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Abstract The design of adaptive, scalable, and low cost routing protocols
presents one of the most challenging research problems in mobile ad hoc net-
works (MANETs). Many routing protocols for MANETs have been proposed
in the literature, which are based mainly on selecting the shortest path between
communication endpoints. In this paper, a new evolution-based routing metric
called EVO is proposed. This metric is generated automatically by means of
genetic programming. In the evolution process of this metric, mobility- and
traffic-related features are employed. In this study, the metric is applied to
the Ad hoc On-Demand Distance Vector (AODV) protocol, one of the most
popular on-demand routing algorithms for MANETs. The modified version of
AODV, called EVO-AODV, ranks and selects routes according to the evolved
multi-featured metric between communication endpoints. The performance of
the proposed metric has been tested on networks with varying mobility and
traffic patterns. The metric is also compared with AODV and two recently pro-
posed routing metrics, the hop change metric (HOC) [63] and encounter-based
routing metric (PER) [54]. The extensive simulation results demonstrate that
the proposed approach improves the packet delivery ratio significantly and
also decreases the packet drop rate, routing overhead, and end-to-end delay,
especially on networks under medium traffic.
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1 Introduction

Owing to their minimal dependence on a permanent infrastructure, mobile ad
hoc networks (MANETs) can be used in a wide spectrum of applications from
strategic and disaster recovery operations to virtual conferences. They combine
wireless communication with a high degree of node mobility. In these dynamic
networks, nodes that are within each other’s transmission range, called neigh-
bors, can communicate directly. Otherwise, they rely on intermediate nodes
to relay messages. Routing protocols in such dynamic networks are employed
to build and update multi-hop routes for packet delivery.

Message delivery in such dynamic, infrastructure-less networks is one of the
most challenging research problems. In this context, the key is to find a route
that minimizes energy consumption and time delay while maximizing delivery
performance; this means that an appropriate routing algorithm is required. In
general, routing protocols proposed for MANETs are divided into three main
categories: proactive, reactive, and hybrid. In proactive routing protocols (e.g.,
destination-sequenced distance vector (DSDV) [42] and optimized link state
routing (OLSR) [27]), each node maintains routes to all other nodes in the
network at all times. This results in a high overhead because of the large num-
ber of periodic control messages required to maintain an up-to-date routing
table. However, in reactive algorithms (e.g., ad hoc on-demand distance vector
(AODV) [43] and dynamic source routing (DSR) [27]), the routing process is
triggered by a source node when a route is needed, which can cause a delay
before the packet transmission between endpoints start. In general, reactive
algorithms are more scalable because of their ability to reduce the routing
overhead [6]. Hybrid algorithms (e.g., the zone routing protocol (ZRP) [21]),
as the name suggests, combine the best of the proactive and reactive protocols.

In MANETs, there can be multiple routes between two endpoints. Most
of the approaches proposed thus far have regarded the routing problem in
MANETs as the shortest path problem and considered a single metric, mostly
the hop count (HOP) [26], to represent the shortest path. However, HOP
may not lead to the best path, as it is minimized regardless of the quality
of radio links [38] and its performance is degraded sharply in very dynamic
environments. In other words, the determination of a route based on such a
single-featured metric does not take into account the mobility of the network
and the traffic. Thus, every time a link breakage occurs, the route discovery
mechanism is re-initiated, which results in additional overhead and a decrease
in the throughput. Therefore, it is better to take mobility and traffic into
consideration in such dynamic environments. In this research study, we inves-
tigate whether we could automatically find more stable and less busy routes,
which may not be necessarily the shortest paths and improve the network
performance in terms of packet delivery ratio (PDR), overhead (OVR) and
end-to-end (E2E) delay.

In this study, an evolutionary computation-based technique has been em-
ployed because of its ability to discover the complex properties of MANETs [49].
A new routing metric, called the evolution-based routing (EVO) metric, is gen-
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erated automatically and applied to AODV. The proposed method employs
genetic programming (GP) to generate a routing metric automatically based
on mobility- and traffic-related features. According to this metric, the method
then ranks and selects routes between the communication endpoints.

The EVO metric is employed in networks with varying mobility and traf-
fic patterns. The extensive simulation results demonstrate that EVO-AODV
improves the network performance considerably as compared to the state-
of-the-art protocols, including AODV [43] based on HOP, PER-AODV [54]
based on the path encounter rate metric (PER), and LA-AODV [63] based on
the hop change metric (HOC). However, clearly each metric has advantages
and disadvantages. The proposed routing protocol based on the EVO-AODV
metric produces much less routing control packets and end-to-end delay as
compared to AODV, PER-AODV and LA-AODV metrics, regardless of the
mobility level of the network. It should be noted that control packets are used
for route discovery and maintenance mechanisms and cause undesirable delays
in packet transmission. A non-parametric statistical test is also employed to
investigate whether there exists any significant difference among the experi-
mental results. The statistical results also corroborate that the EVO metric
outperforms other metrics on such networks.

The rest of the paper is organized as follows. Section 2 introduces AODV
and summarizes the improvements of AODV in the literature. Our contri-
butions are also presented in this section. Section 3 discusses the issues in
MANETs’ routing and presents the idea behind our approach. Section 4 in-
troduces the simulation environment. In subsection 4.2.1, PER-AODV using
the PER metric [54] and LA-AODV using the HOC metric [63] are also de-
scribed in detail. Section 5 provides the experimental results for EVO-AODV
and its performance comparison with AODV, PER-AODV, and LA-AODV.
In Section 6, the advantages and disadvantages of each metric are discussed.
Section 7 concludes this paper.

2 Related Work

2.1 Ad hoc On-Demand Distance Vector Routing (AODV)

AODV is one of the most popular routing protocols for MANETs. It is designed
for networks consisting of tens to thousands of mobile nodes [41]. It has also
been claimed that it can handle low to moderate mobility, as well as a variety
of data traffic levels [41]. AODV is based on two main mechanisms: route
discovery and route maintenance.

2.1.1 Route Discovery Mechanism

Route discovery is initiated when a source node wants to communicate with
another node but has no fresh information about this destination node in
its routing table. The source node S starts the route discovery mechanism
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by broadcasting route request (RREQ) packets to its neighbors. An RREQ
packet contains the following information: source address, source sequence
number, broadcast id, destination address, destination sequence number, and
hop count [43]. Since the routes frequently change in MANETs, the source
sequence number is used to ensure the freshness of the reverse route to the
source. The destination sequence number also indicates the freshness of a route
to the destination. The broadcast id is created uniquely and incremented when
a source node publishes an RREQ packet. The hop count, which is called the
HOC metric in this paper, shows the number of hops between two communi-
cation endpoints.

