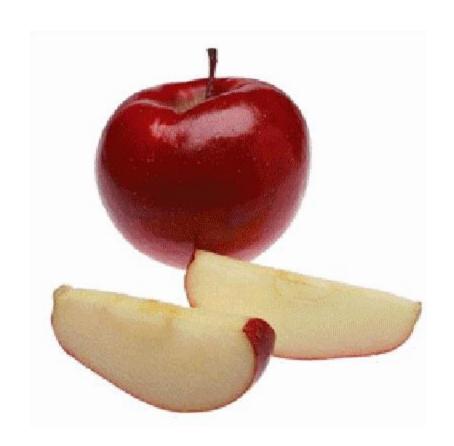
Object Recognition

VBM 686 – Bilgisayarli Goru Pinar Duygulu

(Slide credits:

Kristen Grauman, Fei fei Li, Antonio Torralba, Hames Hays)



object

Search

Dictionary

Thesaurus Encyclopedia

Mortouch; a

vision

Web.

<mark>⊗n Key</mark> (ŏb′jĭkt, -jĕkt′) ob-ject n.

Somethill

perceptible ne or more of the senses, especia

g, thought, or action: *an object of c*నీ

of a specific action or effort: the object 3. The purpos game.

Grammar.

2. A focus d

within a a. A noun, pronoun, 🖜 oun phrase that recei∨es or is affected by the attion of a ∨e sentence.

b. A noun or substantive verned by a preposition.

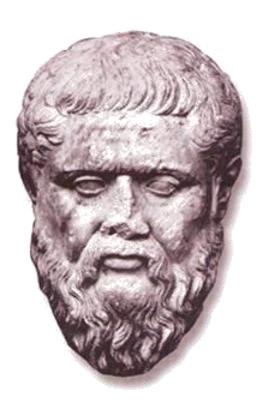
- 5. Philosophy. Something int ible or perceptible by the mind.
- 6. Computer Science. A discrete item that can be selected and maneuvered, such as an onscreen graphic. In object-oriented programming, objects include data and the procedures necessary to operate on that data.

materia

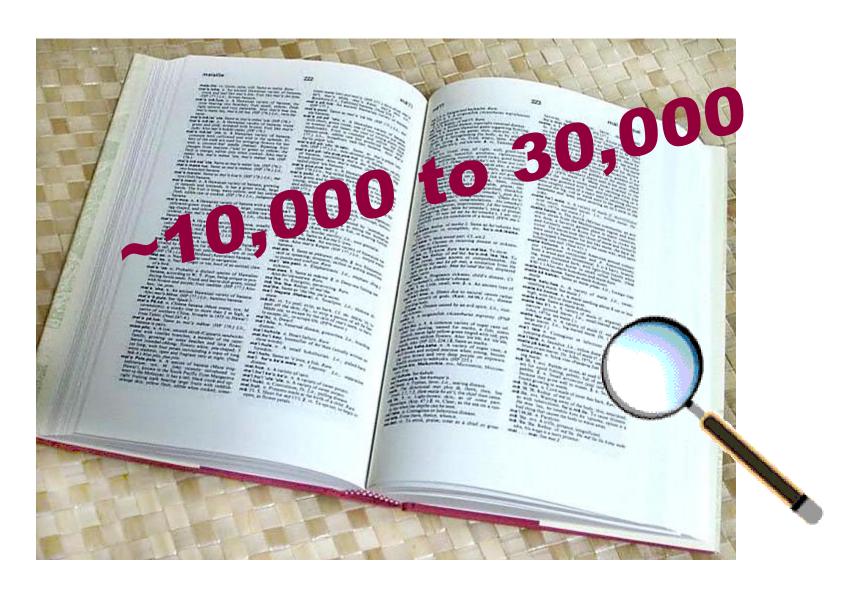
thing

Plato said...

- Ordinary objects are classified together if they `participate' in the same abstract Form, such as the Form of a Human or the Form of Quartz.
- Forms are proper subjects of philosophical investigation, for they have the highest degree of reality.
- Ordinary objects, such as humans, trees, and stones, have a lower degree of reality than the Forms.
- Fictions, shadows, and the like have a still lower degree of reality than ordinary objects and so are not proper subjects of philosophical enquiry.

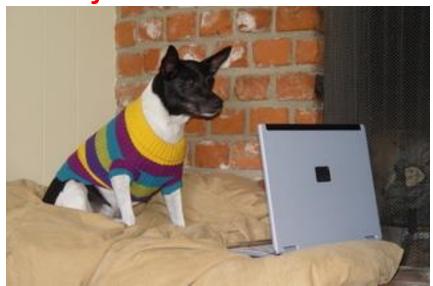


How many object categories are there?



Why do we care about recognition?

Perception of function: We can perceive the 3D shape, texture, material properties, without knowing about objects. But, the concept of category encapsulates also information about what can we do with those objects.

