
Evolutionary Computation Techniques for Intrusion Detection in
Mobile Ad Hoc Networks

Sevil Sen1,, John A. Clark,

Abstract

Intrusion detection on mobile ad hoc networks (MANETs) is difficult. This is because of their dynamic nature, the lack of central
points, and their highly resource-constrained nodes. In this paper we explore the use of evolutionary computation techniques, partic-
ularly genetic programming and grammatical evolution, to evolve intrusion detection programs for such challenging environments.
Cognizant of the particular importance of power efficiency we analyze the power consumption of evolved programs and employ a
multi-objective evolutionary algorithm to discover optimal trade-offs between intrusion detection ability and power consumption.

Keywords: Mobile ad hoc networks, intrusion detection, evolutionary computation, multi-objective optimization, power-aware
detection, cooperative security

1. Introduction

Mobile ad hoc networks (MANETs) are one of the fastest
growing areas of research. This new type of self-organizing
network combines wireless communication with a high degree
of node mobility. Unlike conventional networks, they do not
have fixed infrastructure elements such as base stations or cen-
tralized management points. Rather, they rely on dynamically
determined collaborations to provide communications between
nodes and so provide access to services distributed across the
network. Such a modus operandi makes MANETs attractive
for many applications. For example, MANETs might find nat-
ural deployment where the existing/fixed infrastructure can be
non-operational due to natural disasters, war, etc. Rapid ser-
vice provision to conference attendees is also possible; setting
up a network infrastructure would otherwise take a great deal
of time. One area that is proving particularly challenging for
MANETs is intrusion detection. In this paper, we investigate
the use of evolutionary computation techniques to synthesise
intrusion detection programs suited for use with MANETs. Of
particular note is our goal of taking into account not only detec-
tion capabilities but also resource consumption. Thus, power
usage is a particularly important concern. (This issue is exac-
erbated when future networks comprising smart dust are con-
cerned.)

We show that evolutionary computation techniques (primar-
ily Genetic Programming and Grammatical Evolution) can be
effective means to obtain intrusion detectors. Furthermore, we
demonstrate how these and other evolutionary techniques can
be used to explore the trade-offs between competing perfor-
mance objectives, e.g. how power usage can be traded against
detection performance. We know of no other means by which

Email addresses: ssen@cs.hacettepe.edu.tr (Sevil Sen),
jac@cs.york.ac.uk (John A. Clark)

this sort of exploration can be reliably achieved. As proof of
concept we concentrate on the detection of two attacks on rout-
ing protocols in MANETs.

1.1. Attacks on MANETs
MANETs share the vulnerabilities of wired networks, such

as eavesdropping, denial of service, spoofing and the like; these
are simply accentuated by the ad hoc context [1]. In this paper
we focus on attacks which are more specific to MANET oper-
ation, namely attacks on MANET routing protocols. Conven-
tional networks use dedicated nodes to carry out basic functions
like packet forwarding, routing, and network management. In
ad hoc networks, however, these are carried out by all available
nodes. Mobile nodes that are within each other’s radio range
can communicate directly via wireless links, while those that
are far apart must rely on other nodes to relay messages. (This
is usually referred to as multi-hop communication.) The mo-
bility of network nodes forces routes between nodes to be up-
dated frequently and various protocols have been designed for
finding/updating routes and providing communication between
endpoints through cooperating intermediate nodes.

Routing protocols on MANETs are of two basic forms:
proactive (e.g. OLSR [2]) and reactive protocols (e.g. AODV
[3], DSR [4]). Hybrid approaches are also possible. Attacks on
these protocols can be implemented easily; they do not require
physical access to a wired medium since all communication is
wireless, and so form an important threat consideration. In ad-
dition, they pose specific technical challenges. For example, the
dynamic topology of MANETs makes it harder to differentiate
normal behaviour of the network from anomalous behaviour;
packets may be lost due to malicious intervention, or simply be-
cause a route is no longer feasible. Furthermore, routing algo-
rithms for MANETs usually assume that nodes are cooperative
and non-malicious. This presents significant security problems,
for example, a malicious node can easily become an important

Preprint submitted to Computer Networks May 10, 2011

routing agent and disrupt network operations by disobeying the
protocol specifications.

1.2. Intrusion Detection
Intrusion is any set of actions that attempt to compromise the

integrity, confidentiality, or availability of a resource [5] and an
intrusion detection system (IDS) is a system for the detection
of such intrusions. An IDS detects possible violations of a se-
curity policy by monitoring system activities. If an attack can
be detected a response can be initiated to prevent or minimize
the damage to the system. 1

There are three main intrusion detection approaches:
anomaly-based; misuse-based; and specification-based. An
anomaly-based technique profiles the symptoms of normal be-
haviours of the system such as command invocation frequencies
and CPU usage for programs. It detects intrusions as anomalies,
i.e. deviations from established normal behaviours. A variety
of techniques have been used to implement anomaly detection,
e.g. statistical approaches, and artificial intelligence techniques
like data mining and neural networks. Misuse-based detection
compares known attack signatures with current system activi-
ties. It is generally preferred by commercial IDSs since it is
efficient and has a low false positive rate. With specification-
based approaches a set of constraints of a program or a protocol
are specified and intrusions are detected as runtime violations
of these specifications. They combine the strengths of anomaly-
based and misuse-based detection techniques [6], providing de-
tection of known and unknown attacks with lower false positive
rate.

2. Related Work

Applications of evolutionary computation techniques to in-
trusion detection on conventional networks have usually em-
ployed either genetic programming (GP) or genetic algorithms
(GA). The first GP application to intrusion detection is given
by Crosbie and Stafford [7]. The main idea in that research
is to train autonomous agents based on the input features and
the functions given to detect intrusive behaviours. Obvious in-
trusions that are mis-classified during the evolution process are
penalised heavily. There are also promising applications of ge-
netic algorithms proposed for misuse-based intrusion detection
systems [8][9].

Two recent approaches use GP and evaluate the evolved pro-
grams on the KDD-99 data set [10], which is the most widely
used benchmark evaluation data for intrusion detection. In
[11] the output program evolved by GP is small, simple and
uses just a few input features where “most machine learning
paradigms (artificial neural networks, support vector machines,
decision trees) examine all input features to detect intrusions”
[11]. Evaluation shows that the approach is lightweight and

1It is fair to say that the issue of detection has been researched to a far greater
degree than that of how to respond to detected attacks. As new types of system
emerge, such as various autonomous systems with a requirement for continued
operation, this research gap may become acute. However, the research in this
paper is concerned only with detection.

effective, satisfying the main goals of an intrusion detection al-
gorithm. The GP techniques used in that research are compared
with other machine learning techniques (Support Vector Ma-
chines and Decision Trees) for intrusion detection in [12]. The
results show that genetic programming techniques outperform
these techniques and are lightweight. In [13] linear GP is effi-
ciently trained on a large data set by using RSS-DSS (Random
Subset Selection-Dynamic Subset Selection) algorithm. This
approach also uses a small set of the features.

Grammatical evolution (GE), another evolutionary computa-
tion paradigm, has been proposed recently for intrusion detec-
tion on wired networks [14]. It has been applied to the KDD-99
data set [10] and evolves detectors for different classes of at-
tacks such as denial of service (DoS) and probe attacks. While
the classification accuracy is higher for the DoS attack class, the
U2R (user-to-root) and R2L (remote-to-local) attacks show low
detection rates. The application of GE to intrusion detection is
in its early stages and improvements are very likely possible.

Many IDSs have been proposed for wired networks. How-
ever, the specific features of MANETs make direct application
of these approaches to our target networks problematic. Conse-
quently, over the last decade researchers have proposed new ap-
proaches for intrusion detection in MANETs. One of the most
commonly proposed techniques on MANETs is specification-
based intrusion detection, where intrusions are detected as run-
time violations of the specifications of routing protocols. This
technique has been applied to a variety of routing protocols on
MANETs such as AODV and OLSR [15][16]. A few signature-
based IDSs have also been proposed. In [17], an approach is
proposed based on a stateful misuse detection technique and
which defines state transition machines for detecting known
attacks on AODV. In [17], an IDS is proposed which uses a
specification-based technique for attacks that violate the spec-
ifications of AODV directly and an anomaly-based technique
for other kinds of attacks such as DoS. Since wireless nodes
can overhear traffic in their communication range, promiscu-
ous monitoring can also be used to detect MANET attacks such
as dropping and modification [18][19][20][21]. Mobile agents
have been suggested as another way to provide communication
between IDS agents [22].

Few artificial intelligence based intrusion detection systems
have been proposed to explore the complex behvioural space
that MANETs provide. In the first proposed IDS for MANETs
[23], statistical anomaly-based detection is chosen over misuse-
based detection, since expert rules can detect only known at-
tacks and the rules cannot easily be updated across a wireless ad
hoc network. The SVM Light and RIPPER classifiers are em-
ployed and compared in that research. In [24] a Markov-chain
based local anomaly detection model is proposed for a Zone-
Based IDS architecture. The network is partitioned into zones
based on geographic location. Another approach which con-
structs an anomaly-detection model automatically by extracting
the correlations among monitored features is proposed in [25].
Furthermore, they introduce simple rules to determine attack
types and sometimes attackers after detecting an attack using
cross-feature analysis. A fuller account of previous work on
intrusion detection in MANETs can be found in [26].

2

Evolutionary computation techniques have been seen some
application to problems in sensor networks but have not been
applied to intrusion detection problem. In [27], the Distributed
Genetic Programming Framework (DGPF) which automati-
cally discovers distributed algorithms for given problems is in-
troduced for sensor networks. The election problem is solved
by using this framework as an example and a multi-objective
optimization technique is also employed on this problem by
considering non-functional fitness functions such as code and
memory size. Further research develops a parallel evolutionary
algorithm for suitable sensor networks in [28]. Applications
of grammatical evolution and genetic programming on intru-
sion detection for MANETs have been proposed in our previous
work [29][30]. This paper extends these applications and com-
pares the performance of these techniques on intrusion detec-
tion. Furthermore it investigates a suitable intrusion detection
architecture for MANETs.

2.1. Our Work: Ackowledging the Effects of Complex Environ-
ments

How to detect intrusions effectively and efficiently on
MANETs is a challenging research problem. The dynamic
nature of MANETs, the lack of central points and its highly
resource-constrained environment are the main issues. Re-
searchers have generally focused on the first two issues so far.
However consideration of resource-constraints is vital. In this
research the limited resources of nodes are also taken into con-
sideration.