The nodes that receive this route request either send a route reply (RREP)
packet to the source node or forward the RREQ packet to other nodes. If an
intermediate node has a fresh valid entry about the destination in its routing
table, it sends a unicast reply to the source node; otherwise, it increases the
hop count and rebroadcasts the RREQ packet. The fresh entry means that
its sequence number is equal to or greater than that contained in the RREQ
message. If the sequence numbers are the same, the shorter route (having a
fewer number of hops) is selected. A node may receive multiple RREQs from
different neighbors. However, it processes only the first RREQ packet and
drops the others. A node records the address of the neighbor from which it
receives the first copy of the RREQ packet and establishes the route reverse
path.

2.1.2 Route Maintenance Mechanism

When a broken link is detected in the network, nodes use route error (RERR)
packets to warn other nodes to change the hop metric value to the unreachable
symbol in their routing tables. The RERR message is frequently broadcast to
the whole network. The nodes that receive an RERR message start the route
discovery process if they want to pursue communication with the unreachable
destination nodes through other paths.

The local connectivity is maintained by using one or more of the available
link or network layer mechanisms in AODV [41], such as link layer notification
or passive acknowledgement, or by using periodic hello messages at the routing
layer.

2.2 Improvements on AODV

Many studies have been conducted on developing suitable routing metrics for
MANETs. In this section, we focus mainly on outlining studies in which a met-
ric other than HOP was employed to increase the performance of MANETs.
The reader may refer to [5][58] for a detailed review of routing protocols in
MANETs.

A metric based on the per-hop round-trip time (RTT) [2] was proposed in
2004. The RTT metric is calculated by sending a probe packet from a node
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to its one-hop neighbors. The sender then renews the average RTT values
that are registered in its routing table. The aim of this particular routing
approach is to determine a path having the minimum-valued RTT. However,
the evaluation of the RTT value using periodic propagation of probe packets
may cause overhead in the network, and therefore, this metric is not very
efficient for resource-constrained MANETs.

Metrics based on the expected transmission count (ETX) also exist in
the literature. The ETX presents the throughput of transmission links. Two
factors are used to determine the value of ETX: the forward delivery ratio
(df ) and the reverse delivery ratio (dr). The former indicates the possibility
of data successfully reaching the receiver, whereas the latter indicates the
possibility of data being successfully received. The protocol selects the link
having the minimum ETX value for forwarding data packets [11]. This metric
finds routes with a higher throughput; however it does not take mobility into
account. In 2012, the expected cooperative transmission count (ECTX) [48],
a modified version of the ETX, was proposed. Simulation results showed that
the throughput of ECTX is 30% higher than that of the original ETX.

Another metric, called mobility factor (MF) [34,59], is used by some rout-
ing schemes for relatively dynamic scenarios, whereby the link stability is
considered before the packet is forwarded. The symmetric difference of the
neighbors of a node between two consecutive hello messages is taken as the
basis in the calculation of this factor. While transmitting data packets, the
MF metric helps a routing protocol select the best fixed path for transmitting
data packets, which results in showing a better performance than the original
AODV protocol [34,59]. However, each node needs to maintain a table in order
to record the current neighbor list, together with the historical neighbor list
for calculating the MF value, which may cause scalability issues.

Yang and Wang provided design guidelines for the selection of the appro-
priate combination of routing protocol and routing metric [61]. Karzakis et
al. [29] also supported the notion that the routing metric to be used depends
on the application, and proposed composite metrics. In addition to single or
composite metrics [29,53], approaches that use more than one metric exist,
which adaptively select different metrics for static networks and mobile net-
works [51,52].

Many researchers have recently addressed the MANETs’ routing problem
by adopting Artificial Intelligence (AI). There is a paucity of studies in the
literature that consider various quality of service (QoS) parameters for route
selection using AI-based approaches. Ant colony optimization (ACO), inspired
by the ability of ants to find the shortest path between their nest and a
food source, is frequently applied for solving optimal route selection problems
for both wired and wireless networks. Most ACO-based routing approaches
slightly differ in the evaluation criteria that they consider. In 2005, a hybrid
ACO-based multipath routing algorithm (AntHocNet) [13] that considers only
E2E delay and hop count for the evaluation of different routes was proposed.
AntHocNet initiates a path setup with forward ants that are generated and
broadcast by the source node s. At each node, a forward ant is either unicast
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or broadcast depending on the routing information of the node to destination
node d. Upon visiting node d, a forward ant becomes a backward ant and then
travels back to the source node by retracing the intermediate nodes. AntHoc-
Net considers the link failures by using the path repair ants, which follow one
of the other paths to the destination. Ant colony-based energy-aware routing
algorithms [25,36] optimize the number of hops, as well as the remaining bat-
tery energy for each node. Their path construction phase is similar to that
presented in AntHocNet [13]. Since energy is one of the main constraints in
ad hoc networks, there are many other optimization algorithm proposals that
take into account both length and energy consumption of routes [65][56]. Re-
cently, another bio-inspired routing algorithm based on cuckoo search, AOD-
VCS [31], is proposed and shown to be better than AntHocNet [13], even when
the number of nodes in the network increases. A detailed comparative analy-
sis on ACO-based routing protocols [64] showed that this approach is suitable
for dynamic problems such as routing in MANETs. The recent ACO-based
routing approaches mainly target to develop energy-aware, location-aware or
secure-aware solutions besides to find the optimal routes in MANETs [64].

The ACO-based approaches mentioned above consider mainly one or two
metrics and do not correlate the multiple route selection parameters. To achieve
this, a fuzzy ant colony-based algorithm (FACO) [19] was proposed in 2009.
Here, a fuzzy inference system (FIS) determines the interplays of different QoS
parameters (buffer occupancy, remaining battery power, and signal stability)
through its membership function and fuzzy rules. In FACO, every node in the
participating route calculates its fuzzy cost, which is the weighted sum of three
different QoS parameters. Forward and backward ants perform the route dis-
covery phase, as described in AntHocNet [13]. Another dynamic fuzzy-based
energy-aware routing protocol [9] was proposed in 2016. This approach deter-
mines a path depending on the “willingness” of each participatory node. Here,
the willingness is calculated using the node’s residual energy and energy drain
rate, which are also inputs to the fuzzy system. The only difference from the
aforementioned fuzzy-based protocol is that, rather than a static, it uses a dy-
namic membership function, claiming that the willingness of a node changes
over time as nodes’ energy is not static.

A similar, but evolutionary-based fuzzy route selection process [35] was
proposed in 2004. When selecting a route, different objectives are considered:
E2E delay, PDR, and the lifetime of batteries. To meet these objectives and
to produce the single fuzzy cost of a route, several metrics (remaining battery
capacity, buffer length, link stability, and the number of intermediate nodes in
the route) are employed. These metrics are the inputs of the fuzzy controller,
and the evolutionary approach is used to tune the fuzzy rule tables. The best
route is selected among the possible routes based on the fuzzy cost of each
route.

