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Abstract. The Internet of Things (IoT) is a heterogeneous network of
constrained devices connected both to each other and to the Internet.
Since the significance of IoT has risen remarkably in recent years, a
considerable amount of research has been conducted in this area, and
especially on, new mechanisms and protocols suited to such complex
systems. Routing Procotol for Lower-Power and Lossy Networks (RPL) is
one of the well-accepted routing protocols for IoT. Even though RPL has
defined some specifications for its security, it is still vulnerable to insider
attacks. Moreover, lossy communication links and resource-constraints of
devices introduce a challenge for developing suitable security solutions
for such networks. Therefore, in this study, a new intrusion detection
system based on neural networks is proposed for detecting specific attacks
against RPL. Besides features collected from the routing layer, the effects
of link layer-based features are investigated on intrusion detection. To the
best of our knowledge, this study presents the first cross-layer intrusion
detection system in the literature.

Keywords: Internet of Things · Security · Cross-Layer Intrusion Detec-
tion · Routing Attacks · RPL · Neural Networks

1 Introduction

With the development of technology, the usage of the Internet and smart devices
together has become a part of our daily lives. Advances in smart sensors, embed-
ded devices, and wireless communication technologies have led to the emergence
of a new concept called the Internet of Things (IoT). The use of IoT has been
growing exponentially in different areas such as smart grid, medical care, and
smart home systems [25, 15]. According to the research conducted by the Sta-
tistica Research Department [1], the number of devices connected to IoT will be
over 50 billion in 2023 and 75 billion in 2025. The rapid increase in the number
of IoT devices has also accelerated research in IoT. Due to attracting attackers’
interest, security has become one of the important research areas in IoT.

Many IoT applications collect a large amount of data from various devices.
Besides the heterogeneity of these devices, most of them have constraints re-
lated to power, communication, and computation capabilities. This also brings a
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challenge for developing complex security solutions. Hence, the existing security
solutions might not be suitable for such heterogeneous and complex networks.
Therefore, new solutions should be developed, or the existing ones should be
adapted to this new environment, which is the main aim of this current study.

New protocols that are less complex and consume less power are introduced
for IoT. Routing Protocol for Low-Power and Lossy Networks (RPL) is one of
them [4] and designed to provide efficient routing paths especially for resource-
constrained devices. Although some security mechanisms are proposed for ex-
ternal attackers in RPL, it is still open to insider attacks such as rank and
version attacks, which could affect the entire network. Hence, suitable IDSs for
RPL-based IoT should be improved to detect such attacks. As it is stated above,
existing IDSs for wired/wireless networks may not be suitable for these networks.
Hence, new solutions that consider the specific characteristics of RPL should be
proposed.

In this study, a novel cross-layer intrusion detection system based on neural
networks is introduced for RPL. Features from both link layer and network layer
are employed. The following specific attacks against RPL are targeted: version
number, worst parent, and hello flood. The effects of different percentages of
attackers are also explored. The results show that the proposed IDS could detect
attacks effectively for both binary and multi-class classification. The use of link
layer-based features decreased the false positive rate further. The positive effect
of link layer features on the detection of version number attacks are also observed
in the results. The contributions of the study are summarized as follows:

• A novel neural network-based IDS both for binary and multiclass classi-
fication of the version number, worst parent, and hello flood attacks are
introduced.

• An attack dataset for RPL-based IoT networks, which covers three attack
types specific to RPL with different attacker densities, is introduced and
shared with the community1.

• To the best of the authors’ knowledge, this study is the first cross-layer
intrusion detection system for RPL-based networks that explores the effect
of features obtained from both link and routing layers on intrusion detection.

The study is organized as follows. Section 2 discusses the related studies.
Section 3 gives the details of the proposed solution. The targeted attacks and
the neural network-based approach for detecting those are explained. Section 4
gives the details of the simulation environment and discusses the experimental
results thoroughly. The last section is devoted to concluding remarks.

