
“Do you want to install an update of this

application?” A rigorous analysis of updated

Android applications

Ahmet Ilhan AYSAN

Department of Computer Engineering

Hacettepe University

Ankara, Turkey

Email: aysan@hacettepe.edu.tr

Sevil SEN

Department of Computer Engineering

Hacettepe University

Ankara, Turkey

Email: ssen@cs.hacettepe.edu.tr

Abstract—Attackers have been searching for security vulner-
abilities in Android applications to exploit. One of these security
vulnerabilities is that Android applications could load codes at
runtime. This helps attackers to avoid being detected by static
analysis tools. In this study, we have done a rigorous analysis to
see how attackers employ updating techniques in order to exploit
this vulnerability, and to assess the security risks of applications
using these techniques in the markets. A comprehensive analysis
is carried out on nearly 30,000 applications collected from
three different Android markets and two malware datasets.
Both static and dynamic analysis techniques are employed to
monitor malicious activities in such applications. As a result,
we found 70 new malicious applications from Google Play. Our
work is the first study which monitors updating behaviours
of applications during their execution. This analysis allows us
to analyse suspicious applications deeply and to develop better
security solutions.

Keywords—Android, mobile malware, static analysis, dynamic
analysis, update attacks, dynamic code loading.

I. INTRODUCTION

Android architecture provides a mechanism for developers
to update their applications after their installations completed
on the device. The updating mechanism allows attackers to
load malicious payload or to change the application completely
at runtime. Therefore it helps attackers to hide their malicious
activities from the analysis carried out in the market stores. De-
tecting these types of malicious activities is one of the biggest
problems the market stores face with. Moreover, these types
of applications usually do not follow the updating policy of
the application markets. After installation, application fetches
malicious payload from servers determined by the application
developer. In April 2013, Google Play declared that “An app
downloaded from Google Play may not modify, replace or
update its own APK binary code using any method other than
Google Play’s update mechanism” [8] . However the reality is
different from its policy. Even Facebook, one of the most pop-
ular applications in Google Play, still updates itself by using its
own servers. Furthermore, Amazon[1] and SlideMe[12] stores
do not set a policy about updating applications from unknown
servers.

In this study, we analysed updated applications from three
different Android markets: Google Play [7], SlideMe [12] and

AppsApk [4]. We also investigated malwares using updating
techniques in the publicly available malware datasets, namely
Malgenome [29] and Drebin [14]. Both static and dynamic
analysis are carried out to reveal malicious applications using
updating techniques in the market stores. At first, we inves-
tigated suspicious applications by applying signature-based
analysis. Secondly, dynamic analysis techniques are performed
on each application in order to reveal malicious applications
which hide themselves from static analysis techniques by using
evasion techniques such as obfuscation, encryption, and other
similar means.

Our main contributions could be summarized as follows:

• We have done a rigorous analysis on mobile applica-
tions which use the updating techniques, upgrading,
silent installing and dynamic class loading. We anal-
ysed nearly 30,000 applications collected from three
different markets and two malware datasets.

• Our work is the first large-scale analysis (signature-
based and dynamic analysis) that uncovers malicious
applications using updating techniques. Even though
there has been a limited amount of research on
statically analysing malwares using dynamic class
loading ([26], [22], [21]), we also applied dynamic
analysis techniques in order to investigate updating
applications evading from static analysis. Our up-
to-date analysis shows the dramatic increase in the
number of applications using dynamic class loading.
Moreover, 70 new malicious applications from Google
Play not detected by VirusTotal and Google Bouncer
are discovered as a result of this analysis.

• We also investigate the mechanisms that trigger mali-
cious applications. The results show that triggering is
one of the evasive strategies effectively applied by at-
tackers. As far as we know, there is no study focusing
on triggering mechanisms to reveal applications updat-
ing themselves. The time-based triggering techniques
have largely increased the number of applications to
analyse. It also allows us to find new updated attacks
which are not revealed by the well-accepted analysis
study previously [29].

https://www.researchgate.net/publication/254463014_RiskRanker_Scalable_and_Accurate_Zero-day_Android?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/254008841_Unsafe_Exposure_Analysis_of_Mobile_In-App_Advertisements_ABSTRACT?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/269197120_Execute_This_Analyzing_Unsafe_and_Malicious_Dynamic_Code_Loading_in_Android_Applications?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/254044382_Dissecting_Android_Malware_Characterization_and_Evolution?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/254044382_Dissecting_Android_Malware_Characterization_and_Evolution?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==

 Dynamic Analysis

 Signature-based

 Analysis

 ?