In 2003, a genetic algorithm (GA) based routing method for MANETs
(GAMAN) [4] was proposed. The network is expressed by a tree network and
the genes are expressed by tree junctions. Thereby, a chromosome represents
a route. Every gene in a chromosome has two states: active and inactive. A
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gene is called active if the junction is in the route to the destination; other-
wise, its state is inactive. Genetic operations are applied only on active genes.
GAMAN uses two QoS metrics (time delay and transmission success) to eval-
uate the routes. GA-based multicast routing algorithms for MANETs [62,40],
were proposed to find a route based on the sum of each link cost consider-
ing bandwidth and end-to-end delay constraints. In 2008, a hybrid approach
(HPSO) [8] based on particle swarm optimization (PSO) and GA was pro-
posed to improve the E2E delay. However, HPSO supports only paths with
a maximum of 10 nodes. The particles in HPSO denote different routes and
the movement of a particle is determined through the genetic operations of
GA instead of the arithmetic operations of PSO. Besides the route short-
ness, tranmission delay is also taken into account in a recent study based
on reinforcement learning [18]. In 2010, the multi-objective evolutionary al-
gorithm (MOEAQ) was proposed for solving multicast routing problem in
MANETs [24]. It employs four QoS parameters (bandwidth, delay, packet loss,
and jitter) to construct the multi-objective function. Each chromosome repre-
sents a route as in GAMAN [4]. The algorithm produces a Pareto optimal set of
non-dominated solutions, which represents different trade-offs among the four
objectives. A recent survey underlines that many applications of evolutionary
algorithms for MANETs use a multi-objective fitness function [46]. Recently,
a lightweight genetic algorithm is proposed in order to predict mobility which
could improve the MANET routing protocols [55].

Because of issues such as mobility and energy conservation, the changes in
network topology over time make the routing problem in MANETs a dynamic
optimization problem. Therefore, few dynamic evolutionary methods are pro-
posed in the literature. In 2010, an improved GA with immigrant and memory
schemes was developed to enhance the search capability in the dynamic envi-
ronment of MANETs [60]. As in MOEAQ [24], every chromosome represents a
route and the genes represent the nodes in visiting order. In GA with an immi-
grant scheme, a portion of the current individuals is replaced with randomly
generated individuals at every generation in order to maintain a diverse popu-
lation as possible, which ensures that GA is adaptive to the changing topology.
GA with a memory scheme, however, stores good individuals (usually the best)
from the current generation and reuses them later when a topological change is
detected. Every stored individual is re-evaluated at every generation in order
to detect any environmental change that occurs. The inclusion of the mem-
ory scheme enables the GA to adapt to a new environment more directly than
when an immigrant scheme is used. However, the re-evaluation of the fitness of
the individuals at every generation leads to an additional computational load.
In 2016, a very similar approach [28] was proposed to target Dynamic Load-
Balanced Clustering Problem (DLBCP) in MANETs. Recently, another hybrid
Multi-population Memetic Algorithm (MMA) [57] was proposed for the opti-
mization of dynamic shortest path routing (DSPR) problem in MANETs. The
idea behind MMA is that the population is divided into the sub-populations
so that each searches different area of the dynamic space. All best solutions
found at every iteration from sub-populations are stored then released back to
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be merged with population to effectively deal with the dynamic optimization
problem.

2.3 Our Contributions

Many studies on improving routing protocols for MANETs have been pub-
lished in the literature, as summarized above. However, we present a number
of highlights that differentiate EVO-AODV from other studies in the litera-
ture. Our contributions can be summarized as follows:

– In this study, we explore the use of GP for generating a routing metric auto-
matically and introduce a new metric (EVO), which characterizes changes
in the network. To the best of our knowledge, this is the first use of the
GP approach for generating a routing metric automatically. Other evolu-
tionary computation- or AI-based approaches exist; however, they either
in general apply online learning to find optimal paths dynamically, which
is not suitable for such resource-constrained networks, or they do not take
route stability into account. Furthermore, by generating routing metric
automatically, the proposed approach differs from other routing protocols
based on link stability [37]. While a chromosome represents a route in other
evolutionary computation-based approaches, in our approach it represents
a routing metric instead. Our approach is different in that it generates a
routing metric offline and makes only small modifications to the routing
protocol.

– The improved version of AODV, called EVO-AODV, is introduced and,
simulated on networks with varying mobility and traffic patterns. While
mobility-aware approaches presented in the literature are based on static
scenarios [54] or the environments that fit particular scenarios, we here
present an extensive analysis of each routing metric on 900 networks (50
networks for each mobility and traffic pattern). Six different mobility levels
and three different traffic levels are considered in the evaluation.

– The proposed approach is compared with other metrics presented in the
literature. In addition to the well-known HOP metric, the evolved metric
is in particular compared with the PER metric, which outperforms many
metrics proposed in the literature (HOP, ETX [11], MF [59,34]), and the
HOC metric, which is the most recently proposed metric to the best of our
knowledge. The comprehensive comparison shows that the EVO metric
represents the network characteristics considerably better than other met-
rics, HOP [43], PER [54], and HOC [63], and builds more stable routes on
networks having medium traffic. To the best of our knowledge, ours is the
most comprehensive and up-to-date comparison of routing metrics, since
the study that the following routing metrics were compared: hop count,
expected transmission count, round trip time, and packet pair delay [14].
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3 EVO-AODV: AODV using Evolution-based Routing Metric

In this study, our objective is to improve AODV by selecting more stable and
less busy routes in the route discovery mechanism. In standard AODV [43], the
path along which an RREP packet first arrives at the source node is selected
as the shortest path. In general, this path has fewer hops than other candidate
paths. From this viewpoint, it can be deduced that AODV minimizes only one
parameter, i.e., the hop count. Because AODV does not consider the mobility
of a path, this method may not always be effective, in particular on highly
mobile networks. The route with the minimum number of hops can be very
mobile, and hence, a new route must be discovered because of link breakages
on this route. However, a route discovery process consumes network resources
and delays the arrival time of data packets. Therefore, features representing
the mobility can help improve the routing protocol’s performance, as in this
study. While some of these mobility-related features, such as changes in the
number of neighbors, give information about mobility directly, others, such as
changes in the routing table, represent mobility indirectly [50]. In this study,
we employ both mobility-related features.

The load on nodes can also affect the performance of the routing proto-
col. The density of traffic is also not taken into consideration in the original
AODV. If a route with a high load is selected, the data packets can be dropped
because of overload and then they need to be resent. This situation also neg-
atively affects the throughput and increases overhead and delay. In order to
represent data traffic in the network, data packet-related features, such as
forwarded/received packets per unit time, are also included in this study.

The main hypothesis in this study is that no one particular feature of
MANETs (such as hop count) is a sufficiently good measure of a path’s qual-
ity in such dynamic networks. Furthermore, it is not easy to manually deter-
mine a metric that represents the complex properties of MANETs and the
performance of such a metric cannot be good. It is believed that GP is a good
candidate means of automatically finding a metric representing the network
characteristics [49], and we employed it in this study.

3.1 Evolution-based Routing Metric (EVO)

3.1.1 Genetic Programming (GP)

GP, inspired by natural evolution, is one of the most widely employed evolu-
tionary computation techniques. GP was first proposed by Cramer [10] and,
later further developed by Koza [32].