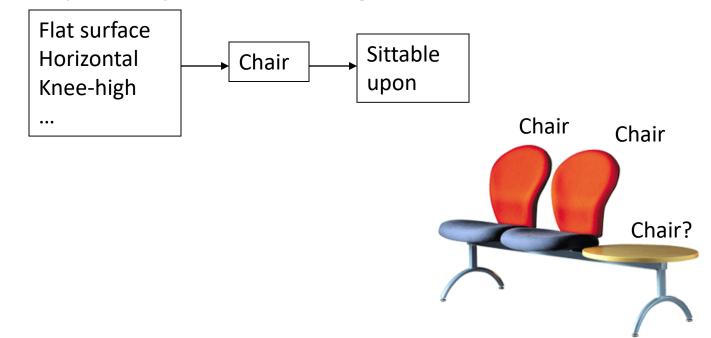


"We therefore include the perception of function as a proper –indeed, crucial- subject for vision science", from Vision Science, chapter 9, Palmer.

The perception of function

Direct perception (affordances): Gibson

Mediated perception (Categorization)



Direct perception

Some aspects of an object function can be perceived directly

 Functional form: Some forms clearly indicate to a function ("sittable-upon", container, cutting device, ...)

Direct perception

Some aspects of an object function can be perceived directly

Observer relativity: Function is observer dependent

Limitations of Direct Perception

Objects of similar structure might have very different functions

Figure 9.1.2 Objects with similar structure but different functions. Mailboxes afford letter mailing, whereas trash cans do not, even though they have many similar physical features, such as size, location, and presence of an opening large enough to insert letters and medium-sized packages.

Not all functions seem to be available from direct visual information only.

The functions are the same at some level of description: we can put things inside in both and somebody will come later to empty them. However, we are not expected to put inside the same kinds of things...

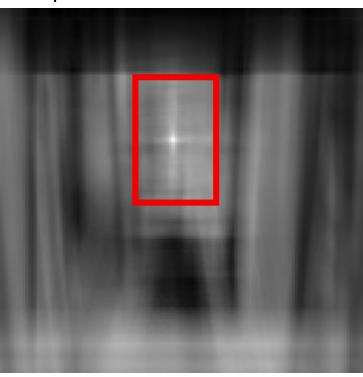
How do we achieve Mediated perception?

Well... this requires object recognition (for more details, see entire course)

Object recognition Is it really so hard?

Find the chair in this image

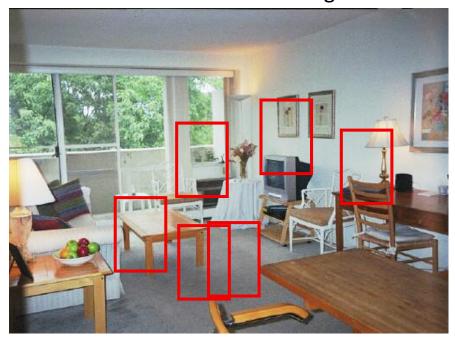
Output of normalized correlation

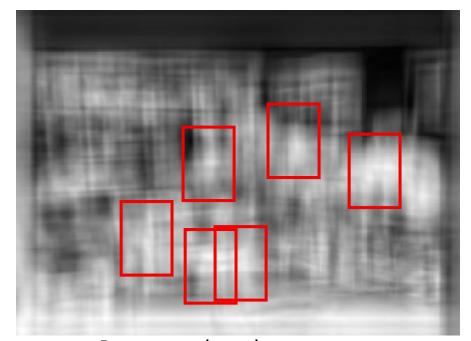


This is a chair

Object recognition Is it really so hard?

Find the chair in this image

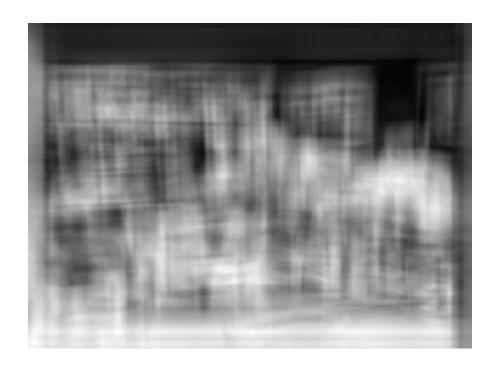




Pretty much garbage
Simple template matching is not going to make it

Object recognition Is it really so hard?

Find the chair in this image



A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

And it can get a lot harder

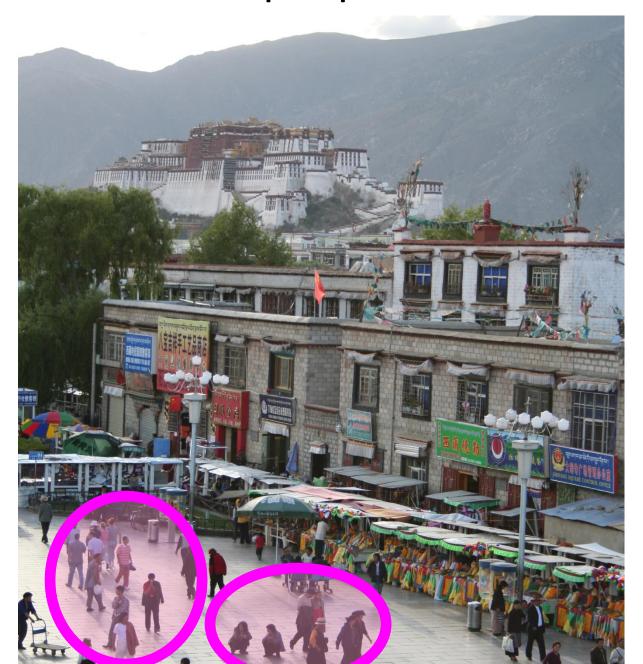
Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

So what does object recognition involve?