2 Related Work

Researchers have been exploring the development of suitable IDS for RPL.
SVELTE [26] is the first IDS proposed in the literature. It aims to detect sink-
hole and selective forwarding attacks by using a hybrid approach of signature

1 https://wise.cs.hacettepe.edu.tr/projects/rplsec/
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and anomaly-based techniques. There are also recent approaches that take the
advantage of both techniques. An approach that utilizes 6LoWPAN compression
header to detect hello flood, sinkhole, and wormhole attacks are proposed in [20].
The most discriminate features in the header are selected by using a correlation-
based feature selection algorithm. Then, machine learning algorithms are applied
and shown that the selected features (5 out of 77) outperform previous studies
[24, 26].

An anomaly-based IDS for detecting version number and hello flood attacks
is given in [29]. They used a small feature set for training a neural network-based
model. Recently, another anomaly-based IDS is proposed for detecting version
number and hello flood attacks [19]. A feature set consisting the number of
topology control messages (DIS/DIO/DAO), the number of different DODAG
versions and the UDP forward ratio are used by Kernel Density Algorithm.
Another IDS [7] is generated by using genetic algorithm on a rich feature set
and located at the root node. The experimental results show that the proposed
IDS has high accuracy and low false positive rate on detection of hello flood and
version number attacks.

A few specification-based IDSs are proposed in the literature. In [11], the
states of RPL and the transitions between these states with corresponding statis-
tics are defined, IDS rules according to them are extracted for detecting rank,
neighbor, and sinkhole attacks. The network is divided into clusters to decrease
the usage of resources. Each cluster member reports information about itself
and its neighbors to the cluster head. Each cluster head runs an IDS agent
that analyzes the reports coming from its members and generates an alarm if
a node visits a state more than a threshold in a unit period of time. Another
specification-based IDS is proposed for sybil attacks. Each node in the network
is a monitoring node that cooperates with its neighbors to detect attacks and
report them to the border router. Since the nodes in the network need to send a
message to the sink node when they detect an inconsistency, it brings extra over-
head to the network. Nodes in the network are equipped with a cryptographic
co-processor chips to build hardware support identification, store security pa-
rameters, and handle cryptography calculations. It also requires a trusted entity
for authentication.

There are also prevention and mitigation techniques against RPL attacks.
A mitigation method is proposed for version number attacks in [6]. If a version
update is coming from leaf nodes is ignored. Otherwise, if most of the neigh-
bors with better ranks agree upon the validity of the version number update,
it is accepted. Recently, a mitigation method against DIS flooding attacks is
proposed [28]. Here, thresholds for limiting the number of unnecessary trickle
timer resets are defined, and hence the number of control message transmis-
sions caused by the attack is controlled. Secure-RPL [9] is a threshold-based
detection system based on rank updates and uses hash chain authentication to
eliminate illegitimate modification of rank value. SecTrust-RPL [3] is a detection
and isolation mechanism against rank and Sybil attacks. The nodes compute the
trustworthiness of its neighbors based on direct and recommended trust metrics
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and each node chooses a parent having higher trust values for routing whereas
the nodes with lower trust values are marked as malicious. A distributed mon-
itoring strategy for detecting version number attacks and attackers is proposed
in [16]. Monitoring nodes construct a separate network and use it to periodically
forward collected information about the version number of DIO messages coming
from neighbor nodes to the root, which runs IDS.

A recent survey study [27] reviews the existing security mechanisms proposed
for RPL. More than 100 studies are reviewed and shown that there is no cross-
layer security solution. It is also emphasized that there is no effective solution
against flood attacks. Furthermore, most of the studies use a small number of
nodes in their simulation, which can be unscalable and unrealistic for a multi-hop
network. The main contribution of this study is to fill this gap in the literature
by proposing a cross-layer IDS. Link layer features besides routing layer features
are included to distinguish the natural packet losses due to using wireless links
from the packet losses caused by attacks. Moreover, the proposed system is
simulated on large networks with different settings, which are shared with the
community1. Finally, besides developing different algorithms for detecting each
attack separately, one algorithm that distinguishes all attack types is developed.

3 RPL and Target Attacks

RPL connects nodes to each other and to border router(s) by creating a destination-
oriented directed acyclic graph (DODAG). Three types of nodes can exist in a
DODAG. The first one is low power and lossy border router (LBR), which is
the root of a DODAG and a collection point for the multipoint-to-point (MP2P)
traffic. LBR can create a directed acyclic graph and provides a connection be-
tween the Internet and remaining nodes. The second type is routers, which can
generate data traffic and forward packets. They can join an existing DAG. The
last type is hosts which can only generate data traffic as end-devices. Each node
in a DODAG has an ID, a list of its neighbors, a parent node, and a rank value
that shows the position of the node itself with respect to the border router. Each
node calculates its rank according to the rank of its preferred parent by using
the objective function (OF). OF determines the route selection by using different
objectives such as ETX, latency.

RPL uses three types of routing control messages namely DAO, DIS, and
DIO. In point-to-point (P2P) and point-to-multipoint (P2MP) traffic scenarios,
the root node needs to know the path to the remaining devices. Therefore, each
node announces its routing path to the root node by sending a Destination Ad-
vertisement Object (DAO) messages. DAO propagates upward direction in the
DODAG via the parent of each node and the border router becomes aware of
the path to each node. DIS (DODAG Information Solicitation) helps new nodes
to ask for topology information before joining the network. DIO (DODAG In-
formation Object) helps to set and update the topology. DIO message is sent
by each node to inform other nodes about its rank value. RPL uses a trickle
algorithm [14] for scheduling DIO message frequency. In this algorithm, to re-
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duce the number of routing control messages, each node holds two parameters:
trickle time and DIO counter. Trickle time stands for the time interval that the
node waits before sending the next DIO message. If the parameters which cause
a topology change in the network are not modified in the incoming DIO mes-
sage, then the DIO counter will be increased and the trickle timer increases the
duration of the idle state. If there is a change in the DIO message, the node will
reset the DIO counter and minimize its trigger time.

The main focus of this study is to detect specific attacks against RPL. Three
attacks based on their potential effects on RPL are simulated: version number,
worst parent, and hello flood attack, which are given in detail below.

Version Number Attack (VNA) The change of version number is triggered
only by the root node if the global repair of DODAG is required. When the
root node changes the version number, this information is carried with DIO
messages to all nodes in the network and a new DODAG is reconstructed. VNA
results in unnecessary reconstruction of the DODAG graph and creates overhead.
This attack has been analyzed in several studies in the literature [5, 17]. In [17],
the attacker has been placed in all possible locations via a grid topology. The
experimental results show that the effect of attack increases while the attacker is
moving away from the root node since the attacker can spread the damage further
[17]. In order to help to localize the attacker, loops and rank inconsistencies can
be used because they are mainly located in the neighborhood of the attacker. In
[5], it is also shown that mobile nodes harm the network with the same impact
of far nodes from the root. In the attack scenario, a malicious node illegally
changes the version number field before it forwards received DIO message to its
neighbors. Here, in the simulations, malicious node increases version number by
one in every minute in order to disrupt the network.

Worst Parent Attack (WPA) Rank Attack aims to change the topology of
a DODAG. It is one of the most dangerous attacks against RPL. A rank value
is calculated by each node in the network and it indicates the quality of a path
between the node itself and the root node. The rank value has important roles
in RPL such as creating an optimal topology, prevention of routing loops, and
managing the overhead of routing control messages. In a rank attack scenario, the
attacker falsifies its rank information and sends a DIO message to its neighbors
which has a different rank value than its genuine. In WPA, the worst parent
(with the highest rank value) is chosen instead of the best one as specified in
RPL. As a result of this attack, a child node could find itself in a non-optimal
routing path and choose an attacker node as its parent. WPA is implemented
for the first time in [12] and the network performance under attack is analyzed
by putting the attacker in every possible location in a grid topology. It is shown
that the attack cannot be detected easily, since child nodes assume that routing
information supplied by their parents via DIO packets are genuine and, they do
not have any mechanism to verify the reliability of the parent nodes according
to the protocol specification. Here, in the simulations, the malicious node selects
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the node which has the worst rank value in its neighborhood as its parent. The
nodes who select the malicious node as a parent node might find themselves in
non-optimal paths.

Hello Flood Attack (HFA) In RPL, a node who wants to join to the network
multicasts DIS messages to its neighbors. The new node transmits DIS messages
with a fixed interval of time and waits for a reply from nodes in its transmission
range. However, RFC 6550 [4] does not specify the time interval for the trans-
mission of DIS messages, and it may vary in different RPL implementations.
When the new node receives DIO message(s) as a reply to its DIS messages, it
stops sending DIS messages and joins to the network. In P2P and P2MP traffic
scenarios, the new node also sends a DAO message to its parent in order to
inform the root node. It is shown that HFA is the most influential attack that
degrades the performance of IoT network [13]. In this attack scenario, a mali-
cious node pretends to be a new node and multicasts DIS messages periodically
to its neighbors. Hence, nodes in the neighborhood of the attacker are forced to
reset the trickle timer or to unicast DIS message to a node that has to respond
with a DIO message. This can overload RPL nodes by increasing the number
of routing control messages and hence might cause network congestion. Here, in
the simulations, malicious node multicasts DIS message to its neighbor nodes in
every 500 milliseconds. In the simulations, it is observed that if DIS messages
are sent more frequently, the network becomes overwhelmed by these messages
and unresponsive to legitimate requests.

4 The Proposed Intrusion Detection System

In this section, the proposed neural network-based IDS for RPL-based IoT net-
works will be given in detail. Firstly, the features used as inputs to the neural
network will be presented. For developing an effective IDS, it is important to
determine suitable features for training a machine learning system. The selected
features should have sufficient information to distinguish malicious activities
from benign ones. Furthermore, they are preferred to have non-redundant in-
formation, because too many features could negatively affect training. A recent
study [7] uses a set that covers most of the features related to the RPL control
messages and data packets in the network. In addition to this feature set, the
features related to link-layer are employed here, as listed in Table 1.

Data related features include information about data packets received by
the root node in a time interval. These features could show whether each node
effectively participates in the periodic reporting process to the root node and
hence, give indirect information about the stability of a network. Topology re-
lated features include information about routing control messages received by
the root node. These topology messages could give useful insights for detecting
different types of attacks. For example, an abrupt increase in the number of DIS
messages could be an indicator of hello flood attacks. However, this situation
should be effectively discriminated from the natural increase of DIS messages as
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Table 1. List of the Features

Feature Group Explanation Number of Features

Data -Number of data messages 7
-Max/Min/Average length of data messages
-Max/Min/Average time difference between
data messages

Topology -Number of DIO/DIS/DAO messages 16
-Max/Min of version numbers, the difference between
version numbers
-Max/Min of rank values, the difference between
rank values
-Max/Min/Average time difference between
DIO/DIS/DAO messages

Link-Layer -Number of dropped packets due to collision 4
/neighbor allocation/queueing/packeting

a result of a new node(s)’s participation in the network. Similarly, the features
collected about version number and rank value give useful information for de-
tecting version number attack and worst parent attack respectively. Link-layer
features give information about the reasons for dropped packets in this layer
such as collisions, neighbor allocation, queuing, and buffer management. These
features are collected from the root node and its one-hop neighbors. It is as-
sumed that each node periodically forwards these features to the root node. It
is shown that while most of the packets are dropped at the routing layer as a
result of version number attack, the packet drops in normal networks (under no
attack) have mainly resulted from link-layer issues [6]. Therefore, it is believed
that link-layer features could help distinguishing normal cases from malicious
activities. Hence they are employed for the first time in intrusion detection in
RPL. These features are collected periodically at the root node. The time in-
terval for data collection is chosen experimentally by comparing the detection
accuracy of the proposed system at different time intervals. The results of this
evaluation are presented in Figure 1. According to these results, the time interval
for data collection is set as 5 seconds to achieve the highest detection rate for
the proposed design.