The general steps of generational GP algorithm are given in Algorithm 1.
First, a population of individuals, which are candidate solutions for the tar-
get problem, is initialized. Each solution in GP is represented as a tree. The
leaf nodes of a GP tree are called terminals and the intermediate nodes and
root are called non-terminals or functions. The first population is in general
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randomly initialized. The individuals can be computer programs, formulas, or
the representative solutions of the problem. Each individual is evaluated by
a fitness function, which shows the extent to which the individual solves or
comes close to solving the problem.

Two main generic operators are applied to nodes: crossover and mutation.
One or two individuals, depending on the type of operator, are selected as the
parent [44]. The better the fitness value of an individual, the more likely it is to
be selected as a parent. After two parents have been selected, subtrees are de-
termined by selecting a crossover point, which is a node. Finally, two offspring
are created by replacing the subtrees of the parents. In the mutation operator,
a mutation point in a parent tree is randomly selected and the subtree already
rooted there is substituted by a new, randomly generated subtree. The fitness
of the newly generated individual is then evaluated. Generation-by-generation,
the population is transformed into a new, hopefully better, population of indi-
viduals by using genetic operators. New populations are generated iteratively
until the termination condition is satisfied. The termination condition can be
based on the criterion that the algorithm has run for the maximum number of
generations or it can also be based on the attainment of a solution of sufficient
quality.

Initialize population;
repeat

Evaluate the fitness of each individual;
Rank the population according to fitness values;
Apply generic operators (crossover, mutation etc.) and reproduce new

population;

until termination criterion is satisfied;
return best-of-run individual
Algorithm 1: General steps of generational genetic programming

3.1.2 Evolution of Routing Metric

In this study, we aim to evolve a routing metric through GP, as shown in Fig. 3.
Therefore, each individual provides a mathematical expression that represents
a routing metric. An individual is represented by a tree in GP. Hence, the
routing metric is an expression that is extracted from a GP tree by in-order
tree traversal. The grammar definition of the GP trees is given in Fig. 1.
According to this grammar, a GP tree is built of functions and features. The
basic mathematical functions are used as non-terminals, as shown in Table 1.
The terminals are features giving information about nodes and the network.

A simple individual (GP tree) is given in Fig. 2. The routing metric corre-
sponding to this tree is given in Eq. 1. While dropped data, neighbors and
repaired routes are some features collected by nodes in the network, the
mathematical functions +, -, sin, cos, and sqrt at the intermediate nodes
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(1) <expr>::= (<expr><op><expr>)

| <pre-op>(<expr>)

| <var>

(2) <op>::= + | - | * | /

(3) <pre-op>::= sqrt | abs | ceil

| floor | exp | ln

| log | cos | sin

(4) <var>::= Features in Appx. A

Fig. 1: The grammar definition of the GP trees

sin

+

cos -

dropped_data
sqrt

repaired_routes

neighbors

Fig. 2: An example GP tree representing a routing metric candidate

represent the functions considered for route evaluation. As explained previ-
ously, both traffic- and mobility-related features are taken into consideration
for route evaluation. The full list of features is given in Table 9 in Appendix
A. The feature selection is an important part of any machine learning sys-
tem. Here, we try to extract all related features that could give information
about the quality of a route in terms of mobility and traffic, and allow GP
to select the most representative ones. The features are collected periodically
by each node throughout the simulation. While some of the features such as
features related to data packets are obtained by parsing the output log of the
simulator, some functions have been added to the ns-2 simulator to collect
other features such as features about neighborhood, features obtained from
the routing tables of nodes.

metric = sin(cos(dropped data) + (
√

(neighbors)− repaired routes)) (1)

During the application of GP, the routing metric of each and every candi-
date individual is distributed to each and every node of the network to evaluate
paths according to EVO-AODV, which is introduced in the subsequent section.
The success of GP strongly depends on the selection of the fitness function
that is used to determine how well an individual represents a solution for the
problem of interest. In this study, PDR is used for the fitness evaluation of
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individuals. In a network, the routes are built according to the candidate met-
ric (a GP individual), then data packets are sent through these routes, and
finally the PDR value is computed. Instead of on a single network, each GP
tree is evaluated on 10 simulated networks, so that the EVO metric performs
a robust selection. The positive effect of simulating 10 networks instead of one
for evaluating the fitness function was also observed empirically. The number
of networks simulated could be increased in the experiments; however, there
is a trade-off between the performance of the evolved metric and the running
time of the GP. Hence, the fitness value is calculated as the average PDR value
of 10 networks.

Network topologies, traffic and mobility patterns of these 10 networks are
created randomly at the beginning of the training. In each GP run, the same
networks are used for evaluating the evolved metrics. However, these networks
need to be re-run for each individual, since the evolved metrics could change
the routes that the routing algorithm selects. The same situation occurs for
the networks used in the testing, hence static datasets are not used neither in
training nor in testing.

In the experiments, the elite part of individuals are preserved. The GP al-
gorithm is run 10 times and the best individual among these runs is selected as
the routing metric. The GP parameters are listed in Table 1. The parameters
not listed here are the default parameters of Java-based evolutionary compu-
tation toolkit, called ECJ [15]. The parameters of the simulated networks are
given in Table 2, which will be explained shortly.

Table 1: Genetic programming parameters

Parameters Value

Functions
+, -, *, /, sqrt, abs, ceil, floor
exp, ln, log, cos, sin

Terminals features in the Appendix A
Population Size 40
Generations 50
Crossover Probability 0.9
Mutation Probability 0.1
Selection Strategy Tournament selection (Tournament size: 7)
Number of Elite Individuals 3

3.2 EVO-AODV

3.2.1 Route Discovery Mechanism

In order to evaluate each individual, instead of AODV, the EVO-AODV rout-
ing protocol is employed on the simulated networks in the training. As a result
of running the GP algorithm 10 times, the metric given in Eq. 2 is obtained.
Hence, EVO-AODV employs the evolved metric in order to select a more
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Fig. 3: Evolution of a routing metric

stable/less active route between two communication endpoints. It is a replace-
ment for the HOP metric. After the metric is determined by GP, the nodes
periodically re-evaluate the value of the predetermined function. Each node
re-evaluates EVO value every 15 s, which is determined experimentally.

EVO-AODV follows the same route discovery steps as the original AODV;
however, the route selection mechanism is modified in terms of establishing a
route among received route reply packets. In the original AODV, the source
node builds the route immediately after receiving an RREP packet, which
indicates the shortest path to the destination. In EVO-AODV, the source
node waits for other RREP packets to arrive in order to make a decision on
the route to the destination. The decision is made based on the aggregated
EVO value to the destination. Therefore, a new field is added to RREP packets
called aggregated EVO, which represents the EVO value of the route. This field
demonstrates the stability/traffic density of the intermediate nodes between
the source and the destination. This value is increased at each intermediate
node between the source and destination nodes by the node summing its own
EVO value (the output of Eq. 2). Each node calculates its own value every 15 s.
The source node in the EVO-AODV receives all the RREP packets containing
the aggregated EVO value for a certain amount of time (say t) and then selects
a route with the smallest value. We found t=2 s empirically (see Sect. 4.2.2).

To elaborate further, the proposed route discovery mechanism is illustrated
in Fig. 4. The source node S receives three RREP packets from the destination
node D. The first route is S-A-G-D, the second route is S-B-C-F-D, and the
final route is S-E-C-F-D. Each node on these routes has its own periodically
updated output of the EVO metric. Aggregated EVO is obtained at the source
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nodes by cumulatively adding each node’s EVO value on the route. In this
scenario, the source node selects a route, the aggregated EVO value of which
is the minimum, which is Route 2. Finally, the source node selects the more
stable route (S-B-C-F-D) and starts sending its data packets to node D using
this route. Please note that it is not the shortest path between the source and
the destination. If the metrics are equal, the shortest path is chosen. As in
the original AODV protocol, the intermediate nodes can also send route reply
packets in EVO-AODV.

 

S 

A G 

C
C 

B 

F 

D 

E 

0.08 0.13 

0.07 

0.05 

0.04 

0.09 

Aggregated EV O1 = 0.13+0.08 = 0.21
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Aggregated EV O3 = 0.07+0.05+0.09=0.21

Fig. 4: Route selection in EVO-AODV

3.2.2 Route Maintenance Mechanism

EVO-AODV does not modify the route maintenance mechanism. The local
connectivity can be provided at the link layer or at the network layer. When a
link breakage is detected by the mechanism of choice, RERR packets are sent
as in the original AODV.

4 Experimental Settings

4.1 Network Simulation

The performance of the proposed EVO-AODV depends on the generated EVO
metric. The evolution process of the EVO metric, which is the training phase
of the study, is explained in Sect. 3.1.2. This process begins with a set of ran-
domly generated individuals. The routing metric of each and every candidate
individual is distributed to each and every node of the network to evaluate
the paths. Then, the fitness of each individual, each candidate routing metric,
is evaluated on simulated networks. New individuals are generated by apply-
ing genetic operators to individuals selected by using tournament selection. In
this selection strategy, a few individuals (=7) are selected at random from the
population and then that with the best fitness value is selected for applying
genetic operators. This completes one generation of training, which continues
for 50 generations before the program terminates.
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EV O metric =
⌊∣∣∣ log(b|sin(frw rrep)|c)

(α×β)

∣∣∣⌋
α =

∣∣∣(⌊cos(recvb rerr − (∣∣∣√sin (frw rrep)
∣∣∣))⌋)× invroutes timeout∣∣∣

β =
(⌈

sin
(
invalidates routes
invroutes timeout

)⌉
× invalidates routes

)
(2)

GP is implemented in ECJ [15]. As mentioned previously, the training is
executed by simulating a number of networks rather than a single network. The
experimental results show that training a metric on a single network cannot
be sufficient to produce satisfactory results on the test networks. Therefore, 10
networks are randomly generated to train the metric. In this study, the net-
works are simulated by using the network simulator ns-2 [39]. The simulation
parameters of ns-2 and their values are provided in Table 2. BonnMotion [3],
a tool that creates mobility scenarios, is used for creating the movements of
nodes within the network simulation by using the random waypoint mobility
model. This model is one of the most frequently employed mobility models
in the literature. In the random waypoint mobility model, a node randomly
selects a destination node in its area and moves with constant speed toward
that node. After waiting for a specified pause time, it then selects a new desti-
nation node and a new speed, and moves with that constant speed to the new
destination [7].

In testing, each routing protocol is evaluated on 50 networks for each mo-
bility and traffic pattern. The maximum number of connections is set to 30,
60, and 90 to represent low, medium, and high traffic loads, respectively. Each
connection indicates that there exists network data traffic between two end-
points. Please note that the traffic load parameter is more realistic than the
parameters used in many simulations in the literature [9][29][51–54], since it
covers many network scenarios. As shown in the results, the traffic load is one
of the important factors that negatively affect the performance of a network.
The maximum speed of nodes is set at 20 m/sec, and the pause time between
movements ranges from 0 s to 25 s to simulate different mobility levels. Six
different mobility levels and three different traffic levels are used. In summary,
900 networks (=50×6×3) are employed for evaluating each routing metric.
Since four routing metrics (EVO, HOP, PER, and HOC) are compared in the
results, in total, 3600 (900×4) networks are run in the simulations. Please
note that the 10 networks used in the training are simulated under medium
mobility and medium traffic.

In the experiments, the performance of each metric is evaluated using three
criteria: PDR, E2E, and OVR. PDR is the ratio of packets successfully received
to the total sent, E2E is the average time taken for packets to be transmitted
across the network from source nodes to destination nodes, and OVR is the
ratio of the number of data packets to the number of routing control packets
(RREQ, RREP, and RERR) received.
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Table 2: Parameters of simulated networks

Parameter Explanation Value

Network dimensions size of the network 1000 m * 1000 m
Number of Nodes total number of nodes 100
Network Traffic traffic type & number of connections CBR, 30/60/90 conn.
Nodes’ Speed min and max speed of nodes 0-20 m/s
Nodes’ Pause time (in training) waiting times of nodes between movements 10 ms
Nodes’ Pause time (in testing) waiting times of nodes between movements 0, 5, 10, 15, 20, 25 ms
Transmission Range maximum distance a node can send its data to 250 m
Simulation Time total time of the simulation 500 s
Mobility Model model defining the movements of nodes Random waypoint
Radio Propagation Model characterization of radio wave propagation Two-ray ground model
Local Link Connectivity method detecting link breakages AODV, hello messages

4.2 Comparison

4.2.1 Routing Protocols

The AODV, LA-AODV and PER-AODV routing protocols are employed here
as protocols with which to compare our approach. We especially compare our
approach with LA-AODV [63], because it chooses more stable routes than
AODV, and with PER-AODV [54] because of its superior performance to
other metrics (HOP, ETX [11], and MF [59,34]) in MANETs [54]. Therefore,
to provide a better understanding we explain PER-AODV and LA-AODV in
this section.

PER-AODV: Recently, the PER metric was introduced to improve AODV [54].
This metric has been proven to represent the mobility and/or density of the
networks better, and hence helps select routes having a longer duration. In
this approach, each node has an average encounter rate (AER) value, which
is calculated as

AERA =
|EA|
T

(3)

where EA is the set of new encounters experienced by the node A per time
unit T. AER is shown to increase linearly with node density [30]. An encounter
is counted only once in its life time, which is set to 15 s in the simulations.
The PER is defined for a route or a path in the form of a sum of the square
root of the AER values of all nodes along that route. PER is calculated as

PER =
∑m

i=1
AER2

i (4)

where m indicates the number of nodes along the path, including the source
and destination nodes. Among the available paths to the destination, the path
with the lowest PER value is selected by the routing protocol. The simulation
shows a better routing performance under the PER metric than under the
the traditional HOP metric in various mobility and density scenarios [54]. The
improvement provided by PER is considerably greater on networks under high
mobility and high density because of the decrement of AODV’s performance
in such scenarios. Moreover, the advantages from the viewpoint of resource us-
age and computational complexity over well-known metrics such as HOP [43],
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MF [59,34], and ETX [11] are emphasized. The authors improved their ap-
proach by adaptively selecting the ETX metric for static networks or the PER
metric for mobile networks [51].

LA-AODV (lightweight adaptive AODV) : LA-AODV utilizes a new
metric called the hop change metric (HOC), which represents the changes in
the number of hops in the routing table. The calculation of the HOC met-
ric is given in Eq. 5. The equation represents the average changes in the hop
count of the routing entries in a routing table. Each node calculates the met-
ric independently of other nodes. Here, Hop CountiNew represents the number
of hops between the current node and node i at the most recent update.
Hop CountiPrevious shows the number of hops between the current node and
node i obtained at the previous update. tNewUpdate and tPreviousUpdate are
the last and the previous update period times, respectively. Number of nodes
represents the number of nodes in the routing table of the node calculating
the hop change metric. Each node on reactive routing protocols can obtain
different hop change values, because they have different routing tables con-
structed based on their traffic patterns. It is claimed to be a simple and low
cost approach in terms of computation and communication [63].

hop change metric =

∑i=Number of nodes
i=0

|Hop Countinew−Hop Count
i
previous|

tNew Update−tPrevious Update
Number of Nodes

(5)

In AODV, the route reply message that arrives first at the source node
indicates the shortest path to the destination. In LA-AODV, the source node
waits for additional route reply packets to arrive in order to make a decision
on the route to the destination. The decision is based on the total hop change
value of the route to the destination; the route with the smallest HOC value
is selected. LA-AODV waits for only the two route reply packets that arrived
first from the destination because of the empirical results, and selects the most
stable one according to the metric. The simulation results show that LA-AODV
increases the throughput with less OVR and E2E delay than AODV.

4.2.2 Parameter Settings

We conducted a number of pre-experiments in an attempt to obtain the opti-
mal values of some parameters of EVO-AODV and the competitor protocols.
As mentioned previously, EVO-AODV differs from AODV in the route selec-
tion phase and waits for a period of time for other RREP packets to arrive.
Here, the optimal waiting period of time for RREP packets was investigated
empirically and 10 different networks under medium mobility and medium traf-
fic were simulated. The average PDR, E2E, and OVR values of these networks
were evaluated. Based on these results, the waiting time for RREP packets
was set to 2 s. In the original LA-AODV protocol [63], the source node waits
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for only two RREP packets to arrive. The same setting is employed in the
simulations of the current study.

All the nodes in EVO-AODV and LA-AODV update their routing tables
by calculating their own outputs of metrics (EVO and HOC, respectively)
periodically. For LA-AODV, a period of 10 s was empirically found to yield
the best performance [63]. Therefore, each node updated its HOC value every
10 s also in this study. As for EVO-AODV, we explored the metric update
period by simulating EVO-AODV on 10 randomly generated networks under
medium mobility and medium traffic. Based on this simulation, the update
period of EVO value was set to 15 s. Contrary to other protocols, PER-AODV
possesses a distinctive parameter called encounter’s lifetime. Within this life-
time, an encounter is counted only once, even if it leaves and returns to one
hop neighborhood more than once. To ensure fairness, this parameter was set
to 15 s, as in the original study [54].

5 Experimental Results

Our main hypothesis is that GP allows a routing metric to be created that
discovers the complex properties of MANETs. Since the EVO metric does
not cover only one parameter (e.g., shortest path or maximum flow [20]), but
instead takes several parameters into consideration when constructing a route,
such as stability and density, the extent to which the selected routes are close
to the optimal routes cannot be measured as in [20]. Therefore, we employ an
experimental comparison to evaluate the performance of the EVO metric, as
was usually done for other metrics in the literature.

In order to verify the effectiveness of our contribution, we compared the
proposed EVO-AODV protocol with recently proposed and well-known rout-
ing protocols, which are outlined in Table 3. In the experiments, EVO-AODV,
as well as its competitors, are simulated using different mobility (which cor-
responds to pause time) and traffic levels. The effectiveness of the generated
metric for each mobility and traffic level is measured over 50 networks, each
of which has different topologies. The comparative results, which are the av-
erages taken from 50 different network runs, are illustrated in both Figures 5
and 6 and Tables 4, 5, and 6. These results show that the traffic level is the
main factor that affects the results. Although they perform relatively better
as the nodes in the network become more stable, the change in the mobility
level does not affect the performances of the protocols as acutely as the change
in the data traffic level. For this reason, we show the comparative results and
interpret them under three different traffic levels: low, medium, and high.

5.1 Low Traffic

Figure 5 shows the performance of the protocols under low traffic (which corre-
sponds to 30 connections) in boxplots. For such a traffic pattern, the average
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Table 3: Outline of the routing metrics

Metric Equation Represent Routing Protocol

HOP number of traversed nodes length of a route AODV
PER Eq. 3, 4 stability/density of a route PER-AODV
HOC Eq. 5 stability of a route LA-AODV
EVO Eq. 2 (automatically generated) stability/density of a route EVO-AODV

performance of each routing protocols on networks under different mobility
patterns is presented in Table 4. It is clearly seen that the proposed met-
rics do not improve the performance of AODV on networks having low traffic
density; they can even perform more poorly in terms of some performance
metrics. For instance, EVO-AODV requires considerably more time for trans-
mitting a data packet under a low traffic level because it waits for additional
RREP packets to arrive at the source node. Likewise, an excessive delay is
observed in LA-AODV, which also waits for one additional RREP packet to
arrive before sending data packets. Not surprisingly, AODV and PER-AODV
transmit data packets with minimum latency and no significant difference is
observed. In terms of PDR and OVR; AODV, PER-AODV, and EVO-AODV
show very similar performances. However, LA-AODV performs very poorly in
this setting.

Table 4: Average performance of routing protocols on networks with varying
mobility levels under low traffic

Pause
Time AODV PER-AODV LA-AODV EVO-AODV

P
D
R

0 93.40 93.35 91.67 93.42
5 93.59 93.58 91.86 93.66
10 93.62 93.61 91.90 93.61
15 93.51 93.56 91.80 93.49
20 93.39 93.47 91.68 93.36
25 93.49 93.44 91.78 93.48

E
2
E

0 74.83 74.86 78.40 97.14
5 73.03 70.60 77.85 90.92
10 71.62 68.96 78.26 91.31
15 74.12 69.69 77.73 97.10
20 73.56 73.03 80.78 93.04
25 73.11 71.74 78.87 92.94

O
V
R

0 8.88 8.85 9.74 8.75
5 8.46 8.49 9.46 8.33
10 8.53 8.56 9.47 8.51
15 8.65 8.60 9.64 8.61
20 8.68 8.55 9.71 8.64
25 8.7 8.69 9.75 8.69

5.2 Medium Traffic

Whereas there is no significant difference among the performance of routing
protocols on networks under low traffic in terms of PDR (except for the poor
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Fig. 5: Performance of routing protocols on networks under low traffic

performance of LA-AODV), the performance of EVO-AODV is overwhelm-
ingly better than that of its competitors in terms of PDR and OVR on net-
works under medium data traffic (which corresponds to 60 connections), as
shown in Figure 6 and Table 5. Regardless of the mobility level of the net-
works, it shows the best performance. The metric is also evolved using the
networks under the same traffic conditions in the training. A clear perfor-
mance comparison of routing metrics on the network under medium traffic is
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given in Fig. 6. Please note that the mobility is not the only factor that affects
the results; there can be other factors, such as network topology, traffic, and
mobility patterns. This also supports our hypothesis that the solution yielded
by AI-based approaches are more suitable for such complex systems than those
developed by humans.

Table 5: Average performance of routing protocols on networks with varying
mobility levels under medium traffic

Pause
Time AODV PER-AODV LA-AODV EVO-AODV

P
D
R

0 72.27 75.31 75.10 77.76
5 74.59 74.92 76.79 78.91
10 79.85 81.87 79.45 83.24
15 75.81 77.70 78.00 81.03
20 74.19 76.68 77.55 77.89
25 77.32 78.41 78.09 81.28

E
2
E

0 953.86 823.00 707.53 713.53
5 811.40 826.09 645.27 674.11
10 603.14 521.78 542.01 502.55
15 803.11 720.41 586.13 577.58
20 875.43 744.99 591.83 721.25
25 718.36 651.01 568.06 548.96

O
V
R

0 17.49 16.38 16.72 15.81
5 16.73 16.54 16.17 15.13
10 14.67 13.95 15.04 13.58
15 16.38 15.68 15.65 14.54
20 16.67 15.83 15.69 15.39
25 15.95 15.51 15.75 14.48

From the viewpoint of E2E, although EVO-AODV and LA-AODV wait
for additional RREP packets to arrive for a short time, they cause less de-
lay than PER-AODV and the original AODV protocol, as shown in Table 5.
We can state that not only the mechanism of the routing protocol but also
the stability/density of the selected routes affect the E2E delay directly. The
results also show that while LA-AODV waits for two RREP packets to ar-
rive, EVO-AODV builds better routes waiting for additional RREP packets
to arrive.

5.3 High Traffic

The routing protocols show similar performances on networks under high traf-
fic, as illustrated in Table 6. Although AODV may not be the best choice for
high traffic, it is presented here for the sake of completeness. Most routing
protocols achieve an approximately 40% PDR. EVO-AODV slightly improves
the PDR and OVR.
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Fig. 6: Performance of routing protocols on networks under medium traffic

5.4 Statistical Tests

In order to clarify the experimental results and to further investigate any
significant difference between EVO-AODV and the competitor protocols, we
have employed statistical tests to determine the impact of our proposed EVO-
AODV protocol over the competitor protocols. Statistical tests are categorized
depending on the data to be examined: Parametric and non-parametric tests.
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Table 6: Average performance of routing protocols on networks with varying
mobility levels under high traffic

Pause
Time AODV PER-AODV LA-AODV EVO-AODV

P
D
R

0 38.66 38.9 38.14 39.17
5 38.33 38.67 38.13 39.24
10 38.86 39.34 38.67 39.66
15 39.14 39.61 39.08 40.22
20 38.34 38.59 38.06 39.21
25 39.69 40.12 39.6 40.81

E
2
E

0 2070.17 2089.52 1932.66 2073.54
5 2118.77 2106.07 1916.20 2069.96
10 2005.00 2050.33 1882.63 2058.01
15 2038.13 2067.83 1911.93 2026.28
20 2045.74 2056.23 1871.64 2024.34
25 1986.27 2027.23 1861.22 1986.32

O
V
R

0 19.88 19.69 19.74 19.71
5 20.05 19.88 19.82 19.76
10 19.87 19.61 19.60 19.69
15 19.98 19.68 19.67 19.62
20 19.99 19.80 19.83 19.74
25 20.03 19.79 19.72 19.67

Parametric test is used when data variables are continuous and come from a
normal distribution. However, non-parametric test (also called as distribution-
free test) is used when data variables are categorical, nominal or do not have
normal distribution.

As the performance of the EVO-AODV protocol as well as its competitor
protocols fit left-skewed distribution rather than normal distribution, we have
employed the following three well-known non-parametric statistical tests for
comparison: Friedman [17], Friedman Aligned [22], and Quade [45]. These tests
could detect significant differences between two or more algorithms (protocols
in this study) by analyzing the median values. Null hypothesis (H 0) for these
tests states the equality of medians between data populations. Therefore, the
rejection of H 0 is required to prove a significant difference between protocols.
If there is a significant difference between protocols, the post-hoc procedures
could be applied in order to characterize the difference at the protocol basis.

The CONTROLTEST package, a package developed to compute the rank-
ings [12], is used for the application of Friedman, Friedman Aligned, and Quade
tests as well as for the application of post-hoc procedures. These statistical
procedures are applied on networks under medium mobility and medium traf-
fic, which is the setting employed in the training.

Table 7 presents the Friedman, Friedman Aligned, and Quade test results
for the PDR. Lower ranks indicate a protocol with a better performance. The
last two rows present statistic and p-values of each test. The p-values, which
are computed through the statistics of each test, reject H 0 with a significance
level α = 0.05 and thus strongly suggest the existence of significant differences
between protocols. The rank values reveal that the EVO metric is the best
metric representing the network characteristics.
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Table 7: Friedman, Friedman Aligned and Quade ranks (PDR)

Protocol Friedman Friedman Aligned Quade

EVO-AODV 1.96 72.74 1.97
PER-AODV 2.30 92.26 2.31
AODV 2.62 110.16 2.78
LA-AODV 3.12 126.84 2.92

Statistic 21.91 40.95 15.31
p-value 6.80E-5 6.71E-9 1.00E-5

The adjusted p-values with different post-hoc procedures of the Friedman,
Friedman Aligned, and Quade tests are provided in Table 8. EVO-AODV is
taken as the control protocol, and thus, it is compared with others. It is re-
ported that the adjusted p-value is more suitable for multiple comparison [12].
Hence, the adjusted p-values are also evaluated and given in the table. These
results also support that there is a significant difference between EVO-AODV
and the rest of the protocols. As the Quade test takes the relative difficulties
of problems into account [12], the adjusted p-values of the the Quade test
present that EVO-AODV achieves better results on relatively tough problems
than other protocols.

Table 8: Results of post-hoc procedures over all algorithms with EVO-AODV
as control method at α=0.05

Procedure i Protocol z-value p-value pHoll [23] pRom [47] pFinn [16] pLi [33]

Friedman
1 PER-AODV 1.316 0.187 0.050 0.050 0.050 0.050
2 AODV 2.556 0.010 0.025 0.025 0.033 0.042
3 LA-AODV 4.492 7.03E-6 0.016 0.016 0.016 0.042

Aligned

Friedman

1 PER-AODV 1.686 0.091 0.050 0.050 0.050 0.050
2 AODV 3.232 0.001 0.025 0.025 0.033 0.047
3 LA-AODV 4.673 2.96E-6 0.016 0.016 0.016 0.047

Quade
1 PER-AODV 0.932 0.351 0.050 0.050 0.050 0.050
2 AODV 2.242 0.024 0.025 0.025 0.033 0.034
3 LA-AODV 2.605 0.009 0.016 0.016 0.016 0.034

To conclude, we would like to emphasize the strengths and weaknesses of
each protocol for the sake of clarity. HOP is the poorest metric among all
metrics. However, it could be used on networks under low traffic, in which sce-
narios the recently proposed metrics do not show an important improvement
on AODV. While the PER-AODV metric shows results comparable with those
of AODV on networks under low traffic, it is not suggested to use LA-AODV
and EVO-AODV for such networks. EVO-AODV causes an unnecessary delay
because of the waiting mechanism in its route discovery procedure. LA-AODV
results in a decrease in the PDR without any improvements in the E2E delay
and OVR. When the traffic density increases, the LA-AODV metric shows a
better performance, especially in terms of the E2E delay. It could be preferred
on network applications where the delivery time is the primary target. The
EVO metric shows the best performance on networks under medium traffic
and improves all the performance metrics considerably. PER-AODV presents
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a performance comparable with that of EVO-AODV, especially on networks
under medium mobility and medium traffic.

6 Discussion

In this study, we investigate the use of evolutionary computation techniques
for the generation of a routing metric that can represent the dynamic features
of mobile ad hoc networks well. Although the proposed approach outperforms
other metrics recently proposed in the literature on networks under medium
traffic, we would like to discuss the additional advantages of each metric.

First, the PER and HOC metrics do not depend on any specific routing pro-
tocols. They can both be implemented on any proactive and reactive routing
protocols. The HOC metric is already employed in a proactive routing protocol
(DSDV) and improves the PDR significantly [1]. However, our metric is spe-
cific to AODV. The metric generated by using GP consists of features specific
to AODV, as shown in Eq. 2. However, this study shows the potential of evolu-
tionary computation techniques to solve complex problems in MANETs. The
same approach could easily be applied to other routing protocols to evolve a
routing metric. The development of a routing metric by using only non-specific
features could also be explored in the future.

Moreover, in addition to the stability of routes, their sustainability in terms
of power could be taken into account in the fitness function. A variety of de-
vices can be included in MANETs, ranging from laptop computers to handheld
devices, such as PDAs and mobile phones. Since these nodes in MANETs are
generally resource-constrained, power consumption is an important objective
that should also be considered in a routing protocol design. Additional criteria
could be the trustfulness of nodes in the route. Since most of the routing proto-
cols assume that nodes are cooperative and non-malicious, this is another area
that should be investigated. Hence, a routing metric could be generated by
optimizing two or more objectives simultaneously. Multi-objective evolution-
ary computation techniques are good candidates for such problems, allowing
two or more frequently conflicting objectives to be optimized. Similarly, the
metrics such as the E2E delay and OVR could also be taken into account in
the evolution by using such techniques. While the networks under medium
traffic and medium mobility are employed in the training, networks with dif-
ferent characteristics in terms of mobility and traffic could be employed for
evaluating the fitness function. For this purpose, the number of networks used
in the training could be increased. However, it should be noted that this could
also increase the running time of the GP algorithm.

While the PER metric monitors the changes in the neighborhood, the HOC
metric considers the changes in the hop count. Both metrics are simple and
low cost in terms of computation and communication. They calculate their
values based on a single feature. While our metric relies on more than one
feature related to routing, it achieves a better performance with a negligible
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computation cost. However, all the metrics have a similar communication cost
when a new entry is added to RREP packets.

In this study, we have developed a metric automatically, which is then used
to select suitable routes for communication. Different metrics could be evolved
for different applications, since different metrics are shown to be more suit-
able for different applications [29]. Since the training phase can be conducted
off-line, and each node evaluates only the output of the same evolved metric
periodically in real life, this off-line approach is believed to be more suitable
than on-line, dynamic learning systems for such a resource-constrained envi-
ronment.

7 Conclusion

In this paper, we propose a new routing metric called EVO, which is generated
automatically using GP. The modified AODV protocol using the EVO metric,
EVO-AODV, is also introduced. The results show that the performance of
AODV is noticeably improved by using the EVO metric instead of the well-
known HOP metric. The proposed metric is also compared with the metrics
recently proposed in the literature that improve considerably on AODV. Each
metric is evaluated on 900 networks with varying mobility and traffic levels. To
the best of our knowledge, this constitutes a more comprehensive comparison
of routing metrics than those already existing in the literature. The extensive
simulation results show that the evolved metric presents the properties of such
dynamic networks well, since it takes into account mobility- and traffic-related
features in the evolution. It especially shows the best performance on networks
under medium traffic and medium mobility, which is also the setting used for
the evolution of the metric. In the future, different metrics could be generated
for different types of networks/network applications, having different settings
and performance targets.

As has been previously suggested, the routing metric that should be used
depends on the application. The results of the extensive simulation conducted
in this study provide some guidelines for the selection of a routing protocol.
While the HOP metric could be preferable for networks having low traffic,
HOC metrics could be used for applications in which the packet delivery time
is more important than the PDR. The PER and EVO metrics are the two best
metrics, showing a comparable performance on networks under medium traffic
and medium mobility. Moreover, the EVO metric improves all the performance
metrics considerably, namely the PDR, E2E delay, and OVR, on networks
under medium traffic, regardless of the mobility level.
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A Feature Set [50]

Table 9: Feature set used in the generation of EVO metric.

Features Explanation

routes No. of active routes
added neighbors No. of added neighbors
added repairedroutes No. of added routes under repair
addedroutes disc No. of added routes by route discovery mechanism
addedroutes notice No. of added routes by overhearing
avg hopcount No. of hop counts (average) of active routes
dropped data No. of data packets not forwarded by the next node
frw aodv No. of forwarded total routing protocol packets by this node
frw rrep No. of forwarded route reply packets from this node
frw rreq No. of forwarded route request packets from this node
invalidated routes No. of invalidated routes
invroutes other No. of routes invalidated for other reasons
invroutes timeout No. of routes invalidated because of expiry
neighbors No. of neighbors
recv aodv No. of received total routing protocols packets
recv rrep No. of received route replay packets destined to this node
recv rreq No. of received route request packets destined to this node
recvb rerr No. of received broadcast route error packets
recvf aodv No. of received total routing protocol packets to be forwarded
recvf rrep No. of received route replay packets to be forwarded by this node
recvf rreq No. of received route request packets to be forwarded by this node
removed neighbors No. of removed neighbors
repaired routes No. of routes under repair
send aodv No. of initiated total routing protocol packets from this node
send err No. of broadcasted route error packets from this node
send rrep No. of initiated route replay packets from this node
send rreq No. of initiated route request packets from this node
updated routes No. of updated routes
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