Verification: is that a lamp?

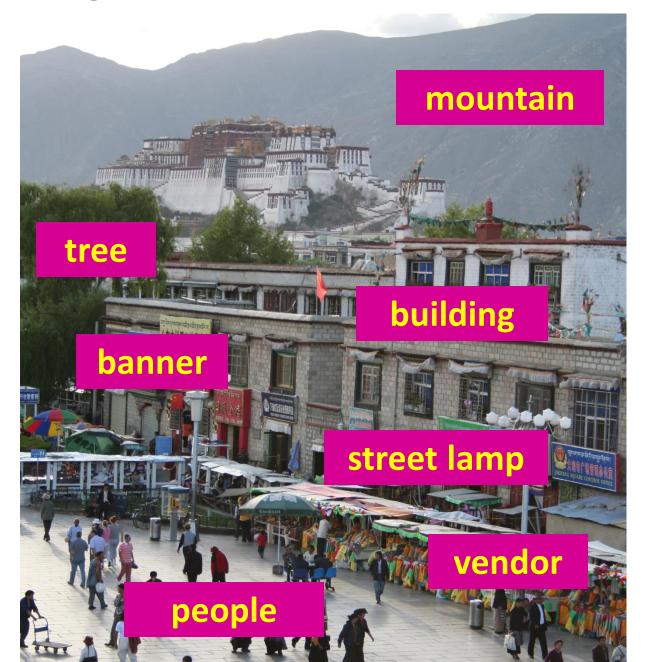


Detection: are there people?

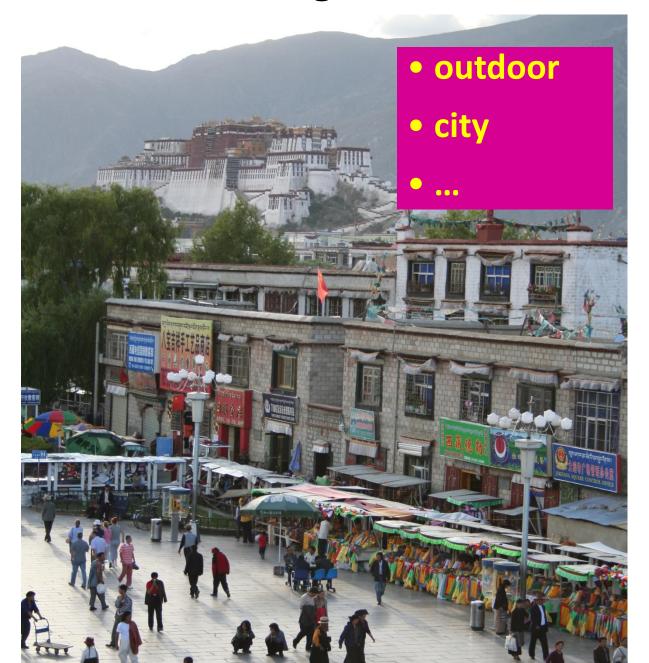


Identification: is that Potala Palace?

Object categorization



Scene and context categorization

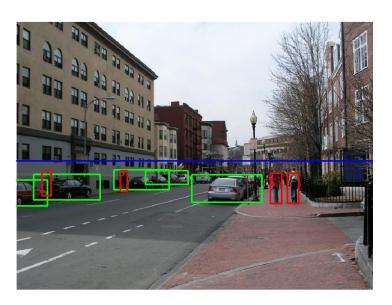


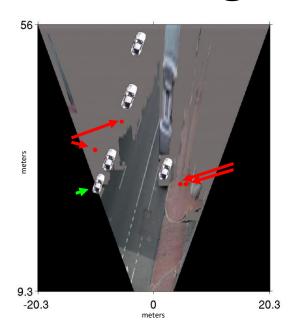
Computational photography

[Face priority AE] When a bright part of the face is too bright

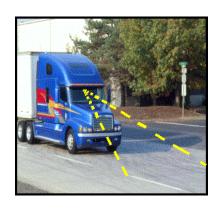
Assisted driving

Pedestrian and car detection





Lane detection

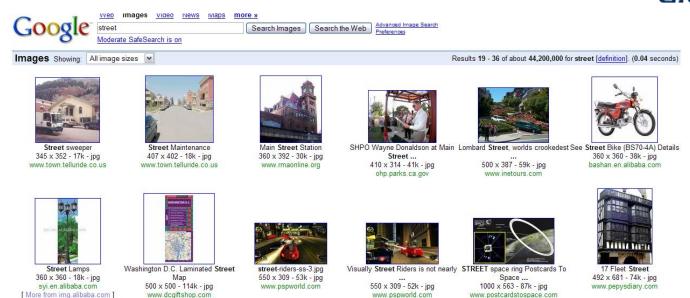




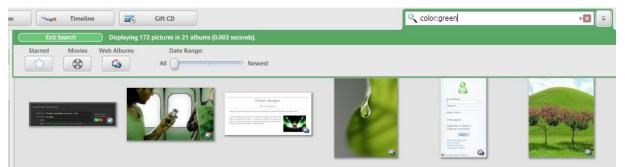
- Collision warning systems with adaptive cruise control,
- Lane departure warning systems,
- Rear object detection systems,

