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Generic category recognition:

representation choice

Window-based Part-based



Simple holistic descriptions of image content

 grayscale / color histogram

 vector of pixel intensities

Window-based models

Building an object model

Kristen Grauman



Window-based models

Building an object model

• Pixel-based representations sensitive to small shifts

• Color or grayscale-based appearance description can be 

sensitive to illumination and intra-class appearance 

variation

Kristen Grauman



Window-based models

Building an object model

• Consider edges, contours, and (oriented) intensity 

gradients

Kristen Grauman



Window-based models

Building an object model

• Consider edges, contours, and (oriented) intensity 

gradients

• Summarize local distribution of gradients with histogram

 Locally orderless: offers invariance to small shifts and rotations

 Contrast-normalization: try to correct for variable illumination

Kristen Grauman



Window-based models

Building an object model

Car/non-car 

Classifier

Yes, car.No, not a car.

Given the representation, train a binary classifier

Kristen Grauman



Discriminative classifier construction

106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
…

Support Vector Machines Conditional Random Fields

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003
…

Guyon, Vapnik

Heisele, Serre, Poggio, 
2001,…

Slide adapted from Antonio Torralba

Boosting

Viola, Jones 2001, Torralba 
et al. 2004, Opelt et al. 
2006,…



Influential Works in Detection
• Sung-Poggio (1994, 1998) : ~1450 citations

– Basic idea of statistical template detection (I think), bootstrapping to get 
“face-like” negative examples, multiple whole-face prototypes (in 1994)

• Rowley-Baluja-Kanade (1996-1998) : ~2900
– “Parts” at fixed position, non-maxima suppression, simple cascade, rotation, 

pretty good accuracy, fast

• Schneiderman-Kanade (1998-2000,2004) : ~1250
– Careful feature engineering, excellent results, cascade

• Viola-Jones (2001, 2004) : ~6500
– Haar-like features, Adaboost as feature selection, hyper-cascade, very fast, 

easy to implement

• Dalal-Triggs (2005) : ~2000
– Careful feature engineering, excellent results, HOG feature, online code

• Felzenszwalb-Huttenlocher (2000): ~800
– Efficient way to solve part-based detectors

• Felzenszwalb-McAllester-Ramanan (2008)?  ~350
– Excellent template/parts-based blend 

Slide: Derek Hoiem



Generic category recognition:

basic framework

• Build/train object model

– Choose a representation

– Learn or fit parameters of model / classifier 

• Generate candidates in new image

• Score the candidates



Window-based models

Generating and scoring candidates

Car/non-car 

Classifier

Kristen Grauman



Window-based object detection: recap

Car/non-car 

Classifier

Feature 

extraction

Training examples

Training:
1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Kristen Grauman



Discriminative classifier construction

106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
…

Support Vector Machines Conditional Random Fields

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003
…

Guyon, Vapnik

Heisele, Serre, Poggio, 
2001,…

Slide adapted from Antonio Torralba

Boosting

Viola, Jones 2001, Torralba 
et al. 2004, Opelt et al. 
2006,…



Boosting  intuition

Weak 

Classifier 1

Slide credit: Paul Viola



Boosting  illustration

Weights

Increased



Boosting  illustration

Weak 

Classifier 2



Boosting  illustration

Weights

Increased



Boosting  illustration

Weak 

Classifier 3



Boosting  illustration

Final classifier is 

a combination of weak 

classifiers



Boosting: training

• Initially, weight each training example equally

• In each boosting round:

– Find the weak learner that achieves the lowest weighted training error

– Raise weights of training examples misclassified by current weak learner

• Compute final classifier as linear combination of all weak 

learners (weight of each learner is directly proportional to 

its accuracy)

• Exact formulas for re-weighting and combining weak 

learners depend on the particular boosting scheme (e.g., 

AdaBoost)
Slide credit: Lana Lazebnik



Boosting: pros and cons

• Advantages of boosting
– Integrates classification with feature selection
– Complexity of training is linear in the number of training 

examples
– Flexibility in the choice of weak learners, boosting scheme
– Testing is fast
– Easy to implement

• Disadvantages
– Needs many training examples
– Often found not to work as well as an alternative discriminative 

classifier, support vector machine (SVM)
• especially for many-class problems

Slide credit: Lana Lazebnik



Viola-Jones face detector



Main idea:

– Represent local texture with efficiently computable 

“rectangular” features within window of interest

– Select discriminative features to be weak classifiers

– Use boosted combination of them as final classifier

– Form a cascade of such classifiers, rejecting clear 

negatives quickly

Viola-Jones face detector

Kristen Grauman



Viola-Jones detector: features

Feature output is difference between 
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 
constant time.