RPL-based IoT networks are generally used for MP2P communication, there-
fore the data (such as data collected from sensor nodes) flows from leaf nodes
to the sink node. The sink node is usually responsible either for forwarding col-
lected data to other applications or analyzing the data locally. Therefore, the
root node is generally a more powerful device than other nodes in the network.
In addition, it has a better view of the network. Based on these assumptions,
a centralized IDS placed in the root node is proposed for applications based on
MP2P communication in this study. Moreover, a centralized IDS can fit better
than a distributed one to the resource-constrained structure of IoT. Here, three
attacks are implemented separately on different networks with different percent-
age of attackers (2%, 6%, 10%, 20%). Each attack is simulated on 5 network
topologies for each attacker density. Hence, in total 20 different networks are
constructed for each attack. The same simulations are also run in a larger net-
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Fig. 1. Accuracy of IDS at varying time intervals for data collection

work area in order to observe the effect of node density on intrusion detection.
Similarly, 20 networks under no-attack are run for generating benign traffic. The
details of simulations are given in Table 2.

As the number of nodes increases, RPL produces lots of routing control mes-
sages which are gathered in the root node. In order to process such a large
amount of data, a neural network-based IDS is proposed. The aim is to differen-
tiate malicious attempts from normal network behavior with the data collected
in the root node. The aim is not only to predict whether there is an attack in
the network or not, but also predict the type of RPL attack with high accu-
racy. Therefore, the problem has been explored as both binary and multiclass
classification.

The proposed neural network architecture is demonstrated in Figure 2. In
order to calculate the weights of the input set, 4 fully-connected neural net-
work layer with different output sizes is proposed. As an activation function, the
Rectified Linear Unit (ReLU) function is employed. The number of neurons for
hidden layers are set as 128, 64, 32, and 16 respectively. There are dropout layers
between each fully-connected layer with a 0.5 drop rate to prevent over-fitting.
Then, there is a fully-connected layer with a softmax function. The output size
of this layer depends on the problem type, namely binary and multi-class classi-
fication. So, it has two neurons for binary classification to represent benign and
attacked behaviour of the network, and four neurons for multi-class classifica-
tion. Before training the model, data is pre-processed by applying feature scaling
using the standard scaler function of the scikit library [23]. Other libraries used
for neural network implementation in this study are Pandas [18], Numpy [21],
and Keras [8].



A Cross-Layer Intrusion Detection System for RPL-Based Internet of Things 9

Fig. 2. The proposed neural network architecture

5 Experiments and Results

In this chapter, the simulation environment with its parameters and the perfor-
mance metrics used in the analysis of the routing attacks in the experiments are
detailed. Also, the performance of the proposed IDS solution is analyzed and
discussed in this section.

5.1 Experimental Environment

Cooja Contiki Simulator 2.7 [22] is used to simulate IoT networks. Tmote Sky [2]
nodes which are low power wireless modules and typically used in sensor networks
are used as IoT devices. The sink node is a border router that connects the
remaining nodes to the internet. It collects data from other nodes and helps them
to create DODAG. The sender node represents an IoT device that sends periodic
data messages to the sink node via its preferred parent. When the preferred node
has data packets to forward, it sends the packet to its own parent, the packet is
forwarded until it reaches the sink node. A malicious node is also a sender node,
who manipulates the network and decreases the network performance.

Most of the studies in the literature use a single malicious node in their
simulations. Moreover, they are generally simulated with a limited number of
devices [17, 28]. However, as pointed out in [10], at least 25 or 30 devices are
needed to see the multi-hop characteristics of RPL. In these studies, the simu-
lations are also usually run for up to 30 minutes at most. Considering the time
passed for the network to stabilize, this time can be limited to see the real effects
of attacks. Moreover, the experiments are always carried out on a grid topology
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to see the effects of attackers at different locations. However, more realistic sce-
narios such as the random distribution of nodes and attackers, the partitioning of
networks are not discovered in these studies. Therefore, in this study, simulation
parameters are selected by considering these critical issues and given in Table 2.
As shown in the table, two different networks (small and large) are simulated to
see the effects of node density on intrusion detection. Moreover, each attack is
carried out with different number of attackers.