Improving online search

Query: STREET



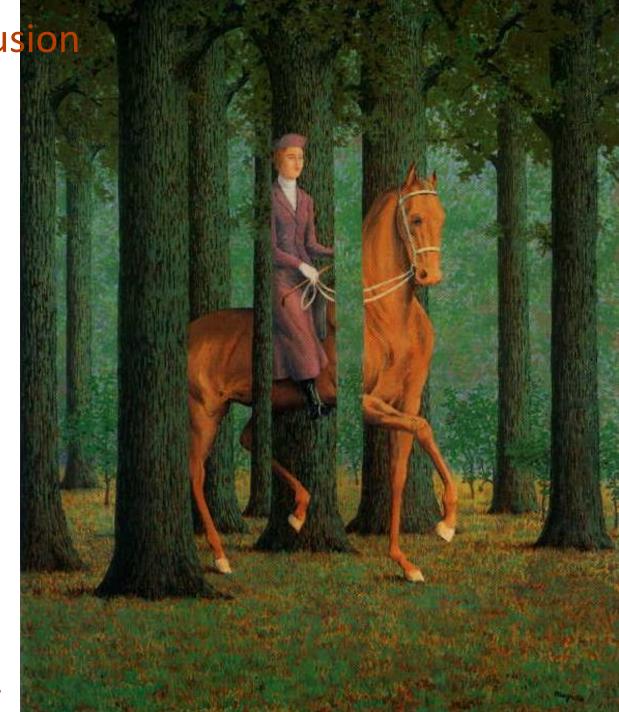
Organizing photo collections



Challenges 1: view point variation

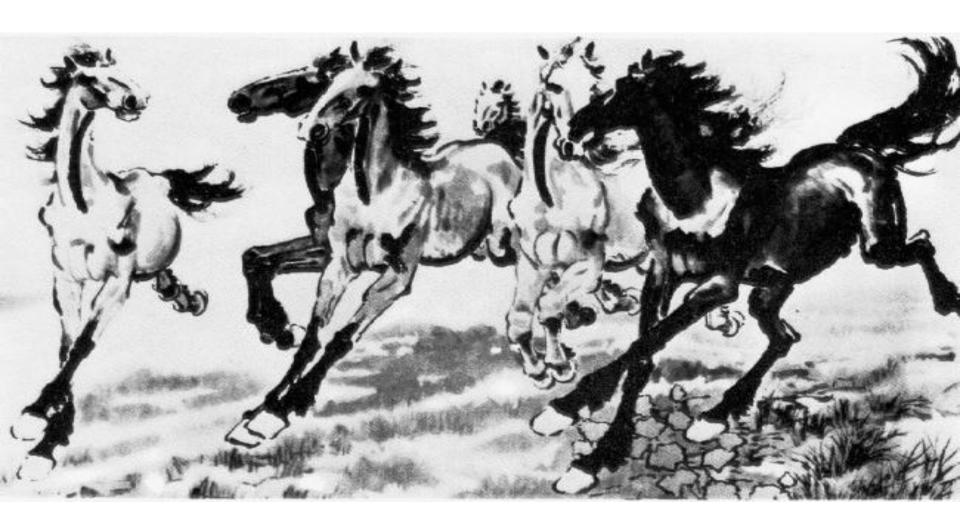
Challenges 2: illumination

Challenges 3: occlusion

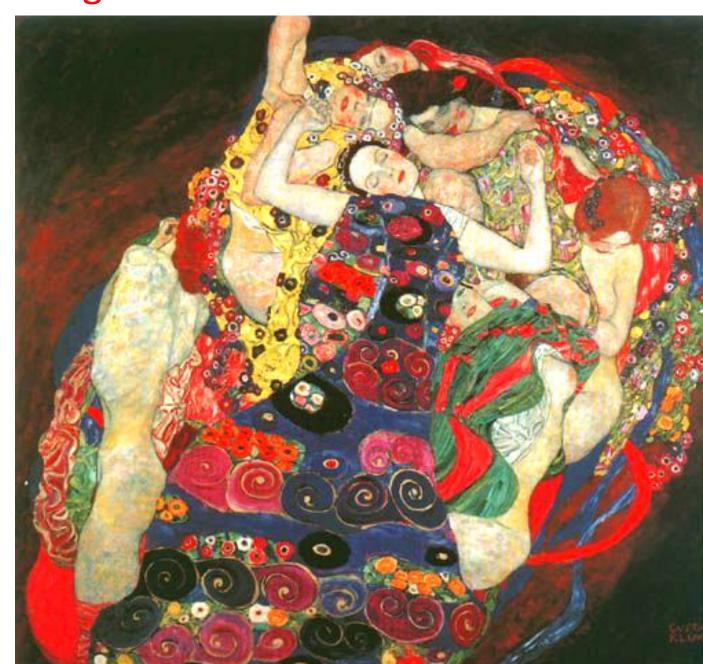


Challenges 4: scale

Challenges 5: deformation



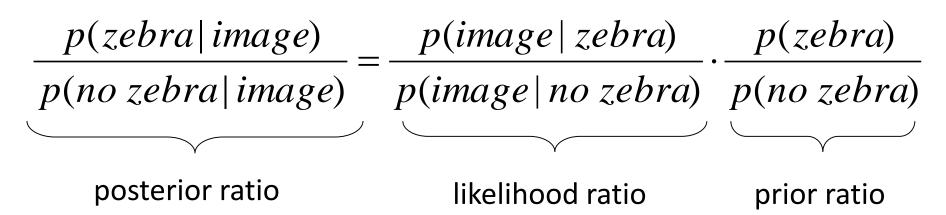
Challenges 6: background clutter



Challenges 7: intra-class variation

Object categorization: the statistical viewpoint

Bayes rule:



Object categorization: the statistical viewpoint

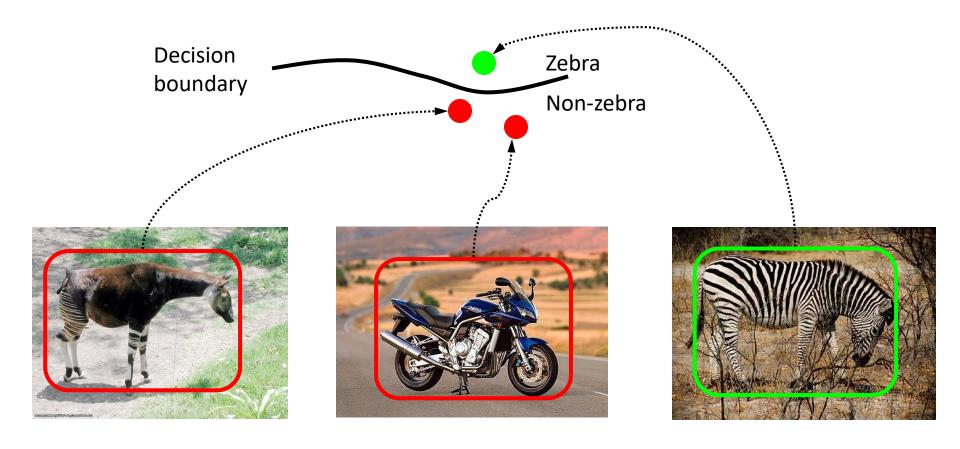
$$\frac{p(zebra | image)}{p(no \ zebra | image)} = \frac{p(image | zebra)}{p(image | no \ zebra)} \cdot \frac{p(zebra)}{p(no \ zebra)}$$
posterior ratio
likelihood ratio
prior ratio