Evaded Apps

 ML-based Detection

 C4.5

 NB

 RF

 SMO

Fig. 1. The conceptual schema of the analysis

The remainder of this paper is organized as follows: the updat-
ing techniques are presented in Section 2. Our methodology
and the triggering mechanisms are introduced in Section 3, the
analysis results are discussed thoroughly in Section 4 and the
related work is discussed in Section 5. Finally, we conclude
our work in Section 6.

II. ANDROID UPDATE TECHNIQUES

Most of the application stores use packet manager to
manage the installation of applications’ updated/new versions.
Application managers usually check applications whether they
need to install new package or not. Typically, Android OS
developers employ the updating techniques explained below:

Upgrading: When a new version is ready in the store, the
packet manager represents the new applications to the user
or triggers the automatic update. If the application name, the
permissions and the application signature are the same with the
previous version, the update mechanism is triggered implicitly.
Otherwise the installation process is committed explicitly for
users who might not have superuser privileges.

Silent Installing: This technique is only applicable in
rooted devices. Users need to have root privileges in order
to perform installation without any approval. Therefore, an
attacker has an opportunity to install malicious application
without user approval. In this study, this mechanism is aptly
called silent updating. An attacker uses “pm install” command
in order to start installation.

Dynamic Class Loading: Android applications are written
originally in Java and compiled into the .dex file. Android
applications have powerful flexibility that developers can load
applications (.jar and .apk files) from any server at runtime
[5]. Since dex file has limitation up to 64K reference size,
developers typically use the dynamic class loader to overcome
this limitation. Specifically, they divide the application into
several files and each file is dynamically loaded during the
execution by using the DexClassLoader class.

III. METHODOLOGY

We firstly examine the malwares in the publicly available
malware datasets, Malgenome [29] and Drebin [14]. Secondly,
we examine Android applications downloaded from three pop-
ular markets, Google Play, SlideMe and AppsApk. Signature-
based and dynamic analysis techniques are carried out on both
the applications, and the downloaded files by these applications
at runtime.

We firstly determine the applications using the Android
updating techniques defined in the previous section. Here,
only a static analysis is carried out. This initial analysis is
called signature-based analysis. Then, we carry out a dynamic

analysis on all applications in order to detect malwares evaded
from signature-based analysis. Since updating techniques could
be encrypted in the bytecode, all applications are sent to the
dynamic analysis. Our research mainly focuses on finding
malicious applications using the updating techniques as an
evasive strategy. Please note that, signature-based analysis is
only used to find out applications that have explicit signatures
for updating as given in Section 2. The most important
part of our work is the dynamic analysis. We especially
analyse the applications which avoid being identified by the
signature-based analysis, and perform malicious activities at
runtime. These evaded applications are further explored by
machine learning (ML)-based detection system in order to
reveal unknown malicious applications as shown in Figure 1.
The ML-based detection system works on dynamic features of
applications.

A. Signature-based Analysis

This initial analysis classifies applications according to
whether they are using the updating techniques or not. We
firstly disassembled applications into the .smali files using
Android apktool [2]. After the disassembling step, we dissected
applications whether they have updating features in their code
or not. This signature-based analysis brings out potentially
dangerous applications which are using upgrading, silent in-
stalling and dynamic class loading techniques. We search for
keywords related to the API calls defined according to the
characteristics of each updating technique given in Section
2. We ensured that an application including the complete
signature of any of these three updating techniques in its
code is tagged for further analysis. For instance, usage of
the intent.setDataAndType is not enough to determine the
application as suspicious and using upgrading technique. Be-
sides, it should include Intent Class and trigger the star-
tActivity. We use “startActivity(Landroid/content/Intent”, “set-
DataAndType” and “application/vnd.android.package-archive”
signatures in order to detect the usage of the upgrading
technique. For the silent installing technique, the signatures
“Ljava/lang/Runtime;->exec” and “pm install” are searched
for. The “DexClassLoader;->loadClass” signature is consid-
ered to indicate the usage of the dynamic class loading
technique.