Table 2. The simulation parameters

Simulation Parameters

Simulation run time 60 min

Number of nodes 50

Sink node 1

Radio Medium Unit Disc Graph Medium: Distance Loss

Transmission range 50m

Interference range 100m

Seed Type Random Seed

Positioning Random Positioning

Simulation Area 125x125m (small), 250x250m (large)

MAC Protocol IEEE 802.15.4

Objective Function MRHOF

Traffic Type UDP

Traffic Rate each node sends 1 packet every 60 seconds

5.2 Experimental Results

The model for binary classification is trained using two different schemes: 10-
fold cross-validation and 60% percentage split. While the percentage split scheme
acquires 96.88% DR and 0.13% FPR, the other scheme has 97.11% DR and 0.34%
FPR. Therefore, the percentage method is used in subsequent evaluations. The
experimental results for each attack type are given in Table 3. It shows that the
proposed IDS could detect each attack effectively. Hello flood becomes the easiest
attack type to detect even when it is carried out by a few attackers. In general,
when the number of attackers increases, their effects on the network become more
observable. Since WPA does not become effective until a considerable amount
of attackers (10%) participate into the network, these cases were not considered
in training/testing. In the large network, the detection rate of WPA is dropped.
It is observed that small network is obviously affected by this attack and change
parents more frequently. On the other hand, due to low node density in the large
network, the clear effects of this attack on the network are less observed. This
would cause a decrease in the detection rate.

To see the capability of the proposed method on detection of attacks on
networks with different number of attackers, the model is trained only by using
networks under high percentage of attackers (10%-20% for VNA, HFA, and 20%
for WPA), then tested on networks under low percentage of attackers (2%-6% for
VNA, HFA, and 10% for WPA). The results show that the IDS can still detect
attacks with high detection rates (VNA: 88.93% WPA: 86.90%, HFA: 99.87%).
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Table 3. The performance of IDS-binary classification

Attack Type Node Density Small Network Large Network
Detection Rate Detection Rate

2% Attacker 86.66% 93.99%
Version Number Attack (VNA) 6% Attacker 92.99% 92.33%

10% Attacker 98.58% 94.75%
20% Attacker 94.83% 90.99%

Entire Dataset 93.20% 92.96%

Worst Parent Attack (WPA) 10% Attacker 96.91% 76.56%
20% Attacker 99.42% 95.75%

Entire Dataset 98.17% 86.16%

2% Attacker 99.83% 99.67%
Hello Flood Attack (HFA) 6% Attacker 100% 100%

10% Attacker 100% 100%
20% Attacker 100% 100%

Entire Dataset 99.96% 99.92%

To see the effects of routing layer and link layer features, two models are
trained with different groups of features and compared in Table 4. Link layer
features have caused a decrease in false positive rate since they help to discrim-
inate normal cases from attack case in case of collisions in the link layer. These
features have also slightly increased the detection rate of version number attacks
since this attack is the main cause of packet drops at the routing layer [6].

Table 4. The effects of link layer features

Attack Type Routing Layer Features Routing and Link Layer Features
DR FPR DR FPR

Version Number Attack 91.52% - 93.20% -

Worst Parent Attack 99.08% - 98.17% -

Hello Flood Attack 100% - 99.96% -

Entire Dataset 97.06% 0.61% 96.88% 0.13%

Finally, a model is trained for detecting all types of attacks and labeling
them. The model has also a high detection rate (97.52%). As shown in the
confusion matrix below, in some cases, VNA is confused with attack-free traffic.
It is observed that this attack needs some time to affect the network. Hence, at
this initial state of the attack, it cannot be distinguished from benign traffic.

Table 5. The performance of IDS-multiclass classification

True Label\Predicted as NA VNA WPA HFA

No Attack (NA) 99.7% 0% 0.3% 0%

Version Number Attack (VNA) 6.94% 92.42% 0.48% 0.17%

Worst Parent Attack (WPA) 1.42% 0.42% 97.71% 0.46%

Hello Flood Attack (HFA) 0.04% 0.02% 0.04% 99.9%
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6 Conclusion

In this study, a novel neural network-based cross-layer intrusion detection system
for RPL-based IoT networks is introduced. Both binary and multiclass classifi-
cation for the following RPL-specific attacks are covered: version number, worst
parent, and hello flood attacks. To the best of the authors’ knowledge, the pro-
posed IDS is the first cross-layer intrusion detection system in RPL that explores
the effect of features obtained from link-layer on intrusion detection. The exper-
imental results show that the proposed IDS detects each attack type with a high
detection rate and an even lower false positive rate using the link-layer features.
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