- Discriminative methods model posterior
- Generative methods model likelihood and prior

Discriminative

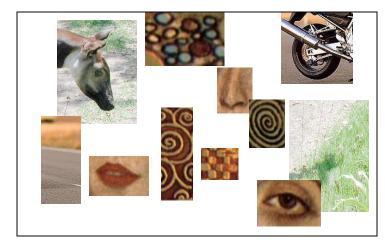
Direct modeling of

 $\frac{p(zebra|image)}{p(no|zebra|image)}$



Generative

• Model p(image | zebra) and p(image | no zebra)



p(image zebra)	p(image no zebra)
Low	Middle
High	Middle→Low

Three main issues

- Representation
 - How to represent an object category

- Learning
 - How to form the classifier, given training data

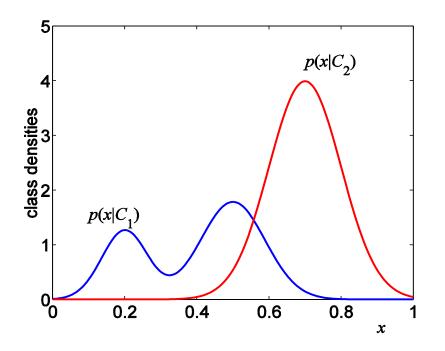
- Recognition
 - How the classifier is to be used on novel data

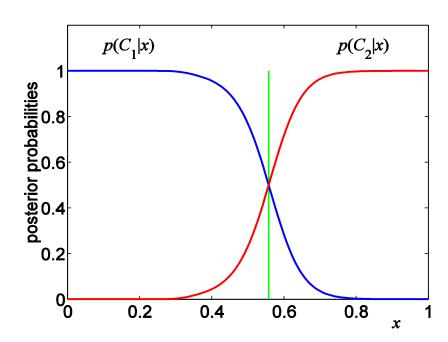
Learning

 Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning

Learning

- Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)
- Methods of training: generative vs. discriminative