This research shows that GP and GE can be used to evolve
efficient detectors for known attacks (ad hoc flooding and route
disruption) against routing protocol on MANETs. The results
are evaluated under different types of networks and compared
with hand-coded programs. To the best of our knowledge it is
the first application of evolutionary computation techniques to
intrusion detection in MANETs.

This research proposes a novel approach by discovering dif-
ferent trade-offs between functional and non-functional prop-
erties of detection programs. Our main contribution in this re-
search is to evolve a set of programs for each attack offering
different trade-offs between intrusion detection ability and en-
ergy usage, since power is one of the critical resources. More-
over, we investigate if it is better to evolve separate programs
for each attack or one program to detect both attacks. Our tech-
niques can be used to generate solution sets with the best (or
near best) trade-offs possible.

A suitable intrusion detection architecture is also investi-
gated. Even though the same architecture has been investi-
gated before in other approaches, it is a novel approach in terms
of proposing how to choose monitoring nodes in MANETs by
considering limited resources. Besides energy consumption of
programs, energy consumption by message sending and receiv-
ing in cooperative detection is taken into account. The interac-
tion between IDS agents and the number of nodes participating
in detection is reduced by using multi-objective optimization
techniques.

To conclude, we demonstrate the potential use of evolution-
ary computation techniques to discover complex properties of

MANETs and to propose a suitable intrusion detection on this
new environment.

3. AODV and Target Attacks

The Ad-hoc On-demand Distance Vector (AODV) routing
protocol [3] is one of the most commonly used on-demand rout-
ing protocols on MANETs. It is used as an exemplar routing
protocol in our research. We now briefly outline the operations
of AODV and describe the two attacks on it that are the focus
of our research. A fuller account of threats to MANETs can be
found in [31].

Ad Hoc Flooding Attack. Network topology changes fre-
quently on MANETs due to mobility. Link breakages may
make existing routes inactive and initiate discovery of new
routes by route request packets (RREQ). RREQ messages are
sent only when nodes need a new route in reactive routing pro-
tocols such as AODV. Evidently, mobility may increase the
number of RREQ packets on the network. In the flooding at-
tack scenario, the attacker exploits this property of the route
discovery mechanism by broadcasting a lot of RREQ messages
for randomly selected nodes. The attacker aims to consume the
resources of the nodes and the network. We believe that high
mobility makes it difficult to distinguish flooding attacks from
benign behaviour on a network, since it may also cause a high
number of RREQ packets in the network. In our simulations,
the attacker broadcasts 20 route request packets in a row as in
[32].

Route Disruption Attack. In this attack, the attacker sends
route reply (RREP) messages to the victim node without re-
ceiving any route request messages from that node. Instead of
sending route replies for random destination nodes, the attacker
chooses one of its neighbours as a victim and sends fresher
RREP messages (with higher destination sequence numbers) to
this node for disrupting the active routes in its routing table.
Since the attacker is the victim node’s neighbour, he already
knows about the active routes of the victim through the routing
control packets broadcast by that node. As stated in [24], one
or few routing control packets could hardly incur severe dam-
age to the system. So, in the simulation the attacker sends 5-10
RREP packets to the victim in a time interval.

In this research the networks are simulated by ns-2 [33]. Mo-
bility patterns of the nodes are simulated by the Random Way-
point model which is created using BonnMotion [34]. In the
Random Waypoint model, each node moves from its current lo-
cation to a random new location with random speed and pause
time in determined speed/pause time limits [35]. Different net-
work scenarios are created with different mobility levels and
traffic loads. 50 nodes are placed in a topology of 1000m by
500m. TCP traffic is used for communication. The maximum
number of connections is set to 20, 30 and 40 to simulate dif-
ferent traffic loads. The maximum speed of nodes is set to 20
m/sec and the pause time between movements is set to 40, 20,
and 5 sec to simulate low, medium, and high mobility respec-
tively. AODV periodic hello messages are used for local link
connectivity. The simulations run 5000 seconds for training
and 2000 seconds for testing.

3

Evolutionary computation techniques will be employed to
create artifacts that detect these two attacks effectively and effi-
ciently. These techniques are described in the next section.

4. Introduction to Evolutionary Computation

Evolutionary Computation (EC) is a research area inspired
by natural evolution. It is loosely based on the process
of Darwinian survival of the fittest, where individuals are
competing with each other for survival and reproduction in an
environment that can only host limited number of individuals
[36]. Evolutionary computation uses this approach to create
solutions for a given problem automatically where candidate
solutions of the problem correspond to the individuals, and
the best solutions correspond to the fittest individuals in a
population. The general steps in evolutionary computation are
summarised below.

initialize population
while termination criterion not satisfied do

execute and evaluate fitness value of each individual
apply genetic operators (selection, crossover, reproduc-
tion, mutation, etc.) to the individuals
create new population

end while

EC starts with generating a population of individuals (usually
randomly) which are candidate solutions for the target problem.
Then, each individual is evaluated and assigned a fitness value
that indicates how well this candidate solves or comes close
to solving the problem at hand. Until a termination criterion
is satisfied, new populations are generated iteratively by using
selection, crossover, and mutation operators as in the natural
evolution. These genetic operators are used to provide better
solutions in the new population. Selection provides a great op-
portunity for fitter individuals to survive by picking out indi-
viduals based on the fitness value from the current population
for mating (with fitter candidates having greater chances of se-
lection). Whilst crossover mimics the exchange of DNA under
sexual production to generate new individuals, mutation mimics
natural mutation by changing selected individuals to introduce
diversity into the population.

Some key parameters need to be defined to solve a problem
by using evolutionary computation techniques. Population size
is the number of individuals in a population in one generation.
Generations defines when (at which generation) the evolution
process terminates. Terminating does not necessarily happen
at a defined generation. There can be other terminating condi-
tions, such as termination upon finding an ideal candidate (i.e.
a true solution). Since finding the ideal solution can take a very
long time for complex problems, the parameter generations is
typically used as in our research. There are also other parame-
ters which define genetic operators. The crossover probability
shows how likely this operator will be performed on the indi-
viduals selected for mating (and thus provide a direct means of
allowing current candidates to proceed to the next generation

prior to any mutation). The mutation probability shows how
likely a part of an individual will be mutated. The reproduc-
tion probability shows how likely an individual will be copied
without any modification to the new generation. For the selec-
tion operation, there are different methods (e.g. roulette-wheel,
rank-based, tournament selection) and different parameters for
each method respectively. Tournament selection is used in our
experiments. In this method, a group of individuals is chosen
randomly from the population and the fittest individual from
this group is selected as a parent. Tournament size defines the
number of the individuals in this group.

In EC the population size is typically constant most of the
time, so the individuals who will survive in the next generation
need to be selected. A choice is made among the current popu-
lation and the new individuals generated by variation operators.
This choice is based on the fitness value. There are two main
replacement mechanisms: simple, and steady-state. In a simple
replacement approach, the new individuals (children) replace
the current population. In the steady-state approach, only one
individual, which is generally the worst member of the popu-
lation, is replaced. Hence, in the latter method, the best fitness
value of the population steadily increases (or stays still) as the
number of generations increases.

4.1. Genetic Programming

Genetic programming (GP), popularised significantly by
Koza [37], is one of the most widely employed evolutionary
computation techniques in the literature. It is claimed that
GP has equaled or exceeded the performance of other machine
learning techniques, and also evolved better programs than the
best programs written by people [38]. It has been applied to
many problems.2

The individuals are typically represented by a tree structure
in GP. A GP tree is built from functions and terminals. Ter-
minals are the leaves in a tree and are generally the inputs to
the GP, constants, or other functions with no argument. Func-
tions can be mathematical operators, boolean functions, pro-
gram statements (if, loop), and the like. Tree depth defines the
maximum size of the individuals (trees) and is the length of the
longest path in the tree from the root node.

4.2. Grammatical Evolution

Grammatical Evolution (GE) is a technique that allows us
to generate programs in an arbitrary language by evolving pro-
grams written in a BNF grammar [39]. GE is not the first tech-
nique using grammars, but it presents a unique way of using
grammars in an evolution process [40]. The core idea of GE
relates to how simple integer sequences can be interpreted as
programs.

2The interested reader may consult the Human Competitive Awards refer-
ence page for details of particularly successful applications of GP and other
evolutionary techniques.

4

4.3. Multi-Objective Evolutionary Computation
Multi-Objective Optimisation aims to optimise two or more,

often conflicting objectives simultaneously. The solution to a
multi-objective optimisation problem is often not unique. It is
the set of optimal solutions called the Pareto set. Here an ob-
jective vector x is said to dominate another objective vector y
(x � y) if each criterion (objective value) of x is no greater than
the corresponding component of y and at least one criterion is
less (lesser values are preferable).

x � y : i f xi ≤ yi f or each i and xi < yi f or some i (1)

The Pareto front comprises the solutions that are not dominated
by any other individuals. In other words, it includes the optimal
solutions (non-dominated) which represent different trade-offs
among the objectives.

Multi-Objective Evolutionary Computation (MOEC) allows
us to combine multi-objective optimisation with evolutionary
search. SPEA2 [41] is one of the most popular Pareto-based
MOEC algorithms. An implementation of SPEA2 which is an
extension to ECJ [42] is utilized in our research.

4.4. Why Evolutionary Computation?
MANETs are a new type of distributed network whose prop-

erties are complex. It is hard to distinguish attacks from nor-
mal activities under such dynamic environments. It is far from
clear whether the human perception of what makes a good in-
trusion detection algorithm in these contexts really is the best
possible. Moreover resource-constrained nodes require differ-
ent trade-offs to be made between intrusion detection ability of
programs and their resource usage. Humans are not particularly
adept at selecting good choices when complex trade-offs have
to be made.

In this research evolutionary computation techniques are
proposed to discover automatically complex properties of
MANETs. Although various artificial intelligence technqiues
have been proposed for intrusion detection, EC is one of the
most promising approaches. It makes fewer assumptions about
the solution space. IDS programs derived using GP or GE lend
themselves to some degree to manual analysis. We can often see
what the program is doing. Furthermore recent research shows
that the programs evolved by EC are lightweight and use far
fewer features compared to some other machine learning tech-
niques. These characteristics are among the main motivations
behind using EC in this research. Futhermore multi-objective
evolutionary algorithms allow us to optimize multiple objec-
tives simultaneously, so they can be used to discover detection
programs that are both effective (i.e. detect intrusions without
a high false positive rate) but also efficient (in particular, suited
to deployment on constrained resource platforms). These fea-
tures make EC very attractive for the development of intrusion
detection programs suitable for MANETs.

