‘/ Linear

=Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall



Residual Analysis for
Homoscedasticity

Y@:{

X
O
n . n
E o0 %.0° |00 8,9 00
5 [—@ X 8-‘—.—.—’—:—’—.—.—x
7 000 4® 0 o HIE XN

Non-constant variance v/'|_Constant variance

=Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall



Residual Analysis for
Independence

® Not Independent )
lbqﬂ.
¢ %°
o9

™1

Independen

residuals

et inetee,

residuals

residuals
®
®

=Slide from: Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall
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Example: weekly advertising expenditure

y X y-hat | Residual (e)
1250 41 1270.8 -20.8
1380 54 1411.2 -31.2
1425 63 1508.4 -83.4
1425 54 1411.2 13.8
1450 48 1346.4 103.6
1300 46 1324.8 -24.8
1400 62 1497.6 -97.6
1510 61 1486.8 23.2
1575 64 1519.2 55.8

1650 /1 1594.8 55.2



s
Estimation of the variance of the error terms, 2

 The variance o2 of the error terms g; in the regression
model needs to be estimated for a variety of purposes.

— It gives an indication of the variability of the probability
distributions of y.

— It is needed for making inference concerning regression function
and the prediction of y.
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Regression Standard Error

e To estimate o we work with the variance and take the
square root to obtain the standard deviation.

« For simple linear regression the estimate of o2 is the
average squared residual.

o 1 s
. Toestimate c, U%¢ ~n-2 Z(y. 9))°

* S estimates the standard deV|at|on o of the error term € In
the statistical model for S|mple Jrﬂear regression.



Regression Standard Error

Yy
1250

1380
1425
1425
1450
1300
1400
1510
1575
1650

y-hat = 828+10.8X

X
41
54
63
54
48
46
62
61
64
71

y-hat
1270.8
1411.2
1508.4
1411.2
1346.4
1324.8
1497.6
1486.8
1519.2
1594.8

Residual (e) square(e)

-20.8
-31.2
-83.4
13.8
103.6
-24.8
-97.6
23.2
55.8
55.2

total
Sy x

432.64
973.44
6955.56
190.44
10732.96
615.04
9525.76
538.24
3113.64
3047.04

36124.76
67.19818
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Residual plots

* The points in this
residual plot have a
curve pattern, so a
straight line fits poorly

(b)

[ R S IR R S
| | 1

1 1 U I
S o —
1 1 1




Residual plots

* The points in this plot
show more spread for
larger values of the
explanatory variable x,
so prediction will be
less accurate when X Is
large.

Residual
1 I I I
NS I N = T R NS R &6 R
1 1 1 1 ' 1




.
Variable transformations

« |If the residual plot suggests that the variance is not constant,
a transformation can be used to stabilize the variance.

» |If the residual plot suggests a non linear relationship
between x and y, a transformation may reduce it to one that

IS approximately linear.
« Common linearizing transformations are:

» Variance stabilizingiramwmations are:

% log(y), Ay, ¥?
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2 predictors: age and vit D...
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Different 3D view...
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-
Fit a plane rather than a line...

OS5T score [0 to BO)
400

On the plane, the slope
for vitamin D is the
same at every age;
thus, the slope for
vitamin D represents
the effect of vitamin D
when age is held
constant.

e )

2315