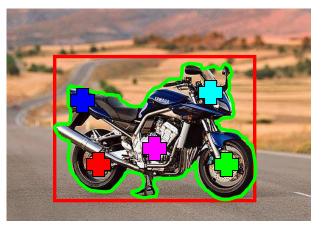




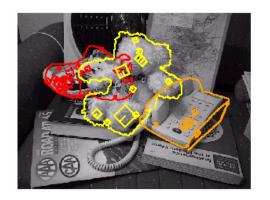
Learning

- Unclear how to model categories, so we learn what distinguishes them rather than manually specify the difference -- hence current interest in machine learning)
- What are you maximizing? Likelihood (Gen.) or performances on train/validation set (Disc.)
- Level of supervision
 - Manual segmentation; bounding box; image labels; noisy labels

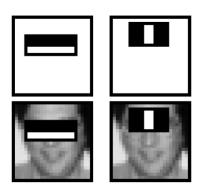
Contains a motorbike

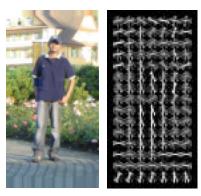


Recognition models

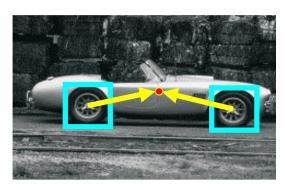


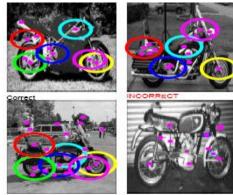
Instances: recognition by alignment





Categories:
Holistic appearance
models (and sliding
window detection)





Categories: Local feature and part-based models

Recognition

- Scale / orientation range to search over
- Speed
- Context

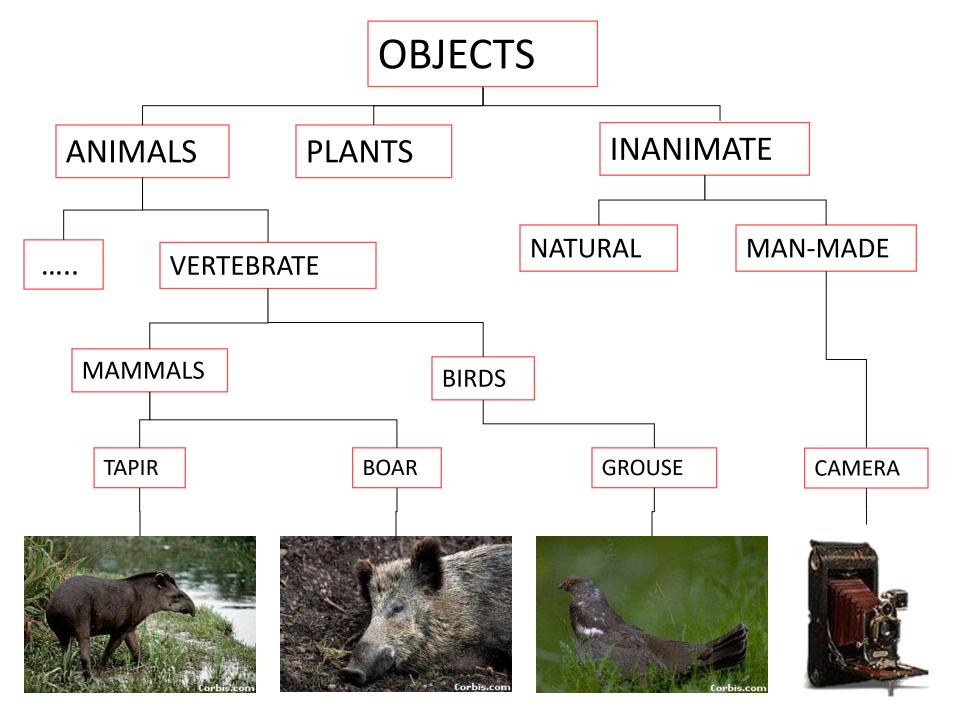


Image features



Pixel or local patch

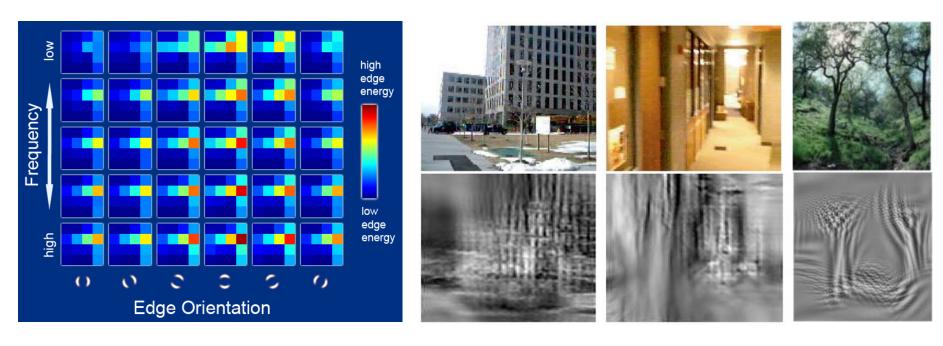
Bounding box

Segmentation region

Whole image

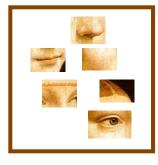
GIST features

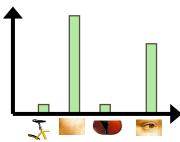
Oliva & Torralba (2001)