“Rectangular” filters

Value at (x,y) is 

sum of pixels 

above and to the 

left of (x,y)

Integral image

Kristen Grauman



Computing sum within a rectangle
• Let A,B,C,D be the 

values of the integral 
image at the corners of 
a rectangle

• Then the sum of original 
image values within the 
rectangle can be 
computed as:

sum = A – B – C + D

• Only 3 additions are 
required for any size of 
rectangle!

D B

C A

Lana Lazebnik



Viola-Jones detector: features

Feature output is difference between 
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 
constant time

Avoid scaling images 
scale features directly for 
same cost

“Rectangular” filters

Value at (x,y) is 

sum of pixels 

above and to the 

left of (x,y)

Integral image

Kristen Grauman



Considering all possible 
filter parameters: 
position, scale, and 
type: 

180,000+ possible 
features associated 
with each 24 x 24 
window

Which subset of these features should we use to 
determine if a window has a face?

Use AdaBoost both to select the informative features 
and to form the classifier

Viola-Jones detector: features

Kristen Grauman



Viola-Jones detector: AdaBoost

• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-

faces) training examples, in terms of weighted error.

Outputs of a possible 

rectangle feature on 

faces and non-faces.

…

Resulting weak classifier:

For next round, reweight the 

examples according to errors, 

choose another filter/threshold 

combo.

Kristen Grauman



AdaBoost Algorithm
Start with 

uniform weights 

on training 

examples

Evaluate 

weighted error 

for each feature, 

pick best.

Re-weight the examples:

Incorrectly classified -> more weight

Correctly classified -> less weight

Final classifier is combination of the 

weak ones, weighted according to 

error they had.

Freund & Schapire 1995

{x1,…xn}
For T rounds



First two features 

selected

Viola-Jones Face Detector: Results



• Even if the filters are fast to compute, each new 

image has a lot of possible windows to search.

• How to make the detection more efficient?



Cascading classifiers for detection

• Form a cascade with low false negative rates early on

• Apply less accurate but faster classifiers first to immediately 

discard windows that clearly appear to be negative

Kristen Grauman



Viola-Jones detector: summary

Train with 5K positives, 350M negatives
Real-time detector using 38 layer cascade
6061 features in all layers

[Implementation available in OpenCV: 
http://www.intel.com/technology/computing/opencv/]

Faces

Non-faces

Train cascade of 

classifiers with 

AdaBoost

Selected features, 

thresholds, and weights

New image

Kristen Grauman



Viola-Jones detector: summary

• A seminal approach to real-time object detection 

• Training is slow, but detection is very fast

• Key ideas

• Features which can be evaluated very quickly with Integral Images

• Cascade model which rejects unlikely faces quickly

• Mining hard negatives

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001. 

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. 

http://research.microsoft.com/en-us/um/people/viola/pubs/detect/violajones_cvpr2001.pdf
http://www.vision.caltech.edu/html-files/EE148-2005-Spring/pprs/viola04ijcv.pdf


Viola-Jones Face Detector: Results



Viola-Jones Face Detector: Results



Viola-Jones Face Detector: Results



Detecting profile faces?
Can we use the same detector?



Paul Viola, ICCV tutorial

Viola-Jones Face Detector: Results



Viola Jones Results

MIT + CMU face dataset
Slide: Derek Hoiem



Schneiderman later results

Viola-Jones 2001

Roth et al. 1999
Schneiderman-Kanade 
2000

Schneiderman 2004

Slide: Derek Hoiem



Speed: frontal face detector

• Schneiderman-Kanade (2000): 5 seconds

• Viola-Jones (2001): 15 fps

Slide: Derek Hoiem



Everingham, M., Sivic, J. and Zisserman, A.

"Hello! My name is... Buffy" - Automatic naming of characters in TV video,

BMVC 2006.  http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Example using Viola-Jones detector

Frontal faces detected and then tracked,  character 

names inferred with alignment of script and subtitles.





Consumer application: iPhoto 2009

http://www.apple.com/ilife/iphoto/

Slide credit: Lana Lazebnik

http://www.apple.com/ilife/iphoto/


Consumer application: iPhoto 2009

• Things iPhoto thinks are faces

Slide credit: Lana Lazebnik

http://www.flickr.com/groups/977532@N24/pool/


Consumer application: iPhoto 2009

• Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Slide credit: Lana Lazebnik

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats


• Part-based and local feature models for 
generic object recognition



Part-based and local feature models for 
recognition

Main idea:

Rather than a representation based 
on holistic appearance, decompose 
the image into:

• local parts or patches, and

• their relative spatial relationships

Kristen Grauman



Part-based and local feature models for 
recognition

We’ll look at three forms:

1. Bag of words (no geometry)

2. Implicit shape model (star graph 
for spatial model)

3. Constellation model (fully 
connected graph for spatial 
model)

Kristen Grauman



Bag of Words
Models



Object Bag of ‘words’



Bag of Words

• Independent features 

• Histogram representation



category
decision

learning

feature detection
& representation

codewords dictionary

image representation

category models
(and/or) classifiers

recognition



1.Feature detection and representation

Normalize patch

Detect patches

[Mikojaczyk and Schmid ’02]

[Mata, Chum, Urban & Pajdla, ’02] 

[Sivic & Zisserman, ’03]

Compute 
descriptor

e.g. SIFT [Lowe’99]

Slide credit: Josef Sivic

Local interest operator
or

Regular grid



…

1.Feature detection and representation



2. Codewords dictionary formation

…

128-D SIFT space



2. Codewords dictionary formation

Vector quantization

…

Slide credit: Josef Sivic128-D SIFT space

+

+

+

Codewords



Image patch examples of codewords

Sivic et al. 2005



Image representation

…..

fr
eq

u
en

cy

codewords

Histogram of features 
assigned to each cluster 



Uses of BoW representation

• Treat as feature vector for standard classifier
– e.g SVM

• Cluster BoW vectors over image collection
– Discover visual themes

• Hierarchical models 
– Decompose scene/object

• Scene



What about spatial info?



Adding spatial info. to BoW

• Feature level

• Generative models

• Discriminative methods

– Lazebnik, Schmid & Ponce, 2006



Problem with bag-of-words

• All have equal probability for bag-of-words methods

• Location information is important

• BoW + location still doesn’t give correspondence



Model: Parts and Structure



Representation

• Object as set of parts

– Generative representation

• Model:

– Relative locations between parts

– Appearance of part

• Issues:

– How to model location

– How to represent appearance

– How to handle occlusion/clutter

Figure from [Fischler & Elschlager 73]



• Summarize entire image based on its distribution 
(histogram) of word occurrences.

– Total freedom on spatial positions, relative geometry.

– Vector representation easily usable by most classifiers.

Bag-of-words model

Kristen Grauman



Csurka et al. Visual Categorization with Bags of Keypoints, 2004

Bag-of-words model



Words as parts

Csurka et al. 2004

All local features 
Local features from two 

selected clusters 
occurring in this image



Naïve Bayes model for classification

)|()( cwpcp

Prior prob. of 
the object classes

Image likelihood
given the class





N

n

n cwpcp
1

)|()(

Object class
decision

)|( wcp
c

c maxarg

What assumptions does the model make, and what are 
their significance?

𝑁 patches



Csurka et al. 2004

Confusion matrix

Example bag of words + Naïve Bayes classification results for 
generic categorization of objects



Clutter…or context?

Kristen Grauman



Specific object Category 

Sampling strategies

Kristen Grauman



Sampling strategies

Image credits: F-F. Li, E. Nowak, J. Sivic

Dense, uniformly Sparse, at 

interest points
Randomly

Multiple interest 

operators

• To find specific, textured objects, sparse 
sampling from interest points more reliable.

• Multiple complementary interest operators 
offer more image coverage.

• For object categorization, dense sampling offers 
better coverage.

[See Nowak, Jurie & Triggs, ECCV 2006] Kristen Grauman



Local feature correspondence 
for generic object categories

Kristen Grauman



• Comparing bags of words histograms coarsely reflects 

agreement between local “parts” (patches, words).

• But choice of quantization directly determines what we 

consider to be similar…

Local feature correspondence 

for generic object categories

Kristen Grauman



Pyramid match: main idea

descriptor 
space

Feature space partitions serve 
to “match” the local descriptors 
within successively wider 
regions.

[Grauman & Darrell, ICCV 2005]



Pyramid match: main idea

Histogram intersection counts 
number of possible matches at 
a given partitioning.

[Grauman & Darrell, ICCV 2005]



Pyramid match kernel

optimal partial 
matching

Optimal match:  O(m3)
Pyramid match: O(mL)

[Grauman & Darrell, ICCV 2005]



Unordered sets of local features:

No spatial layout preserved!

Too much? Too little?



[Lazebnik, Schmid & Ponce, CVPR 2006]

• Make a pyramid of bag-of-words histograms.

• Provides some loose (global) spatial layout information

Spatial pyramid match

Sum over PMKs computed in image coordinate 

space, one per word.

Kristen Grauman



Confusion matrix

Spatial pyramid match

Captures scene categories well---texture-like patterns but 

with some variability in the positions of all the local pieces.

Kristen Grauman



Captures scene categories well---texture-like patterns but 

with some variability in the positions of all the local pieces.

Spatial pyramid match

Kristen Grauman



Part-based and local feature models for 
recognition

We’ll look at three forms:

1. Bag of words (no geometry)

2. Implicit shape model (star graph 
for spatial model)

3. Constellation model (fully 
connected graph for spatial 
model)

Kristen Grauman



Shape representation 
in part-based models

x1

x3

x4

x6

x5

x2

“Star” shape model

 e.g. implicit shape model

 Parts mutually independent

N image features, P parts in the model



Implicit shape models
• Visual vocabulary is used to index votes for 

object position [a visual word = “part”]

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation 
with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 
2004

visual codeword with
displacement vectors

training image annotated with object localization info

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Implicit shape models
• Visual vocabulary is used to index votes for 

object position [a visual word = “part”]

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation 
with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 
2004

test image

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Implicit shape models: Training

1. Build vocabulary of patches around extracted 
interest points using clustering



Implicit shape models: Training

1. Build vocabulary of patches around extracted 
interest points using clustering

2. Map the patch around each interest point to 
closest word



Implicit shape models: Training
1. Build vocabulary of patches around extracted 

interest points using clustering

2. Map the patch around each interest point to 
closest word

3. For each word, store all positions it was 
found, relative to object center



Implicit shape models: Testing
1. Given new test image, extract patches, match to 

vocabulary words 

2. Cast votes for possible positions of object center

3. Search for maxima in voting space

4. (Extract weighted segmentation mask based on stored 
masks for the codebook occurrences)



Implicit shape models: Testing



K. Grauman, B. Leibe

Original image

Example: Results on Cows



K. Grauman, B. Leibe

Original imageInterest points

Example: Results on Cows



K. Grauman, B. Leibe
Original imageInterest pointsMatched patches

Example: Results on Cows



96 K. Grauman, B. Leibe
Original imageInterest pointsMatched patchesVotes

Example: Results on Cows



97 K. Grauman, B. Leibe

1st hypothesis

Example: Results on Cows



98 K. Grauman, B. Leibe
2nd hypothesis

Example: Results on Cows



99 K. Grauman, B. Leibe

Example: Results on Cows

3rd hypothesis



100 K. Grauman, B. Leibe

Detection Results
• Qualitative Performance

– Recognizes different kinds of objects

– Robust to clutter, occlusion, noise, low contrast



Shape representation 
in part-based models

x1

x3

x4

x6

x5

x2

“Star” shape model

 e.g. implicit shape model

 Parts mutually independent

N image features, P parts in the model

x1

x3

x4

x6

x5

x2

Fully connected constellation 
model

 e.g. Constellation Model

 Parts fully connected

Slide credit: Rob Fergus



Probabilistic constellation model

h: assignment of features to parts

)|(),|(),|(max

)|,()|(

objecthpobjecthshapepobjecthappearanceP

objectshapeappearancePobjectimageP

h



Part
descriptors

Part
locations

Candidate parts

Source: Lana Lazebnik



Probabilistic constellation model

h: assignment of features to parts

Part 2

Part 3

Part 1

)|(),|(),|(max

)|,()|(

objecthpobjecthshapepobjecthappearanceP

objectshapeappearancePobjectimageP

h



Source: Lana Lazebnik



Probabilistic constellation model

h: assignment of features to parts

Part 2

Part 3

Part 1

)|(),|(),|(max

)|,()|(

objecthpobjecthshapepobjecthappearanceP

objectshapeappearancePobjectimageP

h



Source: Lana Lazebnik



Example results from constellation model: data 
from four categories

Slide from Li Fei-Fei http://www.vision.caltech.edu/feifeili/Resume.htm



Face model

Recognition 
results

Appearance: 10 
patches closest 
to mean for each 
part

Fergus et al. CVPR 2003



Face model

Recognition 
results

Appearance: 10 
patches closest 
to mean for each 
part

Test images: size of 
circles indicates 
score of hypothesis

Fergus et al. CVPR 2003Kristen Grauman



Appearance: 10 
patches closest 
to mean for each 
part

Motorbike 
model

Recognition 
results

Fergus et al. CVPR 2003Kristen Grauman



Appearance: 10 
patches closest 
to mean for each 
part

Spotted cat 
model

Recognition 
results

Fergus et al. CVPR 2003Kristen Grauman



Comparison

bag of features bag of features

Source: Lana Lazebnik

Part-based model



Shape representation 
in part-based models

x1

x3

x4

x6

x5

x2

“Star” shape model

 e.g. implicit shape model

 Parts mutually independent

 Recognition complexity: O(NP)

 Method: Gen. Hough Transform

N image features, P parts in the model

x1

x3

x4

x6

x5

x2

Fully connected constellation 
model

 e.g. Constellation Model

 Parts fully connected

 Recognition complexity: O(NP)

 Method: Exhaustive search

Slide credit: Rob Fergus



Summary: 
part-based and local feature models for generic 

object recognition

• Histograms of visual words to capture global or local layout in 
the bag-of-words framework
– Pyramid match kernels

– Powerful in practice for image recognition

• Part-based models encode category’s part appearance together 
with 2d layout and allow detection within cluttered image
– “implicit shape model”: shape based on layout of all parts relative to a 

reference part; Generalized Hough for detection

– “constellation model”: explicitly model mutual spatial layout between 
all pairs of parts; exhaustive search for best fit of features to parts



Structure models

Voting models Constellation models Deformable models

• Many parts (>100) • Few parts (~6) • No parts





PASCAL Visual Object Challenge

5000 training images 5000 testing images

20 everyday object categories

aeroplane bike bird boat bottle bus car cat chair cow table 

dog horse motorbike person plant sheep sofa train tv
Source: Deva Ramanan



5 years of PASCAL people detection

average

precision

Discriminative mixtures of star models 2007-2010 Felzenszwalb, 

McAllester, Ramanan CVPR 2008

Felzenszwalb, Girshick, McAllester, and Ramanan PAMI 2009 

1% to 45% in 5 years

Source: Deva Ramanan



Deformable part models

Model encodes local appearance + pairwise geometry

Source: Deva Ramanan





Scoring function

part template 

scores

spring deformation model

Score is linear in local templates wi and spring parameters wij

x = image 

zi = (xi,yi)

z = {z1,z2...}

Source: Deva Ramanan

score(x,z)  = S wi f(x, zi) + S wij Y(zi, zj)  i i,j 

score(x,z)  =  w . F(x, z) 



Inference: max score(x,z)
Felzenszwalb & Huttenlocher 05 

z

Source: Deva Ramanan

Star model: the location of the root filter is the anchor point

Given the root location, all part locations are independent

root

root



Classification

Source: Deva Ramanan

fw(x)>0

fw(x)=w . F(x)



Latent-variable classification

Source: Deva Ramanan

fw(x)>0

fw(x)=w . F(x) fw(x)=max S(x,z)

=max w . F(x, z)

z

z



Learning Initialization

• Learn root filter with SVM

• Initialize part filters to 
regions in root filter with lots 
of energy

Source: Deva Ramanan



1) Given positive part locations, learn w with a convex program

The above steps perform coordinate descent on a joint loss 

2) Given w,  estimate part locations on positives 

Coordinate descent

Source: Deva Ramanan



Example models

Source: Deva Ramanan



Example models

Source: Deva Ramanan



Example models

False positive due to imprecise 

bounding box

Source: Deva Ramanan



Other tricks:

•Mining hard negative examples

•Noisy annotations





Outline

• Image matching and oriented gradients:
SIFT, HOG

• Object detection

• Dataset and generalization issues



Some bias comes from the way the data is collected



Google mugs

Mugs from LabelMe





“Name That Dataset!” game

__  Caltech 101

__  Caltech 256

__  MSRC 

__  UIUC cars

__  Tiny Images

__  Corel

__  PASCAL 2007

__  LabelMe

__  COIL-100

__  ImageNet

__  15 Scenes

__  SUN’09 



SVM plays “Name that dataset!”



SVM plays “Name that dataset!”

• 12 1-vs-all classifiers

• Standard full-image 
features

• 39% performance 
(chance is 8%)



SVM plays “Name that dataset!”



Datasets have different goals…

• Some are object-centric (e.g. Caltech, 
ImageNet)

• Otherwise are scene-centric (e.g. LabelMe, 
SUN’09)

• What about playing “name that dataset” on 
bounding boxes?



Similar results

Performance: 61% 

(chance:  20%)



Cross-Dataset Generalization

Classifier trained on MSRC cars

MSRC

Caltech101

ImageNet

PASCAL

LabelMe

SUN
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