5. Evolving Intrusion Detection Rules

In this research, we mainly aim to investigate the use of evo-
lutionary computation techniques to evolve intrusion detection

rules for known attacks against MANETs. Genetic program-
ming and grammatical evolution are employed to evolve pro-
grams that detect the ad hoc flooding and route disruption at-
tacks described above. These techniques are evaluated on sim-
ulated networks with varying traffic and mobility patterns, and
compared. The application of each technique to intrusion de-
tection in MANETs is detailed in the subsequent sections.

5.1. Feature Selection

“Features” are characteristics of our system whose measure-
ments provide the inputs to our evolved decision algorithms.
They provide the basic data any such evolved algorithms can
use to reach a result. The choice of which characteristics can be
used for these purposes is very important. They must contain
sufficient information to allow the fundamentals to be devel-
oped.

Table 1: The Features
Features Explanation

neighbours no. of neighbours

added neighbours no. of added neighbours

removed neighbours no. of removed neighbours

active routes no. of active routes

repaired routes no. of routes under repair

invalidated routes no. of invalidated routes

addedroutes disc no. of added routes by route discovery mechanism

addedroutes notice no. of added routes by overhearing

updated routes no. of updated routes (modifying hop count, sequence num-
ber)

added repairedroutes no. of added routes under repair

invroutes timeout no. of invalidated routes due to expiry

invroutes other no. of invalidated routes due to other reasons

avg hopcount average no. of hop counts of active routes

recv rreqPs no. of received route request packets destined to this node

recvF rreqPs no. of received route request packets to be forwarded by this
node

send rreqPs no. of broadcasted route request packets from this node

frw rreqPs no. of forwarded route request packets from this node

recv rrepPs no. of received route reply packets destined to this node

recvF rrepPs no. of received route reply packets to be forwarded by this
node

send rrepPs no. of initiated route reply packets from this node

frw rrepPs no. of forwarded route reply packets from this node

recvB rerrPs no. of received broadcast route error packets (to be forwarded
or not)

send rerrPs no. of broadcasted route error packets from this node

recv aodvPs no. of received total routing protocol packets

recvF aodvPs no. of received total routing protocol packets to be forwarded

send aodvPs no. of initiated total routing protocol packets from this node

frw aodvPs no. of forwarded total routing protocol packets by this node

We have opted for a considerable degree of expressiveness.
Table 1 shows the features maintained at each node by the rout-
ing protocol. (Some additional information is also stored, e.g.
some configuration constants, but these are of little use for our
purposes and so are omitted from the table.) We provide a rich
set of features and expect our techniques to select judiciously
from them. It would be difficult to confidently supply apriori a
narrower set of features. We allow the evolutionary computa-
tion algorithms to choose necessary features among those avail-
able.

The features can be categorized into two main groups:
mobility-related and packet-related features. Mobility-related
features help reflect the mobility model of a node or the net-
work. Some of the mobility features give information about
mobility directly such as changes in the number of neighbours.
Others can be the results of mobility such as changes in the

5

routing table (e.g. number of new routes, number of invalidated
routes) in a time interval. Packet-related features include in-
formation about the frequency of the routing protocol control
packets (RREQ, RREP, RERR) sent, received, or forwarded in
a time interval. The average hop count feature is used only for
detection of route disruption attacks. These features are gath-
ered periodically by each node. All features are local to a node,
so no communication with other nodes is needed to gather them.

5.2. Application of GP to Intrusion Detection in MANETs

In GP a problem is defined with functions and terminals (fea-
tures) which are the parts of a GP tree, and the fitness function.
Here we use strongly-typed GP (STGP) [43]. STGP enforces
data type constraints. For example a generic function could be
forced to use specific data types (as input and output). The fea-
ture set given in Table 1 is used as the terminal set. The oper-
ators applied to these features are the basic mathematical (add,
sub, mult, div, pow, min, max, percent, sin, cos, log, ln, sqrt,
abs, exp, ceil,floor), relational, and comparison operators.

In our experiments we use a fitness function based on the
main metrics used to evaluate an IDS (i.e. detection rate, false
positive rate) as shown in the equation below. The detection
rate (DR) shows the ratio of correctly detected intrusions to the
total intrusions on the network. The false positive rate (FPR)
shows the ratio of normal activities that are incorrectly marked
as intrusions to the total normal activities on the network. An
acceptable low rate of false alarms is as important as a high
detection rate. A high false positive rate will cause a good deal
of time to be wasted and will likely destroy confidence in the
IDS.

Fitness = detection rate − f alse positive rate (2)

We assume that attacks are detected by the nodes that the
attacks affect directly. In flooding attacks the nodes who are
flooded by route request messages detect the attack. In route
disruption attacks, the victim node is assumed to detect mali-
cious change in its routing table.

We use the toolkit ECJ 18 [42] for the GP implementation
in our experiments. The GP parameters are selected as follows:
100 for population size, 1000 for generations, 0.9 for crossover
probability, 0.1 for reproduction probability and 7 for tourna-
ment size. The parameters not mentioned here are the default
parameters of the toolkit.

5.3. Application of GE to Intrusion Detection in MANETs

In GE, a problem is defined with a grammar and a fitness
function. In this research the grammar in Table 2 is used to
evolve programs in order to detect the identified attacks (ad hoc
flooding, route disruption) on MANETs and raise an alarm.

This grammar defines an ‘if’ statement. The variables and
the functions used in this grammar are the same as those used
in GP. Even though more complicated grammars including ‘if-
else’ statements, loops are employed at first, it is observed that
simplified programs make the evolution process much easier.
Moreover the grammar in Table 2 shows a good performance
in detecting attacks as shown in the results section. The fitness

Table 2: BNF grammar used for the problem

S = <code>
<code> ::= if(<cond>) {raise alarm()}
<cond> ::= <cond><set-op><cond> | <expr><relop><expr>
<expr> ::= <expr><op><expr> | (<expr> <op><expr>) |

<pre-op>(<expr>) | <pre-op2>(<expr>) | <var>
<op> ::= + | - | / | *
<pre-op> ::= sin | cos | log | ln | sqrt | abs | exp | ceil | floor
<pre-op2>::= max | min | pow | percent
<rel-op> ::= < | ≤ | > | ≥ | == | !=
<set-op> ::= and | or
<var> ::= feature set in Table 1

function given in Equation 2 is used in the GE algorithm as
well.

We use the library libge [44] for the GE implementation in
our experiments. The GE parameters used in GE are as follows:
100 for population size, 2000 for generations, 0.9 for crossover
probability, and 0.01 for mutation probability. A steady-state
approach is employed for replacement mechanism. Other pa-
rameters are the default parameters of the toolkit.

6. Performance Evaluation

6.1. Results Analysis

For each attack we evolve separate programs using GP and
GE. For training, we use the network simulation under medium
mobility with 30 TCP connections. The same network with at-
tacks and without attacks is used together for training to reduce
false positives. The best result of ten runs is chosen and dis-
tributed to each node on the network.

Table 3: Performance of GP and GE techniques on intrusion detection
Network Flooding Attack Route Disruption Attack

GP GE GP GE

DR FPR DR FPR DR FPR DR FPR

low mobility

low traffic 99.81% 0.34% 99.81% 0.29% 100% 0.51% 100% 0.41%

low mobility

med traffic 99.24% 1.94% 98.54% 1.72% 100% 0.99% 100% 0.88%

low mobility

high traffic 98.60% 2.31% 98.14% 1.99% 100% 1.25% 100% 1.20%

med mobility

low traffic 99.95% 0.36% 99.86% 0.36% 97.06% 0.46% 100% 0.40%

med mobility

med traffic 99.89% 1.88% 99.86% 2.00% 100% 0.88% 100% 0.83%

med mobility

high traffic 99.24% 2.97% 98.59% 2.79% 100% 1.27% 100% 1.18%

high mobility

low traffic 99.79% 0.66% 99.96% 0.66% 100% 0.52% 100% 0.44%

high mobility

med traffic 98.62% 1.83% 98.66% 1.73% 100% 0.84% 100% 0.76%

high mobility

high traffic 99.74% 3.21% 99.65% 2.91% 100% 1.10% 100% 1.01%

Experimental results of the evolved programs (best individ-
uals of each technique) are given in Table 3. Both techniques
show a good attack detection performance. Route disruption

6

attacks seem to be easier to detect than ad hoc flooding attacks.
In many cases the detection rate is 100% and the false positive
rate is less than 1% (except under high traffic). For medium
mobility and low traffic perfect detection (GP) is not reached,
but the false positive rate is low (0.46%). It seems reasonable
to suppose that a 100% detection rate can be achieved with a
small increase in the false positive rate as observed in our fur-
ther experiments. It is noted that route disruption attacks are
quite evident by the nodes receiving forged route reply pack-
ets since they violate the specifications of the routing protocol
directly.

For ad hoc flooding almost all cases give detection rates
higher than a 99% while keeping the FPR reasonably low. Note
that in both attacks the main difficulty seems to come from
the traffic load: regardless of the mobility pattern, the FPR for
medium/high traffic is always higher than for low traffic. This is
a common characteristic of any detection technique which does
not achieve a perfect detection, as the greater the traffic to be
analysed, the higher the FPR.

The false positive rate changes due to the mobility and the
traffic load. However they are not the only factors affecting it.
Other factors such as network topology, traffic and mobility pat-
terns also play a part. For instance, it is expected that the num-
ber of route request packets will be much higher in high mo-
bility networks, since mobility could frequently make existing
routes inactive. In Figure 1 the number of route request packets
on a normal network and on a network under ad hoc flooding
attack are presented. It shows little difference in the numbers of
route request packets among the networks with different mobil-
ity levels. The network under low/medium mobility may also
broadcast a lot of route request packets (sometimes higher than
the network under high mobility) due to its topology, its mobil-
ity and traffic patterns to build and preserve its active routes. In
conclusion, mobility is not the only major factor affecting the
number of route request packets on the network. Hence the per-
formance of evolved programs here is affected by those factors
as well.

Benign nodes do not send more than four route request pack-
ets in a row in normal circumstances (in all cases of mobil-
ity). The important point here is how a node is affected by
RREQ packets received under normal circumstances and under
ad hoc flooding attack. Under high mobility nodes can receive
many RREQs initiated from different nodes too. Under attack,
the average number of RREQ packets received is increased up
to 62.1% for low mobility, 61.8% for medium mobility and
41.5% for high mobility under low traffic. For medium traf-
fic, it is increased up to 38.1% under low mobility, 42.8% un-
der medium mobility and 35.7% under high mobility. For high
traffic, it is increased up to 33.5% under low mobility, 26.7%
under medium mobility and 21.9% under high mobility. As it
is seen in the results, the difference get smaller for the networks
under high mobility or high traffic networks.

Another factor affecting the performance of evolutionary
computation techniques could be the fitness function. Since
the number of normal events is much higher than the number
of malicious events in the network, a small improvement in in-
creasing the number of attacks detected could improve the fit-

Figure 1: Route Request Packets on Simulated Networks

ness function much more than a small improvement in decreas-
ing the number of false positives. The results also support this
idea by evolving programs with high detection rates. This issue
could be addressed by improving the fitness function such as
assigning different weights to detection rate and false positive
rate, or adapting a multi-objective fitness approach. In the sec-
tions 7-8 a multi-objective fitness function, which aims to opti-
mize these multiple objectives simultaneously, is employed.

6.2. The Performance of Manual Detection

The performance of hand-coded programs for ad hoc flood-
ing and route disruption attacks is evaluated in this section.
In manual detection of an ad hoc flooding attack a threshold-
based signature is typically used which simply considers the
excessive amount of forwarded route request packets by a node
(frw rreqPs > threshold). Threshold-based signatures to detect
resource depletion attacks in MANETs have already been em-
ployed in other approaches [17]. The performance of the sig-
nature is evaluated with different threshold values on a network
with medium mobility and traffic. It is shown that the fitness
value has its optimal value at the threshold value three, then
it starts decreasing. The manual signature (using the thresh-
old value three) is evaluated on networks with varying mobility
and traffic patterns and demonstrated in Table 4. The results
show that the manual detection achieves almost a perfect detec-
tion rate. However it does not perform well on differentiating
benign flooding from malicious flooding, and results in non-
negligible false positive rate for networks under high traffic. On
the other hand GP and GE decrease the false positive rate with
a small decrease in the detection rate. The false positive rate is
decreased to almost half that of the manual detection. The dif-
ference becomes more remarkable with the distributed and co-
operative intrusion detection programs evolved in Section 8.2.
Overall, GP and GE outperform the manual detection for the ad
hoc flooding attack by some considerable margin.

An intuitive signature which checks if the number of received
route reply packets is consistent with (less than) the number of
sent route request packets by a node is employed in the manual
detection of route disruption attack (init rreqPs < recv rrepPs).

7

A similar approach has been used in some specification-based
IDSs proposed for MANETs [15] which monitor request-reply
flow of each routing packet. The results are demostrated in Ta-
ble 4. The route disruption is a simple attack detected by small
and relatively simple programs (such as those evolved earlier by
GP and GE, and with results summarised in Table 3). The high-
est detection rate and a false positive rate less than 1% could be
achieved by manual detection as well (except under high traf-
fic/mobility). GE decreases the false positive rate a bit more
(with reduction of up to 0.12%), while GP shows almost the
same performance as manual detection. A node which com-
pares the number of route reply packets sent and received for
each node on the network separately can achieve a better de-
tection performance, but this approach needs to hold a separate
counter for each node in the network separately (while we only
hold one counter here). The number of counter is increased
proportional to the number of nodes in the network size. In
this research the hand-coded signatures use only the features in
Table 1 to allow a fair comparison. In conclusion GE shows a
slightly better performance in detection of the route disruption
attack than manual detection.

Table 4: Performance of Manual Detection on Simulated Networks
Network Flooding Attack Route Disruption

Scenarios Attack
DR FPR DR FPR

low mobility
low traffic 99.95% 0.62% 100% 0.51%

low mobility
med traffic 99.92% 3.19% 100% 1.00%

low mobility
high traffic 98.94% 4.69% 100% 1.29

med mobility
low traffic 100% 0.98% 100% 0.47%

med mobility
med traffic 99.96% 3.07% 100% 0.90%

med mobility
high traffic 99.63% 4.93% 100% 1.30%

high mobility
low traffic 99.91% 0.99% 100% 0.53%

high mobility
med traffic 99.80% 3.39% 100% 0.85%

high mobility
high traffic 99.96% 5.07% 100% 1.11%

There are also other advantages of our approach over other
misuse-based and hand-coded approaches proposed in the liter-
ature. For example nodes monitor every packet and keep them
in memory for a while in many approaches [17][20]. In addi-
tion they usually do it by using promiscuous monitoring which
is expensive in terms of power usage. However the manual de-
tection programs are simple, consist of only an if statement.
They consume approximately 120 Wattch unit (power x cycles)
energy. We also consider the effect of mobility on attacks in
this research. Other approaches generally monitor if a node be-
haves properly or not without taking into account other factors
affecting its behaviour.

So far we focus on developing an effective intrusion detection

program for MANETs. However the limited resources available
to many MANET nodes may affect proper working of intrusion
detection systems. For instance, IDS agents might not be able to
process every packet/alert due to limited resources. Efficiency
is therefore an important factor for intrusion detection in mobile
networks. We investigate this issue in the subsequent section.

7. Trade-offs in Intrusion Detection on MANETs

7.1. Related Work

Nodes on MANETs can vary from hand-held devices such
as PDAs, cell phones, and the like to laptops that have dif-
ferent resource and computational capacities. Moreover they
usually run on battery power. Currently proposed intrusion de-
tection approaches for MANETs generally do not emphasise
power consumption as an issue.

Some approaches propose a hierarchial intrusion detection
architecture where the network is divided into small manage-
able groups such as clusters and zones. In this architecture some
nodes have more IDS responsibility than others. For example,
while all nodes are responsible for local intrusion detection in
a cluster, clusterheads carry out global network-based intrusion
detection. In some approaches [22][45] cluster heads are cho-
sen based on criteria such as connectivity, remaining battery
power, and the like. However, the selection mechanisms pro-
posed for cluster-heads are neither investigated in detail nor
implemented in those approaches. In other work such choices
are made randomly for security reasons [46][47]. Using central
management points to carry out computationally intensive tasks
like data mining [48] for intrusion detection on MANETs has
also been proposed.

The effect of limited resources (especially power) on intru-
sion detection on MANETs is rarely considered. In [49] moni-
toring nodes are voted and selected based on their connectivity
and battery power. The weakness of this approach as stated in
the paper [49] is that many control messages are sent for vot-
ing, since monitoring nodes need to be updated frequently. In
this approach only monitoring nodes carry out intrusion detec-
tion, so a monitoring node listens to all traffic in its transmis-
sion range (not only that destined for itself), which is expensive
in terms of power. In [50] an approach is proposed which de-
termines network monitors based on available power in nodes.
While all nodes carry out host monitoring, network monitoring
is distributed to the nodes with sufficient power. More resource
intensive detection algorithms can be applied to monitor critical
nodes (such as the nodes at important positions in the network)
as proposed in [51].

7.2. Analysis of Power Consumption of Evolved Programs

Firstly we analyse the power consumption of ad hoc flood-
ing and route disruption detection programs evolved using GP.
The same GP parameters and the same fitness function (equa-
tion 2) are used. To evaluate a program’s energy consumption,
we need to simulate the execution of the program. For that we
firstly convert each individual (GP Tree) to a C program and
write it to a file. In the transformation process from a GP tree

8

to a C program, the functions used by the individuals and not
included in the standard C library (e.g. percent function) are
defined as macros. After the C file is created, it is compiled
and run on the Sim-Wattch simulator to simulate the execution
of the program on PISA architecture and estimate its energy
consumption. Wattch [52] is a framework for analyzing and
optimizing microprocessor power dissipation for specific archi-
tectures. Sim-Wattch is a new simulator with the power models
of Wattch integrated with the SimpleScalar architectural simu-
lator [53].

The best individuals of ten runs with their energy consump-
tions are given in Figure 2. This figure shows that while clas-
sification accuracy is high, energy consumption of the program
gets higher as well for ad hoc flooding attacks. It is much higher
than the manual detection consumes. On the other hand, this re-
lation is not quite straightforward for route disruption attacks.
Analyzing the best individuals evolved for route disruption at-
tacks shows that it is a simple attack can be detected by small
programs which generally have a tendency to consume lower
energy.

Furthermore, since the size of the programs can affect their
energy consumption, we conduct experiments to evolve pro-
grams with different tree depths (17, 5). Tree depth defines
the maximum size of the individuals (trees) evolved in GP. The
effect of program size on evolved program’s detection ability
and energy consumption can be seen in Figure 2. It would ap-
pear that route discuption attacks can be detected by small pro-
grams. Constraining the sizes of program that can be evolved
forces the technique to search for small programs in that re-
duced space. The approach manages to find effective ones. The
results are more dramatic for ad hoc flooding detection. We can
see how small-sized programs can exhibit good detection ca-
pability. Nevertheless programs with bigger program size and
accordingly higher energy consumption show a slightly better
performance on the detection ability.

50

60

70

80

90

100

50 150 250 350 450 550 650 750 850 950

A
d

 H
o

c
F

lo
o

d
in

g
 A

tt
a

ck

D
R

-F
P

R

Energy

depth: 17

depth: 5

Figure 2: Classification Accuracy and Energy Consumption of the Optimal
Evolved Programs

Bloat is a phenomenon whereby the size of individuals in a
GP population increases dramatically over the duration of a run,
largely due to redundant code [39]. The effect of bloat has also
been noticed in our experiments; there are individuals with the
same fitness but which have larger size due to code redundancy.
It should be noted that small programs do not necessarily con-
sume low energy, a program that uses expensive functions (such

as multiply) could have higher energy consumption than a pro-
gram with greater size.

These experiments demonstrate that different trade-offs can
be made between classification accuracy and energy consump-
tion of programs, and encourage us to find acceptable trade-offs
between these objectives. A multi-objective evolutionary com-
putation technique is employed to discover these trade-offs, as
explained in the next section.