B. Dynamic Analysis

An attacker could conceal his malicious activities by using
obfuscation and encryption techniques. Therefore, we develop
a dynamic analysis tool in order to overcome the limitations
of signature-based analysis. What makes our work unique
is to analyse applications in order to monitor their updating
behaviours during their execution. To achieve our goal, we
use DroidBox[6], one of the mostly used dynamic analysis
tools. In order to force applications to update themselves at
runtime, we add extra features to DroidBox, and propose a
new triggering mechanism called time-based triggering.

Event-based Triggering: Droidbox uses MonkeyRunner
[11] to generate events in order to analyse application be-
haviours. However, MonkeyRunner is not enough to trigger
applications to load the payload at runtime. Besides, some
applications wait for some events to occur in order to trigger

https://www.researchgate.net/publication/254044382_Dissecting_Android_Malware_Characterization_and_Evolution?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==

221.685
235.213

414.736 422.213

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Malgenome Malgenome+ Drebin Drebin +

Malgenome

Malgenome+

Drebin

Drebin +

#
o

f
C

o
n

n
e

ct
io

n
s

Fig. 2. The number of connections activated by applications in the malware
datasets.

updating. In order to overcome this limitation of MonkeyRun-
ner, we use Monkey [10] which is an UI/Application exerciser.
While MonkeyRunner generates random events, then sends
them to the Android device or emulator, Monkey generates
UI events by running on an Android device or on an emulator.
Thus, we could force the application automatically to click
OK button in the pop-up dialogue in order to start down-
loading new application or loading payload dynamically by
using Monkey. We have also added multi-thread ability to the
Droidbox. In addition, we have limited dynamic analysis to
run only 10 minutes.

Time-based Triggering: Many researchers have pointed
out that one of the important weaknesses of dynamic analysis
techniques for mobile devices is to inspect applications for
a limited period of time. The applications are generally exe-
cuted for 10 minutes due to efficiency constraints. Therefore,
attacker could exploit this weakness by controlling the time
that malicious code will be executed. Android uses Java
java.lang.System package to get the current time. It is observed
that 59% of applications from Google Play uses java.lang.Syst
em.currentTimeMillis() method in their packages. To eliminate
this limitation, we add a module to the DroidBox in order to
change system date during the execution and set the time for-
ward. A dramatic increase in the number of downloaded files
is observed owing to this triggering mechanism in the results.
However, the time-based triggering might not be adequate to
detect some malicious applications using static, dynamic and
hypervisor heuristics [25] in order to evade from dynamic
analysis.

In dynamic analysis, we also explore how many malicious
files are downloaded and how many connections are opened
during runtime. So, we logged all the downloaded files and IP
connections. We firstly work on malware datasets, then analyse
the applications in the stores in order to see whether they
download similar files and/or they connect to the same servers
as malwares do. The IP addresses that applications connect
to is forwarded to IpVoid [9] in order to check whether these
IP addresses are listed in malicious blacklists. IpVoid uses 39
different technologies to decide whether given IP addresses
communicate with malicious servers or not.

IV. EVALUATION

A. Analysis of Malware Datasets

We firstly analyze the malware datasets publicly avail-
able [29], [14]. Furthermore, we investigate the effect of the
time-based triggering on the number of downloaded files by
malwares during the runtime. The dynamic analysis reveals
that the time-based triggering is the most effective method in
Malgenome and Drebin datasets. The number of downloaded
.apk files is increased by 92% for the Malgenome dataset, 53%
for the Drebin dataset with time-based triggering. A relatively
small increase in the number of downloaded .dex files is also
observed in the results (6% for Malgenome dataset and 28%
for Drebin dataset).