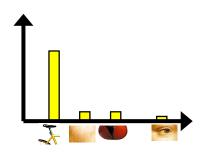


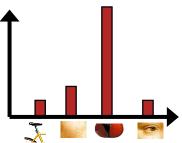
Spatial envelope naturalness, openness, roughness, expansion, ruggedness

Bag of Words

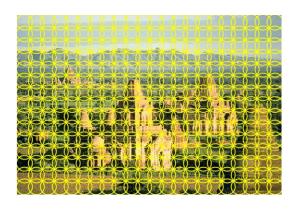


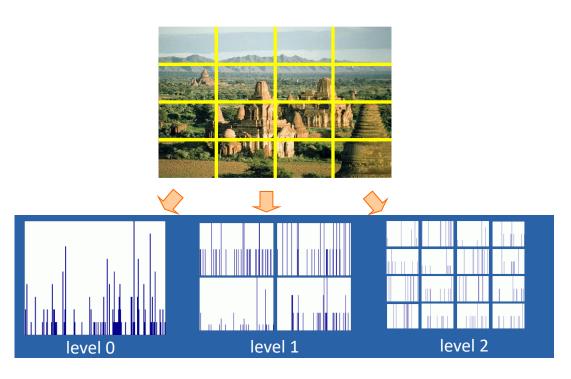






Local Feature Extraction

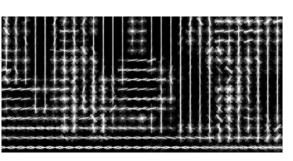




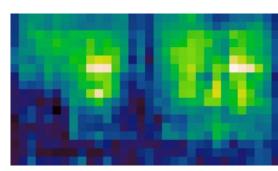
Lazebnik, Schmid & Ponce (CVPR 2006)

Histogram of Oriented Gradients Part based models

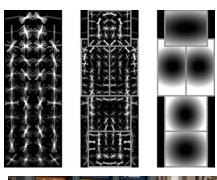
HOG feature map

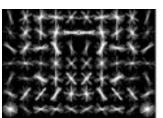


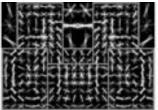
Template Detector response map

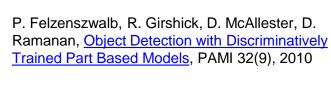


N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005





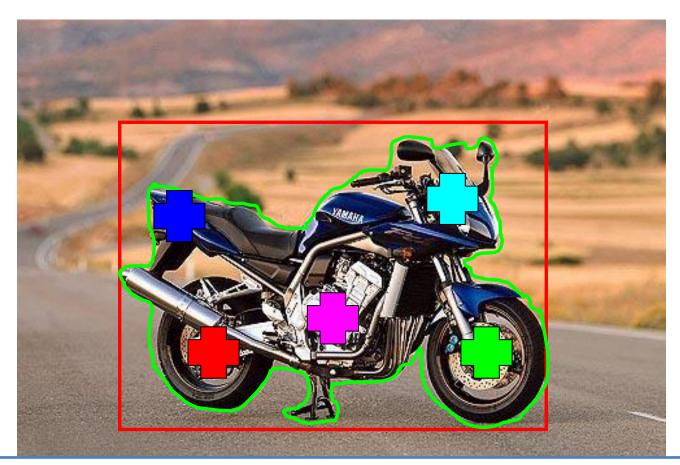




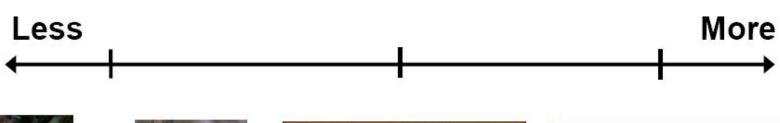
Labeling required for supervision

Images in the training set must be annotated with the "correct answer" that the model is expected to produce