7.3. Discovering Trade-offs in Intrusion Detection Programs
Multi-objective evolutionary computation techniques are em-

ployed in order to optimise the following three objectives in our
experiments: detection rate, false positive rate, and energy con-
sumption of the program. The individual takes part in the evo-
lution process and survives in the next generations based on its
performance on these objectives.

f1 = no. o f attacks detected/no. o f attacks (3)

f2 = 1 − no. o f f alse events/no. o f normal events (4)

f3 = 1/energy consumption (5)

The conceptual schema of the experiments is demonstrated in
Figrure 3.

Individuals

C File

Sim-

Wattch

Object File

GP and SPEA2

GCC

Energy

consumption

DR FPR

Simulated

Network

Figure 3: Simplified Schema of Experiments

7.3.1. Experiment 1: Attack-specific Intrusion Detection Pro-
grams

We firstly evolved intrusion detection programs for ad hoc
flooding and route disruption attacks separately by using
MOEC techniques. The same GP parameters are used except
the population size (150) and SPEA2 archive size (100).

Figure 4 shows the optimal solutions found for ad hoc flood-
ing attack at the 1000th generation. It shows the condition-
ing plots of detection rate (DR) versus false positive rate (FPR)
which are produced conditional on the energy consumption of
programs. Each chart shows the value DR and FPR of programs
whose energy consumption falls in one of the intervals shown
in the top of the figure. For example the top-right chart shows
the programs whose energy consumption falls in the highest
energy consumption and the bottom-left chart shows the pro-
grams with the lowest energy consumption. These charts show
that the programs more close to the optimal solution (high de-
tection rate and low false positive rate) consume higher energy
consumption, as expected. In programs with lower energy con-
sumption the false positive rate increases noticably. Overall,

9

the trade-offs falling in the second biggest energy consumption
interval (the chart in the top-middle) could be more optimal and
acceptable, since it include points which achieve the high clas-
sification accuracy with less energy consumption (than the pro-
grams consume in the interval f).

D
R

Figure 4: Coplots for Programs Evolved for Detection of Ad Hoc Flooding
Attack with Three Objectives

For the route disruption attack, programs closer to the opti-
mum solution which have higher detection ability and lower en-
ergy consumption are achieved by using MOEC techniques. We
have compared energy consumption of programs which have a
high-accuracy detection ability with the programs evolved us-
ing GP. It is observed that programs with lower energy con-
sumption stand out in the results obtained by MOEC tech-
niques, particularly for the ad hoc flooding attack, energy con-
sumption is significantly reduced. It could also be the effect of
reduced bloat by using SPEA2.

7.3.2. Experiment 2: Evolving Multi-attack Intrusion Detec-
tion Programs

In this part we evolve programs to detect ad hoc flooding and
route disruption attacks together by using MOEC techniques.
We aim to investigate if it is better to evolve one program to de-
tect both attacks or evolve two programs each using half the re-
source usage. The following multi-fitness function which eval-
uates the performance of program on both attacks, and its en-
ergy consumption is employed.

f1 =
(detection rate f looding + detection rater.disruption)

2
(6)

f2 = 1 −
(f alse positive rate f looding + f alse positive rater.disruption)

2
(7)

f3 = 1/energy consumption (8)

Figure 5 shows the conditioning plot diagrams for three ob-
jectives on detection of both attacks together. The programs
with lower false positive rate generally have higher energy con-
sumption. However some good results (in terms of classifica-
tion accuracy) are also observed in the lower energy consump-
tion intervals. Overall the results demonstrate that a detection

D
R

Figure 5: Coplots for Programs Evolved for Detection of Both Attacks Together
with Three Objectives

program for both attacks can be more energy-efficient than two
programs which detect these attacks separately, although it does
not show as high classification accuracy as the two programs
do separately. In the results of thirty runs, there is no program
evolved for detecting both attacks which has false positive rate
less than 2% (with high detection rate) simultaneously. It is be-
lieved that evolving programs to detect similar attacks (show-
ing similar consequences on the network) such as DoS attacks
together could give more promising results in terms of energy
consumption than evolving separate programs for each attack,
since they are more likely to have similar signatures.

The performance of some evolved programs (detecting both
attacks together) is demonstrated in Table 5.

Table 5: Performance of Some Programs for Detection of Both Attacks To-
gether

Flooding Attack Route Disruption Resource

Attack (Wattch Units)
DR FPR DR FPR

98.80% 1.90% 100% 2.97 '131

97.71% 1.75% 100% 2.48 '169

98.80% 1.86% 97.78% 2.90 '174

These experiments show that different trade-offs could be
made between classification accuracy and energy consumption.
It is shown how in some circumstances a multiple objective ap-
proach provides a more effective means of searching the trade-
off space. It is likely that for some types of networks (e.g. sen-
sor networks) the ability to make good trade-offs will be partic-
ularly important. Programs with almost the same classification
accuracy (as obtained by GP) but with lower energy consump-
tion are evolved by using MOEC techniques. More importantly
a set of solutions showing different trade-offs is obtained. So
programs showing different trade-offs could be distributed to
nodes based on their energy level. A final choice between solu-
tions making different trade-offs rests with the designer.

Our work is unusual in that it trades off security performance
(detection and false positive rates) against resources (power).

10

The inherent complexity of MANET operations makes it diffi-
cult to see how IDS programs with optimal trade-offs could be
obtained by standard system development practices. An optimi-
sation based approach seems a natural and effective candidate
for this problem.

8. Distributed and Cooperative Intrusion Detection

8.1. Introduction

So far it is assumed that each node in the network carries out
monitoring and detecting of malicious activities. Every node
has an intrusion detection agent and detects network attacks lo-
cally. Hence the evolved programs are distributed to each node
on the network. In this section further intrusion detection ar-
chitectures suited to this distributed and resource-constrained
environment are explored.

Intrusion detection architectures on MANETs can be classi-
fied into two main groups: local detection, and distributed and
coopeative detection. In local detection, every node in the net-
work has an IDS agent and detects attacks on its own without
collaborating with other nodes. Hence the evolved programs
are distributed to each node. However a node on a MANET can
only see a portion of the network: the packets in its radio range
and the packets which it sends or receives. Network attacks
(network scans, distributed attacks, etc.) cannot be detected
with the partial network data held by local nodes in this envi-
ronment. Furthermore, in practice, limited resource availability
may affect the ability of nodes to engage in intrusion detection.

In a distributed and cooperative architecture each node has
IDS agents as in the local detection architecture, but they can
also communicate with other nodes to exchange information,
to reach decisions and to agree on responses. One of the most
used cooperative detection architecture in the literature is based
on hierarchy among nodes. The biggest drawback of this archi-
tecture is the high cost of building and maintaining the hierar-
chy in a highly dynamic environment. Message sending and re-
ceiving is also very expensive in terms of energy consumption.
Communication between these IDS agents is provided either by
exchanging data directly or by use of mobile agents.

Here we explore an intrusion detection architecture suited to
the distributed and resource-constrained environments of inter-
est. Two intrusion detection architectures are investigated in
this research: local detection and cooperative detection in the
neighbourhood. A distributed and cooperative intrusion detec-
tion architecture where nodes communicate with their immedi-
ate (one-hop away) neighbours to reach decisions is proposed.
The following question is explored: “Is it possible to increase
the effectiveness of an agent’s intrusion detection by collabora-
tion with the IDS agents in its neighbourhood?”. The efficiency
of this architecture in terms of bandwidth and energy usage is
also explored and compared with that of local detection.

8.2. Cooperative Detection in Neighbourhood by GE

We have seen that ad hoc flooding attacks can be detected
effectively by programs synthesised using evolutionary compu-
tation techniques in Section 6.1. By nature an ad hoc flooding

attack is a distributed DoS attack and floods almost every node
in the network with broadcast RREQ packets. When a node be-
lieves that someone is attacking (flooding) him, he can support
his judgement with the help of his neighbour nodes since he gets
RREQ packets through them. Accordingly we believe that co-
operative intrusion detection with neighbour nodes can increase
the fitness value. So we extend the experiments to evolve a dis-
tributed and cooperative detection program.

8.2.1. Extending the Grammar for Cooperative Detection
The grammar introduced in Table 2 is extended in order to

evolve a cooperative detection program for ad hoc flooding
attacks. The main difference here is that it allows using features
from neighbouring nodes to make a decision. Each neighbour
executes the evolved statement and sends its result to the main
node. These results from each neighbour are combined at this
node. Moreover while the local detection grammar returns an
if statement, the cooperative detection grammar returns if or
if-else statement (Cooperative Detection 1) as shown in the
following. The logic behind this is that we can evolve programs
for each node to detect attacks locally where we can, and ask
more information from its neighbour nodes otherwise. Other
primitives used in the grammar are the same.

Local Detection:
if condition satisfied satisfied then

raise alarm
end if

Cooperative Detection-1:
if condition satisfied satisfied then
{locally or cooperatively}
raise alarm

else
Local Detection or Cooperative Detection-1

end if

The GE algorithm is run thirty times. The same GE parame-
ters except the generations(=4000) are used. Since the grammar
is more complex, we increase the number of generations until
termination. The performance of the best program evolved is
demonstrated in Table 6. Detection rate and false positive rates
are used to evaluate its performance. It is also compared with
the best local detection program evolved in Section 6.1. The
results show that cooperative detection algorithm (Cooperative
Detection 1) can achieve a lower false positive ratio (0.06%-
0.31%) compared to systems employing local detection only in
these experiments.

All the best evolved programs of each run return an if
statement which uses information only from neighbour nodes.
However, a program that detects attacks locally where it can
is more desirable to preserve limited bandwidth. Furthermore,
message sending and receiving is very expensive in terms
of energy consumption. It is observed that the grammatical
evolution algorithm tends to evolve simplified programs. For
that reason GE algorithm is forced to evolve a program in the
structure Cooperative Detection 2 by changing the grammar.

Cooperative Detection-2:

11

if condition satisfied satisfied then
{suspect locally that there might be a malicious activity happening}
if condition satisfied satisfied then
{reach on a decision based on the further information obtained from
neighbour nodes}
raise alarm

end if
end if

GE is run thirty times using the new grammar (Cooperative
Detection 2). The results show that the false positive ratio is sig-
nificantly reduced. Furthermore the communnication workload
between nodes is reduced approximately 70% compared to the
best evolved program with the grammar Cooperative Detection
1 where a node asks for information from its neighbours at each
time interval. However the best program evolved below by the
grammar Cooperative Detection 2 consults its neighbour nodes
only when it believes there is a chance of malicious activity on
the network.

Table 6: Comparison of Local and Cooperative Intrusion Detection Programs
Evolved by GE for Detection of Ad Hoc Flooding Attack

Network Local Detection Coop. Detection-1 Coop. Detection-2

DR FPR DR FPR DR FPR

low mobility

low traffic 99.81% 0.29% 99.62% 0.23% 99.29% 0.20%

low mobility

medium traffic 98.54% 1.72% 99.48% 1.58% 98.65% 1.43%

low mobility

high traffic 98.14% 1.99% 97.84% 1.59% 97.50% 1.52%

medium mobility

low traffic 99.86% 0.36% 99.86% 0.22% 99.86% 0.28%

medium mobility

medium traffic 99.86% 2.00% 99.61% 1.69% 99.44% 1.32%

medium mobility

high traffic 98.59% 2.79% 98.23% 2.31% 97.43% 2.18%

high mobility

low traffic 99.96% 0.66% 99.49% 0.60% 99.32% 0.47%

high mobility

medium traffic 98.66% 1.73% 98.15% 1.42% 97.61% 1.32%

high mobility

high traffic 99.65% 2.91% 99.47% 2.42% 99.25% 2.17%

We here present the performance of the program with the
minimum false positive rate. The program decreases the false
positive rate with a small decrease in detection rate. Different
programs with different trade-offs between detection rate and
false positive rate are also seen in the results.

In conclusion, cooperative intrusion detection programs
which achieve lower false positive rates than local detection are
evolved by using GE in these runs. Furthermore the interaction
between IDS agents is investigated and is reduced enormously
by improving the BNF grammar for the problem. GE provides a
great flexibility in changing the representation of a problem by
changing the BNF grammar easily. The best programs evolved
with each grammar are shown in Table 7.

8.3. Investigating the Resource Usage of Cooperative Detec-
tion Programs

In this section, we evaluate the energy usage of cooperative
intrusion detection programs and compare it with the energy
usage of local detection programs, since the suitability of these

Table 7: The Programs –Best Individuals– Evolved by GE for Detection of Ad
Hoc Flooding Attack

Detection
Type

Evolved Program

Local Detec-
tion

if((send rrepPs + exp(frw aodvPs - updated routes * pow(frw rreqPs,
added repairedroutes))) > no neighbours)

Coop.
Detection-1

if((abs(floor(frw aodvPs) - send rreqPs) - log(no neighbours)) > (updated routes)) //by
neighbour nodes

Coop. if(invroutes timeout < frw rreqPs && added neighbours < frw aodvPs)

Detection-2 if((frw aodvPs - updated routes) > (max(exp(0.93) + 0.21 - addedroutes notice, 0.20)) //by
neighbour nodes

evolved programs to MANETs is crucial. The trade-offs be-
tween intrusion detection ability and resource consumption of
programs (in terms of energy and bandwidth) are discovered.

The SPEA2 algorithm is run to evolve power and bandwidth
efficient intrusion detection programs. The algorithm aims to
maximize the following objectives simultaneously.

f1 = no. o f attacks detected/no. o f attacks (9)

f2 = 1 − no. o f f alse events/no. o f normal events (10)

f3 = 1/energy consumption (11)

f4 = 1 − % o f neighbour nodes in cooperation (12)

In [54] energy consumption in ad hoc networks is modelled
for the four states (transmit, receive, sleep, and idle) of the net-
work interface. The cost to a node to send or receive a packet on
the network layer is modeled by the linear equation below. The
cost associated with channel acquisition (m and b) is assumed
to be fixed. The cost of a sending/receiving packet is propor-
tional to the size of the packet. If it is a point-to-point traffic,
the total cost is calculated as follows.

Cost = msend × size + bsend (13)

+ mrecv × size + brecv (14)

The packet size (the output of evolved programs) in our ex-
periments is quite small, generally it is one or two floating
point numbers. However each neighbour node participates in
detection by sending their local information. More cooper-
ating neighbours means more communication and more en-
ergy/bandwidth consumption. Accordingly we seek to reduce it
as far as is practical. A simple way of achieving this is to seek
to reduce the number of immediate neighbouring nodes that a
node collaborates with to reach an IDS decision. Therefore f4
is added to the multi-fitness function. The trade-offs among
the number of neighbours in cooperation, detection ability and
power usage of evolved programs are to be discovered.

In mobile networks radio communication has very high
power consumption. A node consumes an amount of power
(=Rx receiving power) even in its idle state in order to moni-
tor the channel. While transmission power (=Tx) is higher, it
depends on the transmission range. A node should maintain its
transmission power at a level sufficient to reach receiving nodes,
or switch to a sleep state to save its power locally. Researchers
generally focus on reducing the communication power since
this is the main cause of battery depletion. In this research even

12

though an intrusion detection program is likely to consume a
small amount of power compared to the communication power,
it runs continuously. When the communication is inevitable
in mobile networks, controlling the power usage of programs
running on a node is another approach to save battery power
locally. The degree to which a node engages in “passive” mon-
itoring may also be a factor. With largely passive operation,
the relative importance of power consumption of programs in-
creases. These are the main reasons that we consider the power
consumed by intrusion detection programs besides its commu-
nication power in this research. However, we are aware that
further integration of these concepts is also possible. For exam-
ple, we could reduce the rate at which neihgbouring information
is requested (and hence save power) but this would inevitably
give rise to a lower detection capability. (That is to say there is
a trade-off to be made here.)

8.4. Results Analysis
SPEA2 was run thirty times. Each run produced a Pareto

optimal set of non-dominated solutions. We analyse the distri-
bution of the union of those thirty sets. (Within the union some
individual solutions from one contributing set may dominate or
be dominated by individual solutions from another contributing
set). We really want solutions that work well on all three crite-
ria. Consider, for example, the set of solutions with (f1+f2-1)
>= 0.8, f3 >= 0.7 and f4 >= 0.5. Solutions in this set clearly
perform well on all three axes. In some respects we may con-
sider them “excellent”, or an acceptable outcome from a run of
our technique. The average number of “acceptable” solutions in
each run is 2.8333 (with a standard deviation of 2.0356). The
number of runs which produced no “acceptable” solution is 6.
Of course, different definitions of acceptable are clearly possi-
ble.

MOEC returns a set of solutions and one solution has
four values showing different trade-offs between the multi-
objectives described in Equation 9-12. Since analyzing the
multi-dimensonal data is difficult, we show the relation between
each pair of multi-objectives separately here. Only programs
with high classification accuracy (where the of detection rate
and (100-false positive rate) are bigger than 98%) are selected
here and evaluated on a network under medium mobility and
medium traffic.

Firsly, the relation between the fitness values of these pro-
grams and the percentage of neighbour nodes asked for infor-
mation to achieve these fitness values is analysed. It is observed
that when the number of neighbours participating in the de-
tection increases, the effectiveness of the programs increases
as well. The correlation between these values is analyzed for
each run and the average correlation coefficient is calculated as
0.3829∓0.0963. This value (with the p-value 0.0142∓0.0226)
shows that these two values are correlated, however it is not a
very strong relationship. There are other influences and the re-
lationship between these values is not fixed. Since the aim is to
find different trade-offs among four objectives, the value of one
objective is affected by other objectives as well.

There is no statistifically significant correlation found be-
tween energy usage of programs and the percentage of neigh-

bour nodes in cooperation. Programs with higher classifica-
tion accuracy tend to consume more energy. We here present
a few solutions produced in one run. These values are weakly
correlated in some runs where the average correlation coeffi-
cient is 0.3070∓0.0131 (with the p-value 0.0167∓0.0038). It
means while the energy increases, the fitness increases too in
the output non-dominated solutions. However the fitness is also
affected by other objectives. Moreover it is observed that the
energy consumption of these programs is lower than that of the
programs given in the previous sections which only considers
classification accuracy as the fitness function.

The performance of some of these programs evolved is
demonstrated in Table 8. The best classification accuracy is
achieved by program 4 which uses 80% of neighbour nodes to
reach a decision. Program 1 consumes higher energy than the
program 4, but decreases the number of nodes participating in
intrusion detection very significantly. Its detection ability (fit-
ness value) is as almost the same as that of local detection and it
uses half of its neighbour nodes. It decreases the false positive
rate with a small decrease in the detection rate. The energy con-
sumption of evolved programs is generally almost the same as
for the power-aware local detection programs’ evolved in Sec-
tion 7.3. Different trade-offs among the classification accuracy,
the energy consumption and the number of neighbour nodes in
cooperation are clearly seen in these results. Here we are us-
ing the number of collaborating nodes as a proxy for resource
consumption incurred by collaboration. Thus, we need to send
requests to our neighbours and they must respond. This incurs
both broadcast and reception costs but also information retrieval
costs within each of the neighbouring nodes. It is clear that we
should seek to reduce the number of collaborating neighbours
as much as it is practical. In this approach neighbours with
enough resources could participate in intrusion detection.

Table 8: Performance of Some Cooperative Programs Evolved by MOEC
Program No. Detection False Positive Nodes Energy

Rate Rate

1 99.21% 1.32% 51% ' 149

2 99.53% 1.54% 58% ' 151

3 99.65% 1.72% 74% ' 149

4 99.41% 1.23% 80% ' 137

The performance of evolved programs is demonstrated on
networks only under medium mobility and medium traffic as
shown in Table 8. On simulated networks under high mobility
the detection rate is decreased down to 97% with a decrease in
the false positive rate down to 1%.

This section demonstrates the potential use of evolution-
ary computation techniques to discover complex properties of
MANETs (such as limited power and limited bandwidth) and
to generate a suitable intrusion detection approach applicable
to this new environment. It is shown that cooperative intrusion
detection with neighbour nodes increase the effectiveness of the
system. The energy consumption of these programs is almost
the same as that of the power-aware local detection programs
evolved in Section 7.3. However cooperative intrusion detec-
tion requires communication between nodes. Even though the
size of the packets sent for intrusion detection is small, message

13

sending and receiving still consume an amount of energy and
the number of neigbour nodes taking a role in intrusion detec-
tion is a legitimate target for minimization. The results show
that the performance of the local detection programs can be
achieved by using a distributed and cooperative detection pro-
gram. Some neighbouring nodes (50% of neighbouring nodes
asked for information) participate in cooperative intrusion de-
tection. If the number of nodes in cooperation increases, the
classification accuracy increases as well. Different trade-offs
that can be applied according to the application are presented
here. We believe this is one of the first works to consider con-
strained resources in the case of IDS for MANETs.

9. The Evaluation of GP and GE on Intrusion Detection

Two variants of evolutionary computation techniques,
namely Genetic Programming (GP) and Grammatical Evolu-
tion (GE), have been evaluated to design intrusion detection
programs for known attacks against MANETs so far. It is
shown that GP and GE are good at discovering complex rela-
tions on MANETs. In these experiments the default parameters
(of ECJ [42] and libGE [44]) are used for each technique. How-
ever each technique shows different performance under differ-
ent parameter settings. In this section each technique is anal-
ysed using their approximate optimal parameters for an unbi-
ased evaluation.

Here we aim to identify approximations to the optimal pa-
rameters for GP and GE and, then make a fair comparison of
these techniques under their optimal parameter settings. We fol-
low the steps of a simple Design of Experiments (DoE) method-
ology in [55].

Genetic Programming and Grammatical Evolution differ
from each other in two fundamental ways [40]. The main dif-
ference is the representation of individuals. While individuals
are represented as trees in GP, GE employs linear genomes. GE
also performs mapping from genotype to phenotype (program)
and uses a grammar to dictate legal structures in the phenotypic
space [40]. We aim to show if these differences make a sta-
tistically significant difference on the performance of detection
programs evolved by using these techniques separately.

The experimental results so far show that a route disruption
attack can be detected easily since it violates the specifications
of the routing protocol directly. However, ad hoc flooding is a
more complex attack and not easily differentiable from normal
behaviour of the system due to the dynamic nature of MANETs.
It should provide a challenging test case of our GP and GE ap-
proaches.

9.1. The Testbed
Firstly, a common platform is built for each evolutionary

computation algorithm before tuning the parameters. Each al-
gorithm uses the feature set in Table 1 and, the same training
and testing data simulated by ns2 [33] and BonnMotion [34].
The functions used to define the problem in a GP tree are those
in the GE grammar. Strongly-typed GP is employed here to en-
force the rules of the GE grammar into the GP. It also helps pro-
viding the code ordering as in the GE grammar. For example,

only relational functions could be allowed to be placed to the
first level of the GP tree. Then we could put the relational func-
tions into an if-statement while we are translating the individual
tree to a C program. Consequently, it provides an output pro-
gram returning an if-statement as in the GE grammar. Hence,
the programs in the same format could be evolved using either
GP or GE.

The size of an individual is constrained by tree depth in
GP, and by genome size and wrapping in GE. Maximum tree
depth size is one of the important parameters in GP. Maximum
genome size in GE, corresponding to maximum tree depth in
GP, is also defined in our experiments to evolve individuals
in the same size range in each technique. Maximum genome
size is computed by building the full tree with maximum tree
depth and defining the grammar which builds this tree intu-
itively. Since our grammar is not complicated, it is estimated
easily. However both algorithms behave differently when the
size of an individual exceeds the predefined parameter or an
invalid individual is created in general. While GP copies the
parents of the invalid individual after retries of creating a valid
individual, GE assigns the lowest fitness value to the individual.

Koza’s ramped half and half initialization in GP and sensi-
ble initialization in GE are used to create an initial population.
GE sensible initialization is based on Ramped Half and Half
Initialization in GP but generates derivation trees of equivalent
size [40].

In the experiments, tournament selection was used to select
individuals for recombination and simple genetic algorithm was
used to select individuals for replacement. Furthermore elitist
approach were employed in each technique by keeping the best
individual of each population. Necessary changes were made
to each library in order to implement these algorithms in a stan-
dard way.

The details of other parameters used/tuned in our experi-
ments are given in the subsequent section.

9.2. The Design of Experiments
In this methodology we firstly tune the parameters to identify

approximations to the optimal parameters for each technique.
However finding the optimal parameters for an algorithm re-
quires a large-scale experimentation consuming vast comput-
ing resources. So we take the approach which assumes “if an
equivalent amount of effort is spent in applying this method to
each of the algorithms, it is reasonable to expect the approxi-
mations to be similarly close to the absolute optimum for each
algorithm and so the comparisons to be fair” [55]. Therefore
we start with finding approximations to the optimal parameters
for each technique in our research.

In our experiments we use four independent parameters :
crossover probability [0.1, 0.9], mutation probability [0.01,
0.5], population size [50, 100], and tournament size [2, 9]. Run-
ning experiments at each possible parameter setting is compu-
tationally infeasible, so we use three-level full factorial design
where each parameter is considered at three levels, referred as
low, intermediate and high levels.

We chose the ranges large enough to cover all practical values
for each parameter. For crossover probability the highest value

14

is chosen as 0.9 since leaving some part of old population sur-
vive to next generation is believed to be good [56]. Mutation
helps to avoid being trapped in local extremes by introducing
diversity into the system. However it should not occur very of-
ten, otherwise genetic algorithms can simply return to random
search [56]. That is the reason the highest value for mutation
probability is chosen as 0.5 here. Our pilot study also supports
that the algrotihms do not show better performance under high
mutation probability. The parameter for termination criteria of
an evolutionary algorithm namely maximum number of genera-
tions (100.000 / population size) depends on the parameter pop-
ulation size to ensure the same number of individuals created in
overall in each algorithm. Each algorithm is run twice (with dif-
ferent seeds) for each parameter setting. Hence each algorithm
run totally 34x2 times to estimate β coefficients in the second
linear model below which describes the relationship between
the performance of the algorithm, y, and the parameter settings,
xi.

y = β0 +
∑

i

βixi +
∑

i

∑
j>i

βi jxix j

∑
i

βiix2
i + ε (15)

After estimating the coefficents in the linear model by using a
standard linear regression, we apply quadratic programming to
locate approximations to the optimal parameters. The parame-
ter settings (crossover probability, mutation probability, tourna-
ment size, population size, maximum number of generations)
which give the best performance are found (0.1, 0.37, 8, 50,
2000) for GP and (0.9, 0.5, 7, 1000, 100) for GE.

Finally each algorithm is run one hundred times at the opti-
mal parameter settings found and compared by applying a sta-
tistical hypothesis test of equality. The results show that the
mean of GP runs (fitness values) is greater than the mean of
GE runs with 95% confidence. However better results by GE
which uses steady-state approach have been observed in the ex-
periments presented in Section 6.1. This approach is proposed
to reduce the effect of invalid individuals in GE. That is why the
same methodology is applied to compare two techniques with
the same parameter values, but with a steady-state approach.
The standard steady-state approach which replaces the worst
individual of the preceeding population is employed. Even if
this individual is better than the new individual, it will be re-
placed regardless of its better score. The parameter settings
(crossover probability, mutation probability, tournament size,
population size, maximum number of generations) which give
the best performance are found (0.1, 0.01, 9, 50, 2000) for GP
and (0.9, 0.5, 2, 514, 194) for GE.

After running each algorithm one hundred times with the op-
timal parameter settings, hypothesis testing is applied for com-
parison. The results show that if a steady-state approach is em-
ployed, the mean of GE runs (fitness values) is greater than the
mean of GP runs with 90% confidence. It is reasonable to say
that it was invalid individuals who affect the performance of
GE (slow down the evolution) in the simple approach. Over-
all when the results of the best GP version (with simple ap-
proach) is compared with the results of the best GE version
(with steady-state approach), GP shows a better performance.

10. Conclusions

Many IDSs have been proposed for conventional networks,
but they are not naturally applicable to MANETs. The lack of
central points, significant node mobility, and limited resource
availability pose significant challenges to IDS. In this paper
we have investigated the use of evolutionary computation tech-
niques to discover detectors suited to such complex environ-
ments. We have applied grammatical evolution and genetic
programming techniques to detect ad hoc flooding and route
disruption attacks on AODV. The evolved programs show good
performance on simulated networks with varying mobility and
traffic patterns.

Efficiency is an important criterion for MANETs’ highly
resource-constrained nodes. We have shown how energy us-
age and detection ability can be traded off and that evolutionary
techniques have very significant potential to explore the com-
plex IDS program design space. The classic notion of Pareto
fronts provides a principled means to compare the trade-offs
involved. Our paper presents the first multi-objective opti-
misation approach to trading off multiple criteria in MANET
IDS construction, and the first to trade off functional and non-
functional properties. Our focus on power usage will find ap-
plication elsewhere. For example, many ad hoc self-organising
sensor networks (e.g. such as those formed by smart dust net-
works) will be severely resource constrained. Finally, we have
shown how evolutionary techniques can be used to evolve IDSs
with both local and cooperative architectures.

Our simulation based approach to fitness evaluation (both de-
tection ability and power usage) provides an excellent practical
means for exploring what are clearly highly complex design
spaces. Our mobility model (provided by BonnMotion[34]) is
a simple one. Alternative mobility models should now be in-
vestigated. However, there is no reason in principle why fitness
could not be evaluated over several mobility models simulta-
neously. Indeed, this would largely be a question of computa-
tional cost. One could even imagine considering detection abil-
ities and power consumptions over different mobility models as
different criteria to be traded off.

Overall, we have shown that evolutionary techniques such
as genetic porogramming, grammatical evolution and multi-
objective evolutionary algorithms have considerable potential
for exploring the complex design spaces associated with IDS on
MANETs and are capable of producing high performing pro-
grams that take various functional and non-functional criteria
into account. We know of no other approach that can do this.

References

[1] Y. Li, J. Wei, Guidelines on selecting intrusion detection methods in
manet, in: Proceedings of the Information Systems Education Confer-
ence, EDSIG, 2004, pp. 1–17.

[2] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, L. Viennot,
Optimized link state routing protocol for ad hoc networks, in: Multi Topic
Conference, IEEE INMIC. Technology for the 21st Century, IEEE, 2001,
pp. 62 – 68.

[3] C. Perkins, E. Royer, Ad-hoc on-demand distance vector routing, in:
Proceedings of the 2nd IEEE Workshop on Mobile Computer Systems
and Applications, IEEE, 1999, pp. 90–100.

15

[4] D. B. Johnson, D. A. Maltz, Dynamic source routing in ad hoc wireless
networks, in: Mobile Computing, Kluwer Academic Publishers, 1996,
pp. 153–181.

[5] D. Denning, An intrusion detection model, IEEE Transactions on Soft-
ware Engineering 13 (1987) 222–232.

[6] P. Uppuluri, R. Sekar, Experiences with specification-based intrusion de-
tection, in: Proceedings of the Recent Advances in Intrusion Detection
(RAID), LNCS 2212, Springer, 2001, pp. 172–189.

[7] M. Crosbie, G. Stafford, Applying genetic programming to intrusion de-
tection, in: Proceedings of AAAI Symposium on Genetic Programming,
Cambridge, MA, 1995, pp. 1–8.

[8] L. Me, Gassata: A genetic algorithm as an alternative tool for security
audit trails analysis, in: Proceedings of the International Symposium on
Recent Advances in Intrusion Detection (RAID), Springer, 1998, pp. 1–
11.

[9] W. Li, Using genetic algorithm for network intrusion detection, in:
Proceedings of the United States Department of Energy Cyber Security
Training Conference, USA, 2004, pp. 24–27.

[10] KDD cup 1999 intrusion detection data set, 2010.
[11] A. Abraham, C. Grosan, C. Martiv-Vide, Evolutionary design of intrusion

detection programs, International Journal of Network Security 4 (2007)
328–339.

[12] A. Abraham, C. Grosan, Evolving intrusion detection systems, in:
Genetic Systems Programming: Theory and Experiences, volume 13,
Springer, 2006, pp. 57–79.

[13] D. Song, M. I. Heywood, A. N. Zincir-Heywood, Training genetic pro-
gramming on half a million patterns: An example from anomaly detec-
tion, IEEE Transactions on Evolutionary Computation 9 (2005).

[14] D. Wilson, D. Kaur, Knowledge extraction from kdd’99 intrusion data us-
ing grammatical evolution, WSEAS Transactions on Information Science
and Applications 4 (2007) 237–244.

[15] C.-Y. Tseng, P. Balasubramayan, C. Ko, R. Limprasittiporn, J. Rowe,
K. Lewitt, A specification-based intrusion detection system for aodv, in:
Proceedings of the ACM Workshop on Security in Ad Hoc and Sensor
Networks, ACM, 2003, pp. 125–134.

[16] C. Tseng, S.-H. Wang, W. Lee, C. Ko, K. Lewitt, Demem: Distributed
evidence driven message exchange intrusion detection model for manet,
in: Proceedings of the 9th International Symposium on Recent Advances
in Intrusion Detection (RAID), Springer, 2006, pp. 249–271.

[17] G. Vigna, S. Gwalani, K. Srinivasan, E. M. Belding-Royer, R. A. Kem-
merer, An intrusion detection tool for aodv-based ad hoc wireless net-
works, in: Proceedings of the 20th Annual Computer Security Applica-
tions Conference, IEEE Computer Society, 2004, pp. 16–27.

[18] J. Parker, J. Undercoffer, J. Pinkston, A. Joshi, On intrusion detection and
response for mobile ad hoc networks, in: Proceedings of the 23th IEEE
Int. Performance Computing and Communications Conference, IEEE,
2004.

[19] S. Buchegger, J.-Y. L. Boudec, Nodes bearing grudges: Towards routing
security, fairness, and robustness in mobile ad hoc networks, in: Pro-
ceedings of the 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, IEEE Computer Society, 2002, pp. 403–410.

[20] S. Marti, T. J. Giuli, K. Lai, M. Baker, Mitigating routing misbehavior in
mobile ad hoc networks, in: Proceedings of ACM Int. Conf. on Mobile
Computing and Networking, ACM, 2000, pp. 255–265.

[21] F. Anjum, R. Talpade, Lipad: lightweight packet drop detection for ad
hoc networks, in: Proceedings of the 60th IEEE Vehicular Technology
Conference, IEEE, 2004, pp. 1233–1237.

[22] O. Kachirski, R. Guha, Effective intrusion detection usign multiple sen-
sors in wireless ad hoc networks, in: Proceedings of the 36th IEEE Inter-
national Conference on System Sciences, IEEE, 2003.

[23] Y. Zhang, W. Lee, Y. an Huang, Intrusion detection techniques for mobile
wireless networks, Wireless Networks Journal (ACM WINET) 2 (2003).

[24] B. Sun, K. Wu, U. Pooch, Zone-based intrusion detection for mobile
ad hoc networks, International Journal of Ad Hoc and Sensor Wireless
Networks 2 (2003).

[25] Y. Huang, W. Lee, A cooperative intrusion detection system for ad hoc
networks, in: Proceedings of the 1st ACM Workshop on Security of Ad
Hoc and Sensor Networks, ACM, 2003.

[26] S. Sen, J. A. Clark, Intrusion detection in mobile ad hoc networks, in:
Guide to Wireless Ad Hoc Networks, Springer, 2009, pp. 427–454.

[27] T. Weise, Genetic Programming for Sensor Networks, Technical Report,

2006.
[28] D. M. Johnson, A. M. Teredesai, R. T. Saltarelli, Genetic programming

in wireless sensor networks, in: Proceedings of the European Conference
on Genetic Programming (EUROGP), LNCS 3447, Springer, 2005, pp.
96–107.

[29] S. Sen, J. A. Clark, A grammatical evolution approach to intrusion de-
tection on mobile ad hoc networks, in: Proceedings of the Second ACM
Conference on Wireless Network Security, ACM, 2009, pp. 95–102.

[30] S. Sen, J. A. Clark, J. E. Tapiador, Power-aware intrusion detection in
mobile ad hoc networks, in: Proceedings of the International ICST Con-
ference on Ad Hoc Networks, Springer, 2009, pp. 224–239.

[31] S. Sen, J. A. Clark, J. E. Tapiador, Security threats in mobile ad hoc
networks, in: Security of Self-Organizing Networks: MANET, WSN,
WMN, VANET, Auerbach Publications, 2010, pp. 127–147.

[32] P. Ning, K. Sun, How to Misuse AODV: A Case Study of Insider Attacks
against Mobile Ad Hoc Routing Protocols, Technical Report, Department
of Computer Science, North Caroline State University, 2003.

[33] Ns-2: The network simulator, 2010.
[34] Bonnmotion: A mobility scenario generation and analysis tool, 2010.
[35] T. Camp, J. Boleng, V. Davies, A survey of mobility models for ad

hoc network research, Wireless Communications and Mobile Comput-
ing (WCMC): Special issue on Mobile Ad Hoc Networking: Research,
Trends and Applications 2 (2002) 483–502.

[36] A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing,
Springer, 2003.

[37] J. R. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection, MIT Press, 1992.

[38] W. Banzhaf, P. Nordin, R. E. Keller, F. D. Francome, Genetic Program-
ming: An Introduction on the Automatic Evolution of Computer Pro-
grams and Its Applications, Morgan Kaufman Publishers, 1998.

[39] C. Ryan, J. Colline, M. O’Neill, Grammatical evolution: Evolving pro-
grams for an arbitrary language, in: Proceedings of the 1st European
Workshop on Genetic Programming, LNCS 1391, Springer, 1998, pp.
83–95.

[40] M. O’Neill, C. Ryan, Grammatical Evolution: Evolutionary Automatic
Programming in an Arbitrary Language, Springer, 2003.

[41] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength
Pareto Evolutionary Algorithm, Technical Report 103, Swiss Federal In-
stitute of Technology, 2001.

[42] Ecj18: A java-based evolutionary computation research system, 2010.
[43] D. J. Montana, Strongly typed genetic programming, Evolutionary Com-

putation 3 (1995) 199–230.
[44] libge: A C++ library for grammatical evolution, 2010.

Http://bds.ul.ie/libGE.
[45] D. Sterne, P. Balasubramanyam, D. Carman, B. Wilson, R. Talpade,

C. Ko, R. Balupari, C.-Y. Tseng, T. Bowen, A general cooperative in-
trusion detection architecture for manets, in: Proceedings of the 3rd In-
ternational Workshop on Information Assurance, IEEE, 2005, pp. 57–70.

[46] Y. Huang, W. Fan, W. Lee, P. S. Yu, Cross-feature analysis for detection
ad-hoc routing anomalies, in: Proceedings of the 23rd International Con-
ference on Distributed Computing Systems, IEEE, 2003, pp. 478–487.

[47] P. Yi, Y. Zhong, S. Zhang, A novel intrusion detection method for mobile
ad hoc networks, in: Proceedings of Advances in Grid Computing (EGC),
LNCS 3470, Springer, 2005, pp. 1183–1192.

[48] A. Smith, An examination of an intrusion detection architecture for wire-
less ad hoc networks, in: Proceedings of the 5th National Colloquium for
Information System Security Education, USA, 2001.

[49] H. Kim, D. Kim, S. Kim, Lifetime-enhancing selection of monitoring
nodes for intrusion detection in mobile ad hoc networks, International
Journal of Electronics and Communications 60 (2006) 248–250.

[50] T. Srinivasan, V. Mahadevan, A. Meyyappan, A. Manikandan,
M. Nivedita, N. Pavithra, Hybrid agents for power-aware intrusion de-
tection in highly mobile ad hoc networks, in: Proceedings of the In-
ternational Conference on Systems and Network Communication, IEEE
Computer Society, 2006.

[51] A. Karygiannis, E. Antonakakis, A. Apostolopoulos, Detecting critical
nodes for MANET intrusion detection systems, in: Proceedings of the
2nd International Workshop on Security, Privacy and Trust in Pervasive
and Ubiquitous Computing, IEEE, 2006.

[52] D. Brooks, V. Tiwari, M. Martonosi, Wattch: A framework for
architectural-level power analysis and optimizations, in: Proceedings

16

of the 27th International Symposiyum on Computer Architecture, IEEE,
2000.

[53] Simplescalar, 2010. Http://www.simplescalar.com/.
[54] L. M. Feeney, An energy consumption model for performance analysis

of routing protocols for mobile ad hoc networks, Mobile Networks and
Applications 6 (2001) 239–249.

[55] D. R. White, S. Poulding, A rigorous evaluation of crossover and muta-
tion in genetic programming, in: Proceedings of the Genetic and Evolu-
tionary Computation Conference (EuroGP), LNCS 5481, Springer, 2009,
pp. 220–231.

[56] S. Sivanandam, S. Deepa, Introduction to Genetic Algorithms, Springer,
2008.

17