In addition, we analyse the impact of time-based triggering
on the number of connections malwares make. Figure 2 shows
that the number of connections is increased by 6% for the
Malgenome dataset, 2% for the Drebin dataset. “+” symbol
in the figure indicates time-based triggering. We find that 4
of the connected servers from Malgenome dataset, and 30
of the connected servers from Drebin dataset are listed in
malicious domain lists. Moreover a new C&C server, used
by 244 malwares belonging to five malware families in the
Drebin dataset and 178 malwares in the Malgenome dataset,
is discovered. We observe a huge amount of communication
between this C&C server and the malicious applications.

Zhou and Jiang [29] divides malwares into four groups
according to the techniques they applied to install malwares
on mobile phones : repackaging, update attacks, drive-by-
downloads and others. They said that 4 malware families
performing update attacks are exist in the dataset. These
families are BaseBridge, DroidKungFuUpdate, AnserverBot,
and Plankton. However, our runtime analysis shows that 5
families (275 applications) from Malgenome datasets down-
load runnable Android applications that are tagged as mali-
cious by the VirusTotal. The results are shown in Table I.
Most of the downloaded files are the same whereas they are
the member of the same family. For example, “mainmod-
ule.jar” malicious payload are seen 165 times in Anserver-
Bot and 78 times in BaseBridge family. However, we found
out that DroidKungFuUpdate and Plankton families do not
perform any updating attacks. These families seem not to
connect to malicious servers anymore. For example, appli-
cations from Plankton family try to reach the following link
“http://schemas.android.com/apk/res/com.planktond”, which is
no longer accessible. In our analysis, the three additional
families found are DroidKungFu1, Droid- KungFu3 and Droid-
KungFu4. With the help of time-based triggering, we are able
to find more updated attacks than the previous analysis [29].
These results emphasize the importance of dynamic analysis
in order to detect malwares using update techniques.

B. Analysis of Application Stores

We select three popular application stores for analysing
malicious applications using update mechanism as shown in
Table II. We crawled all free applications from application
stores (SlideMe : 1,469 applications, AppsApk : 3,560 ap-
plications) between August 2013 and February 2014. We
downloaded 20,000 applications randomly from Google Play
that represents nearly 2% of the Google Play store. While

https://www.researchgate.net/publication/266657007_Rage_against_the_virtual_machine_hindering_dynamic_analysis_of_Android_malware?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/254044382_Dissecting_Android_Malware_Characterization_and_Evolution?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/254044382_Dissecting_Android_Malware_Characterization_and_Evolution?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/254044382_Dissecting_Android_Malware_Characterization_and_Evolution?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==

TABLE I. THE ATTACK FAMILIES USING UPDATE TECHNIQUES IN THE

MALGENOME DATASET

Family Number Percentage

AnserverBot 183 98%

BaseBridge 78 64%

DroidKungFu1 2 6%

DroidKungFu3 11 4%

DroidKungFu4 1 1%

Total 275 22%

TABLE II. THE RESULTS OF THE SIGNATURE-BASED ANALYSIS

Google Play SlideMe AppsApk

Silent Installing 21 (0.1%) 1 (0.06%) 15 (0.4%)

Upgrading 1,127 (5.6%) 66 (4.4%) 402 (11.3%)

Dynamic Class Loading 660 (3.3%) 98 (6.6%) 94 (2.6%)

Total Number of Updated Applications 1,808 (9%) 165 (11.2 %) 511 (14.3%)

Total Number of Applications 20,000 1,474 3,563

downloading applications from SlideMe and AppsApk stores
was straightforward, we developed a tool which uses Android
Market API [3] for downloading applications from Google
Play.

Signature-based Analysis: We found that most of the
applications especially adwares use dynamic class loading,
since it is easily manageable at runtime. For instance, while
upgrading needs to make lots of changes on the device, this
technique allows users to download new files straightforwardly.
We found 3,480 adware applications from Google Play using
the dynamic class loading technique. Silent installing is the
least used updating techniques among developers, since it
requires root privileges to update. Finally, we found that
10% of applications by these three market stores on average
are using update techniques. This shows how insecure the
application stores are. Please note that the adwares are not
included in Table II.

Grace et al. [21] shows 3.90% of 118,000 applications is
using code loading techniques. Sebastian Poeplau et al. [26]
finds out that 5% of 1632 applications from Google Play using
code loading techniques. Both of the results could include
adwares since there is no information on their study about
adwares. Our analysis detects 19.60% of 25,000 applications
from three markets datasets using this updating technique.
If we exclude adware applications, this number is decreased
down to 3.40%. The usage of update techniques against each
market can be seen clearly in Table II. Our results show that
there is a substantial increase in the number of applications
using the updating techniques, especially dynamic class load-
ing in the last few years. While some developers apply these
techniques to overcome the reference size limit, attackers could
easily use them in order to download their malicious code.

Dynamic Analysis: Figure 3 shows the percentage of
applications using update techniques in the store datasets. We
found that 2% of Google Play and 1% of SlideMe datasets
evaded signature-based analysis and downloaded runnable ap-
plications at runtime. We found 453 applications in the dataset
collected from GooglePlay and SlideMe evade the signature-
based analysis. However for the AppsApk dataset, the number
of applications downloading runnable applications are less
than the number of applications using the updating techniques
according to the signature-based analysis. One of the reason is
that the dynamic analysis is only executed for a limited period
of time. Secondly, specific events might not be generated to

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

Google Play Slide Me AppsApk

Apps Having Updating Signature Apps Dynamically Updating

%
o

f
A

p
p

li
ca

ti
o

n
s

Fig. 3. The percentage of applications using update techniques in the store
datasets.

197

175

81

Benign(43%)

VirusTotal(39%)

New Malwares(18%)

(a) Evaded Apps.

0

50

100

150

200

250

300

350

400

450

Google Play Slide Me APPAPKS

Evaded Detected by VirusTotal Unknown

#
o

f
A

p
p

li
ca

ti
o

n
s

(b) Evaded Apps by Market Stores.

Fig. 4. New malwares not detected in the Signature-based Analysis.

trigger the update with the dynamic analysis. Moreover, mali-
cious applications could hide themselves with the realization
of running on an isolated environment. Attackers commonly
use static, dynamic and hypervisor heuristics [25] in order to
evade from dynamic analysis. These techniques might be used
to detect running environment of the application.

We combined the results of signature-based and runtime
analysis to search for applications using updating techniques
stealthily. We found 453 applications in the dataset collected
from the application stores evade the signature-based analysis
by using some techniques such as obfuscation, encryption,
and the like and, update themselves at runtime. We found
out that these samples do not contain any updating signature
in the bytecode. However, they could download executable
files during runtime. 36% of applications out of these updated
applications are detected to be malicious by VirusTotal [13].
The remaining applications are analysed dynamically and some
representative features are extracted. The collected features
are sent to the ML-based approach proposed in [24] . This
approach differentiates malicious applications from benign

https://www.researchgate.net/publication/254463014_RiskRanker_Scalable_and_Accurate_Zero-day_Android?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/266657007_Rage_against_the_virtual_machine_hindering_dynamic_analysis_of_Android_malware?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/269197120_Execute_This_Analyzing_Unsafe_and_Malicious_Dynamic_Code_Loading_in_Android_Applications?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==

applications using machine learning (ML) techniques (C4.5,
Naive Bayes, Random Forest and SMO). The models work
on dynamic features of applications collected using DroidBox.
Here, the application is accepted to be malicious if more than
the three ML techniques detect the application as malicious. As
a result, 81 (18%) new malicious applications are discovered.
70 applications out of 412 applications in Google Play, 6
applications out of 15 applications in SlideMe, 5 applications
out of 26 applications in AppsApk are found to perform
malicious activities as presented in Figure 4.

We manually analysed newly found malicious applications
by our system in order to verify the results of ML-based ap-
proach. We deeply analysed malicious applications especially
found in Google Play. We observed some interesting results
that three applications access to deviceId, IMEI and IMSI
numbers from the downloaded payload at runtime. One of them
has stored IP address in the downloaded payload bytecode and
this IP address is in the IpVoid blacklists. Another application
tries to execute the following Linux commands for privilege
escalation: chmod, chown and mount. These malicious ap-
plications are not detected by VirusTotal since the malicious
payload of these applications are downloaded at runtime.

We also observed that even a download file does not have
.dex extension, it might contain a runnable code inside. This
could be one of the techniques that attacker uses to hide itself
from security mechanisms. Some downloaded .dex files use
the following extensions : .epub (1), .data (4), .tmp (15) and
.zip (292).

We also investigated the connections that applications made
at runtime, and sent the IP addresses they connected to IpVoid.
IpVoid tags an IP address as malicious if two or more vendors
agree that the given IP address is in the blacklists. Besides,
it puts a warning tag if one vendor ensures that given IP
address is in the blacklists. We found that 26 malicious from
Google Play dataset build connections with the blacklisted
IP addresses. Moreover these applications are also found
malicious by the dynamic analysis.

C. Interesting Observations

One of the most interesting malwares in our study is
using phishing techniques to deceive users. It warns user
that application requires Adobe Flash Player in order to
run the application. Even if the user approves to install the
application, the following error is displayed on the device
display “App not installed. This app is not compatible with
your phone”. However, two malwares are installed with the
user approval anyway : ‘‘com.adobe.flash.apk’’ and ‘‘ado
be.flash.new.apk’’. Another interesting application which is
downloaded from Google Play (apkv2:air.albinoblacksheep.
shoot:1:4.apk) communicates with a C & C server. This
application sends the IMEI MD5 hash sum of the device to
the server. After successful communication, the server sends
message to the client ({‘‘code:200,action:hi’’}). Moreover,
this application reads four different process information and
accessed to system memory information (/proc/meminfo) six
times. Furthermore, this application uses the AES algorithm
with the key “0123456789abcdef”. Only one anti-virus in
VirusTotal identifies this application as malware.

V. RELATED WORK

Even though many researchers have been working on
mobile malware security, there is no complete solution to this
complex problem. Many of the studies focus on the analysis
of permissions in order to protect mobile devices against
malwares. Kirin [20] proposed an approach which terminates
the installation of an application if suspicious permissions are
requested by the application. Zhou et al. [30] compares the
permissions requested by an application with the permissions
in the mobile malware samples. Yuan Zhang et al. [28] also
analyses the permissions in order to identify privacy leakage.

Andromaly [27] employs machine learning techniques in
order to differentiate malicious applications from benign ones.
The feature set used is obtained by employing dynamic
analysis. There are also other proposals based on dynamic
analysis, such as AppGuard [15] which uses program traces,
and Crowdroid [16] which monitors system calls. TaintDroid
[19] monitors privacy sensitive information with taint tracking,
MADAM [18] monitors application behaviours both at the user
level and at the kernel level.

There are also malware detection techniques based on static
analysis available for mobile devices. Chin et al. [17] proposed
ComDroid in order to detect applications’ vulnerabilities by
analysing inter-application communications. RiskRanker [21]
proposed a two-level analysis. High-risk and medium-risk
applications are determined in the first-order analysis, and ap-
plications employing using obfuscating, encryption or dynamic
class loading techniques are extracted among these risky ap-
plications in the second-order analysis. However, RiskRanker
only employs static analysis, does not analyse downloaded files
at runtime. Grace et al. [22] showed that dynamically code
loading is dangerous since an attacker remotely controls the
application and injects suspicious payload after installation.
Hence malicious applications could easily bypass static anal-
ysis techniques by modifying their code at runtime. Sebastian
Poeplau et al. [26] presented a static analysis tool in order to
detect code loading techniques. Furthermore they showed that
these code loading techniques introduce vulnerabilities that
could be exploited in order to shift a benign application to a
malware. Dominik Maier et al. [23] showed that a malware can
easily bypass VirusTotal scanners. They developed an applica-
tion which has benign and malicious parts and malicious part
is loaded during runtime by using the dynamic code loading
technique.

Even though there are static analysis techniques proposed
to analyse applications susceptible to malicious code loading
in the literature, our work focuses on both signature-based
and dynamic analysis of applications. Furthermore, this work
presents an analysis of applications employing all update
techniques, not only dynamic class loading.

VI. CONCLUSIONS

In this paper, we have done a rigorous analysis on mobile
applications which use the updating techniques, upgrading,
silent installing and dynamic class loading. We analysed nearly
30,000 applications collected from three different markets and
two malware datasets. Our work is the first large-scale analysis
(signature-based and dynamic analysis) to uncover malicious
applications using updating techniques. After our analysis, 9%

https://www.researchgate.net/publication/245022829_Crowdroid_Behavior-Based_Malware_Detection_System_for_Android?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/221234511_Analyzing_Inter-Application_Communication_in_Android?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/235694383_MADAM_a_Multi-Level_Anomaly_Detector_for_Android_Malware?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/220851714_TaintDroid_An_Information-Flow_Tracking_System_for_Realtime_Privacy_Monitoring_on_Smartphones?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/221609170_On_Lightweight_Mobile_Phone_Application_Certification?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/254463014_RiskRanker_Scalable_and_Accurate_Zero-day_Android?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/254008841_Unsafe_Exposure_Analysis_of_Mobile_In-App_Advertisements_ABSTRACT?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/269197120_Execute_This_Analyzing_Unsafe_and_Malicious_Dynamic_Code_Loading_in_Android_Applications?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/220616039_Andromaly_A_behavioral_malware_detection_framework_for_android_devices?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/262165268_Permission_Use_Analysis_for_Vetting_Undesirable_Behaviors_in_Android_Apps?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==
https://www.researchgate.net/publication/267787299_Hey_You_Get_Off_of_My_Market_Detecting_Malicious_Apps_in_Official_and_Alternative_Android_Markets?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==

of applications from Google Play have updating signatures that
are detected by signature-based analysis. As a result of the
runtime analysis, we found that nearly 11% of applications
collected from Google Play use Android update mechanism.
We found out that nearly 2% of applications downloaded from
Google Play evade the signature-based analysis and download
runnable applications at runtime. Moreover, 70 new malicious
applications from Google Play not detected by VirusTotal and
Google Bouncer are discovered as a result of this analysis.

We also investigated the techniques to trigger applications
in order to download files, or to fetch code at runtime. The
time-based triggering technique is employed to increase the
number of updated applications to analyse. It also allows
us to find out more updated attacks missed by the previous
analysis in the literature [29]. This technique show us how
attackers could effectively evade even from dynamic analysis
techniques. They could also employ other evasive strategies
such as obfuscation and encryption.

To sum up, this study shows the real number of applications
using updating techniques, the malicious activities performed
by updated applications such as the downloaded file types,
the connected IP lists and allows researcher to develop better
security solutions. In the future, we are planning to enhance
security solutions to detect such update attacks. Moreover, we
aim to carry out more investigation on triggering mechanisms
in order to make such applications to update themselves.

VII. ACKNOWLEDGEMENTS

This study is supported by the Scientific and Technological
Research Council of Turkey (TUBITAK-115E150). We would
like to thank TUBITAK for its support. We also would like to
thank VirusTotal for their support.

REFERENCES

[1] Amazon. (Visited April 2015) [Online]. Available:
https://developer.amazon.com/public/support/faq.

[2] Android Apktool. (Visited April 2015) [Online]. Available:
https://code.google.com/p/android-apktool/.

[3] Android Market API. (Visited April 2015) [Online]. Available:
http://code.google.com/p/android-market-api.

[4] AppsApk. (Visited April 2015) [Online]. Available:
http://www.appsapk.com/android/all-apps/.

[5] DexClassLoader. (Visited April 2015) [Online]. Available:
http://android-developers.blogspot.com.tr/2011/07/custom-class-
loading-in-dalvik.html.

[6] Droidbox. (Visited April 2015) [Online]. Available:
https://code.google.com/p/droidbox/.

[7] Google Play. (Visited April 2015) [Online]. Available:
https://play.google.com/store/apps.

[8] Google Play Update Policy. (Visited April 2015) [Online]. Available:
https://play.google.com/about/developer-content-policy.html.

[9] IpVoid. (Visited April 2015) [Online]. Available:
http://www.ipvoid.com/.

[10] Monkey. (Visited April 2015) [Online]. Available:
http://developer.android.com/tools/help/monkey.html.

[11] Monkey Runner. (Visited April 2015) [Online]. Available:
http://developer.android.com/tools/help/monkeyrunner-concepts.html.

[12] SlideMe. (Visited April 2015) [Online]. Available: http://slideme.org/.

[13] Virus Total. (Visited April 2015) [Online]. Available:
https://www.virustotal.com/.

[14] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck, and
C. Siemens. Drebin: Effective and explainable detection of android
malware in your pocket. In Proceedings of the ISOC Network and

Distributed System Security Symposium (NDSS), 2014.

[15] M. Backes, S. Gerling, C. Hammer, M. Maffei, and P. von Styp-
Rekowsky. Appguard-real-time policy enforcement for third-party
applications. Technical report, 2012.

[16] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-
based malware detection system for android. In Proceedings of the 1st

ACM workshop on Security and privacy in smartphones and mobile

devices, pages 15–26. ACM, 2011.

[17] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-
application communication in android. In Proceedings of the 9th

international conference on Mobile systems, applications, and services,
pages 239–252. ACM, 2011.

[18] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra. Madam: a multi-
level anomaly detector for android malware. In Computer Network

Security, pages 240–253. Springer, 2012.

[19] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. Taintdroid: an information flow tracking system for real-
time privacy monitoring on smartphones. Communications of the ACM,
57(3):99–106, 2014.

[20] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference on

Computer and communications security, pages 235–245. ACM, 2009.

[21] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable
and accurate zero-day android malware detection. In Proc. of the 10th

international conference on Mobile systems, applications, and services,
pages 281–294. ACM, 2012.

[22] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure
analysis of mobile in-app advertisements. In Proceedings of the fifth

ACM conference on Security and Privacy in Wireless and Mobile

Networks, pages 101–112. ACM, 2012.

[23] D. Maier, T. Muller, and M. Protsenko. Divide-and-conquer: Why
android malware cannot be stopped. In Availability, Reliability and

Security (ARES), 2014 Ninth International Conference on, pages 30–
39. IEEE, 2014.

[24] H. B. Ozkan, E. Aydogan, and S. Sen. An ensemble learning approach
to mobile malware detection. Technical report, Department of Computer
Engineering, Hacettepe University, 2014.

[25] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and
S. Ioannidis. Rage against the virtual machine: hindering dynamic
analysis of android malware. In Proceedings of the Seventh European

Workshop on System Security, page 5. ACM, 2014.

[26] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna.
Execute this! analyzing unsafe and malicious dynamic code loading
in android applications. In Proc. of the 20th Annual Network and

Distributed System Security Symposium (NDSS), volume 14, pages 23–
26, 2014.

[27] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss. Andro-
maly: A behavioral malware detection framework for android devices.
Journal of Intelligent Information Systems, 38:161–190, 2012.

[28] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang. Vetting undesirable behaviors in android apps with permission
use analysis. In Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security, pages 611–622. ACM, 2013.

[29] Y. Zhou and X. Jiang. Dissecting Android Malware: Characterization
and Evolution. 2012 IEEE Symposium on Security and Privacy, (4):95–
109, May 2012.

[30] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In Proc. of the 19th Annual Network and Distributed System

Security Symposium (NDSS), pages 5–8, 2012.

https://www.researchgate.net/publication/254044382_Dissecting_Android_Malware_Characterization_and_Evolution?el=1_x_8&enrichId=rgreq-c571e181-15e1-4ced-a39d-5cb6701bf876&enrichSource=Y292ZXJQYWdlOzI4MjY1NjAwNjtBUzoyODIyNDczNTA1MDU0NzNAMTQ0NDMwNDQyMDYxOQ==