Contains a motorbike

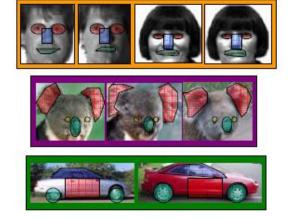


Spectrum of supervision



Unsupervised

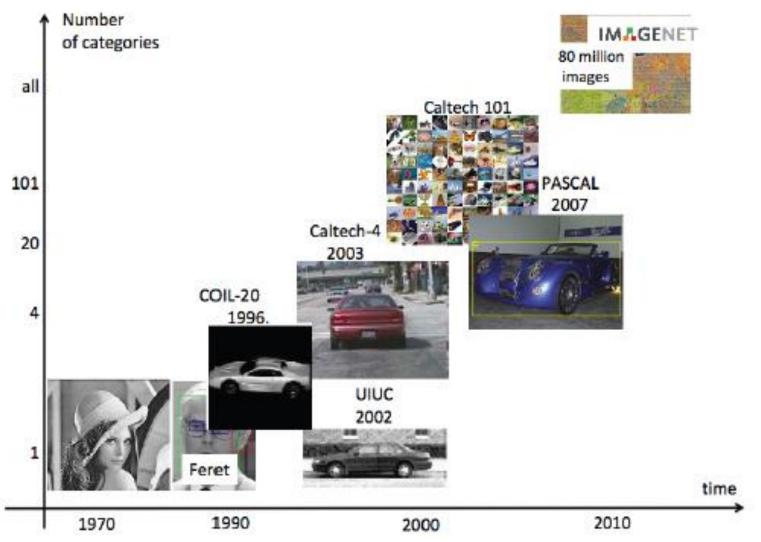
"Weakly" supervised



Fully supervised

Definition depends on task

Available datasets



Caltech 101 and 256 Variability

Fei-Fei, Fergus, Perona, 2004

Griffin, Holub, Perona, 2007

The PASCAL Visual Object Classes Challenge (2005-2012)

Challenge classes:

Person: person

Animal: bird, cat, cow, dog, horse, sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train

Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

Dataset size (by 2012):

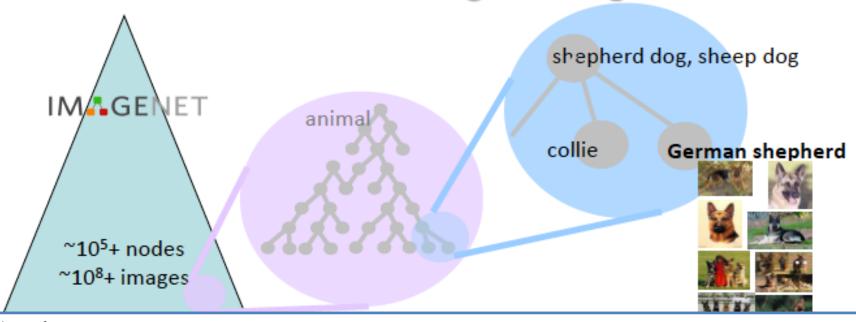
11.5K training/validation images, 27K bounding boxes, 7K segmentations

• Classification, detection, segmentation, person layout

Sun Dataset
~900 scene categories (~400 well-sampled), 130K images

10⁶⁻⁷

- An ontology of images based on WordNet
- ImageNet currently has
 - ~15,000 categories of visual concepts
 - 10 million human-cleaned images (~700im/categ)
 - Free to public @ www.image-net.org



Slide credit: Fei-fei Li

MS COCO

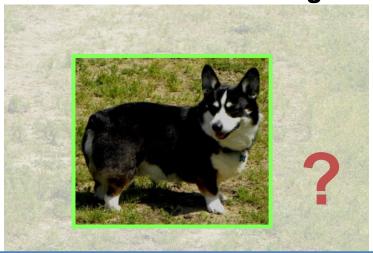
Over 77,000 worker hours (8+ years)

- 70-100 object categories (things not stuff)
- 330,000 images (~150k first release)
- 2 million instances (400k people)
- Every instance is segmented
- 7.7 instances per image (3.5 categories)
- Key points
- 5 sentences per image

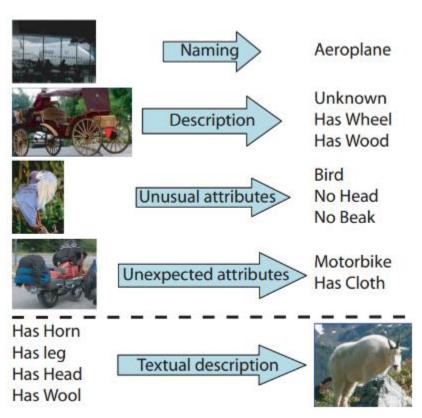
http://mscoco.org

Fine grained recognition

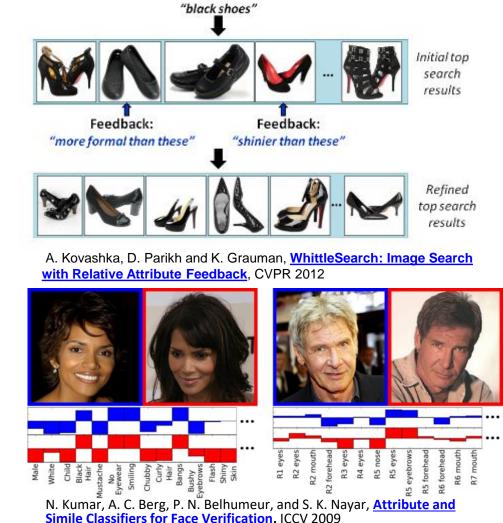
What breed is this dog?



Attribute based recognition



A. Farhadi, I. Endres, D. Hoiem, and D Forsyth, **Describing**Objects by their Attributes, CVPR 2009



Query: